不同输入设置对LSTM洪水预报模型应用效果的影响
CSTR:
作者:
作者单位:

河海大学水文与水资源学院,南京 210098

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划项目(2024YFC3211400)和国家自然科学基金项目(52179011)联合资助


Comparison on the application performance of LSTM flood forecasting model under different input methods
Author:
Affiliation:

College of Hydrology and Water Resources, Hohai University ,Nanjing 210098 ,P.R.China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    长短期记忆网络(LSTM)模型要求输入资料时序连续,选择合适的输入因子及其输入方式对于提高LSTM在洪水预报中的应用效果具有重要意义。本文针对洪水场次时序上不连续的特点,构建了洪水场次拼接的固定时间步长的输入方式1、洪水场次分开考虑的动态时间步长的输入方式2、洪水场次分开考虑的结合固定时间步长和动态时间步长的输入方式3,分别以降雨、径流、降雨和径流为输入因子结合3种输入方式设置了7种输入方案,比较了不同输入方案下LSTM模型在福建建阳流域的应用效果。结果表明:(1)选取降雨及径流作为输入因子的LSTM模型(方案3、6和7)洪水计算结果优于仅以降雨(方案2和5)或仅以径流(方案1和4)作为输入因子的设置。(2)当预见期为1~2 h时,方案3、6、7的预测结果无显著差距;预见期为3~5 h时,结合固定步长和动态步长设置的方案7洪水预报结果最优。(3)对方案7分别采用预见期1~3 h的多个模型和1 h的单个模型进行滚动预报,多模型的方式在3 h预见期内对洪峰的预测精度更高。研究成果可为LSTM洪水预报模型的输入因子选择和时间步长设置提供参考,结合固定步长和动态步长的设置可提高较长预见期下的洪水预报精度。

    Abstract:

    The long short-term memory (LSTM) model requires continuous input data in time series. Choosing appropriate input factors and input methods is of great significance for improving the performance of LSTM in flood forecasting. In this study, three input methods were set to consider the discontinuous temporal characteristics of flood events including a fixed time step. Input method 1 concatenates flood events was a dynamic time step. Input method 2 considers floods separately, and input method 3 combines fixed and dynamic time steps by separating treatment of flood events. Seven input schemes were designed by considering the above input methods with rainfall, streamflow, and both rainfall and streamflow as input factors respectively. The performance of LSTM model with different input schemes was compared in the Jianyang River Basin, Fujian. Results show that: (1) The LSTM model with rainfall and streamflow as input factors (schemes 3, 6, 7) yields better flood calculation results than those with only rainfall (schemes 2, 5) or only streamflow (schemes 1, 4) as input factors. (2) When the lead times are 1-2 hours, there is no significant difference in the prediction results of schemes 3, 6,7. When the lead times are 3-5 hours, the scheme 7 that combines fixed step size and dynamic step size settings has the best performance. (3) The scheme 7 uses multiple models with the lead times of 1-3 hours and a single model with the lead time of 1 hour for rolling forecasting. The multi model approach has higher accuracy in predicting flood peaks within the lead time of 3 hours. This research provides reference for the selection of input factors and time step setting of LSTM flood forecasting model, combining the setting of fixed time step and dynamic time step, can improve the accuracy of flood forecasting under longer lead times.

    参考文献
    相似文献
    引证文献
引用本文

覃睿,张小琴.不同输入设置对LSTM洪水预报模型应用效果的影响.湖泊科学,2025,37(4):1470-1480. DOI:10.18307/2025.0444

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-08
  • 最后修改日期:2024-11-12
  • 录用日期:
  • 在线发布日期: 2025-07-04
  • 出版日期: 2025-07-06
文章二维码
您是第    位访问者
地址:南京市江宁区麒麟街道创展路299号    邮政编码:211135
电话:025-86882041;86882040     传真:025-57714759     Email:jlakes@niglas.ac.cn
Copyright:中国科学院南京地理与湖泊研究所《湖泊科学》 版权所有:All Rights Reserved
技术支持:北京勤云科技发展有限公司

苏公网安备 32010202010073号

     苏ICP备09024011号-2