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A B S T R A C T   

Global lake evaporation is a critical component of the terrestrial water cycle. Accurate quantification of lake 
evaporation dynamics is of high importance for understanding lake energy budgets, land-atmosphere interac-
tions, as well as regional water availability. However, the accurate quantification of lake evaporation has been 
hindered by the complexity involved with addressing the heat storage of water bodies. In this study, a new 
model—the Lake Temperature and Evaporation Model (LTEM)—was developed to simulate lake water tem-
perature profiles, which were then used to calculate heat storage changes and evaporation rates. Inputs for the 
LTEM include the meteorological and bathymetric data, as well as the Moderate Resolution Imaging 
Spectroradiometer (MODIS) water surface temperature (WST)—which is the land surface te`mperature (LST) 
over water. The MODIS WST was leveraged to constrain the hydrodynamic simulations. Model results over 11 
lakes around the world show robust performance of LTEM. The long term average temperature biases range from 
-0.5 °C to 0.5 °C, and the evaporation rate biases range from -0.19 mm/day to 0.28 mm/day. In particular, it is 
found that LTEM significantly improves the simulation of the seasonality of lake evaporation rates. The vali-
dation results suggest that the averaged coefficient of determination (R2) for the evaporation rate is 0.84, which 
is 0.28 higher than that obtained when the conventional Penman equation (without heat storage) is used. The 
volumetric evaporation time series was then calculated as a product of the monthly evaporation rate and lake 
surface area (derived from MODIS near-infrared image classifications). This study provides an end-to-end fra-
mework for quantifying volumetric evaporation for the world’s lakes and reservoirs. It also provides the cap-
ability to investigate the thermal dynamics of lake systems, and thus can benefit the various water resources 
applications across scales.   

1. Introduction 

Globally, the total open water area of the 1.42 million lakes/re-
servoirs is estimated to be about 2.67 × 106 km2 (Messager et al., 
2016). This large area leads to massive volumetric evaporative losses 
(Zhao and Gao, 2019). Meanwhile, these losses are sensitive to the 
changing climate since the evaporation process of these open water 
surfaces are energy limited (Brutsaert and Parlange, 1998; Wang et al., 
2018). Although lake evaporation quantification is critical for water 
resources management (Wurbs and Ayala, 2014), climate modeling 
(Subin et al., 2012), ecosystem protection (Gianniou and Antonopoulos, 
2007), and renewable energy generation (Cavusoglu et al., 2017), we 
still lack an accurate and robust quantification method to estimate 
volumetric evaporation—especially at a large scale (Friedrich et al., 
2018). 

Despite the fact that the evaporation process occurs only on the skin 
layer (~10 μm) of the water body, its magnitude is affected not only by 
the interactions between the atmosphere and the skin layer, but also 
between the skin layer and the water column (Hostetler and Bartlein, 
1990). The former interaction is governed by four primary meteor-
ological variables: solar radiation, atmospheric humidity, air tempera-
ture, and wind speed (McVicar et al., 2012); while the latter is con-
trolled by the energy stored in the water body (de Bruin, 1982).  
Penman (1948) developed the first combination equation for calcu-
lating the open water evaporation rate. The Penman equation has been 
widely used in open water evaporation studies (Linacre, 1993; Terzi 
et al., 2006) and has been modified for use under varying conditions, 
including vegetated surfaces (Monteith, 1965) and advection free 
conditions (Priestley and Taylor, 1972; Morton, 1983). Compared to the 
energy balance or bulk aerodynamic evaporation assessment methods, 
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the Penman equation combines these two aspects to produce reliable 
evaporation rate estimates based on standardized meteorological data 
(McMahon et al., 2013). Because of the difficulties involved with 
measuring/estimating the heat storage changes of a water body, the 
Penman equation is only appropriate for quantifying the evaporation 
rates of shallow water bodies where the heat storage effect can be ne-
glected (Vallet-Coulomb et al., 2001; Valiantzas, 2006; Sima et al., 
2013). However, for deep lakes (> 10 m), heat storage changes can be 
equivalent to more than 50% of the net radiation (Allen and Tasumi, 
2005) and lead to a significant shift of evaporation seasonality (Blanken 
et al., 2011; Moreo, 2015; Zhao and Gao, 2019). 

The heat storage change, which is defined as the energy changes of 
the entire water body per unit area, can be calculated using the tem-
perature profiles from two consecutive time steps (Gianniou and 
Antonopoulos, 2007). Based on this definition, heat storage changes can 
be obtained through observational or modeling methods. For example, 
a commonly used evaporation rate estimation method—the Bowen 
ratio energy budget (BREB) method—calculates heat storage changes 
from the observed water temperature profile (Stannard and Rosenberry, 
1991; Lenters et al., 2005a; Elsawwaf et al., 2010). However, this 
method requires frequent recordings of water temperature at multiple 
depths, and thus is very labor- and time- intensive. 

Modeling heat storage changes can be achieved by several methods: 
1) simple regression between heat storage changes and net radiation 
(Duan and Bastiaanssen, 2015); 2) equilibrium temperature simulation 
(Finch, 2001; McJannet et al., 2008; Zhao and Gao, 2019); and 3) water 
temperature profile simulation (Hostetler and Bartlein, 1990). The 
simple regression method uses a hysteresis function to relate heat sto-
rage changes and net radiation, and thus may result in large un-
certainties. The equilibrium temperature method is physically-based, 
with an assumption that the water body is well-mixed. However, this 
assumption neglects the vertical temperature gradient of the water 
body and thus introduces uncertainties—especially for deep (> 10 m) 
lakes (Blanken et al., 2000). The last method aims to continuously si-
mulate the water temperature profiles through numerical modeling 
(e.g., hydrodynamic models). It has shown a great potential due to the 
development of accurate modeling approaches (Subin et al., 2012). 

One-dimensional (1-D) hydrodynamic models have demonstrated 
the capability of simulating water temperature profiles and dynamics 
(Bowling and Lettenmaier, 2010; Subin et al., 2012). The driving as-
sumption of the 1-D model is horizontal homogeneity, which is com-
monly valid due to the vertical density gradient (Perroud et al., 2009). 
Several types of 1-D models have been developed, including: 1) simple 
2-layer (mixed-thermocline) models such as FLake (Kirillin et al., 
2011); 2) radiation-diffusion models (Hostetler and Bartlein, 1990, 
hereafter referred to as the Hostetler Model); and 3) turbulence models 
(Hamilton and Schladow, 1997; Goudsmit et al., 2002). Results from 
model inter-comparisons have been reported in Perroud et al. (2009) 
and Stepanenko et al. (2010). Due to its solid physical basis and com-
putational efficiency (Stepanenko et al., 2013), the Hostetler Model has 
been widely employed for lake temperature profile simulations (e.g.,  
Bowling and Lettenmaier, 2010). 

With any of the methods described above, water temperature profile 
simulations—like other hydrodynamic models which use a consecutive 
numerical method—tend to have reduced accuracies as the simulation 
uncertainties propagate with time (Samaniego et al., 2017). This issue 
can be alleviated by incorporating satellite temperature measurements 
into the models. Thermal sensors such as the Moderate Resolution 
Imaging Spectroradiometer (MODIS) and the Thermal Infrared Sensor 
(TIRS) can measure the land surface temperature (LST) with high ac-
curacy (Wan, 2014). With regard to water surface, LST represents the 
water surface temperature (WST) of the skin layer (~10 μm)—which 
provides an ideal boundary condition for lake temperature profile si-
mulations. Compared to in-situ observations, remotely sensed WST data 
are advantageous in terms of temporal continuity, global coverage, cost 
efficiency, and representation of spatial heterogeneity (Coll et al., 2009;  
Wang et al., 2007). However, to our best knowledge there have been no 
studies which have attempted to use a hydrodynamic model to leverage 
these globally available data for simulating lake water temperature 
profiles and calculating evaporation losses. 

Therefore, the overarching objective of this study was to develop a 
modeling framework to leverage remotely sensed WST data for esti-
mating lake temperature profiles and evaporation more accurately. A 
new model—the Lake Temperature and Evaporation Model 
(LTEM)—was developed for this purpose. In LTEM, MODIS WST data 
were employed to constrain the modified Hostetler Model for calcu-
lating lake water temperature profiles. The temperature profiles were 
then used to calculate lake heat storage changes and evaporation rates. 
Lastly, the volumetric evaporation time series was calculated as the 
product of the monthly evaporation rate and lake surface area (derived 
from MODIS near-infrared image classifications) (Section 2). The fra-
mework was validated over 11 lakes that have either in-situ tempera-
ture or evaporation rate data (Section 3 and Section 4), and its potential 
contributions and uncertainties are discussed in Section 5. 

2. Data and methods 

2.1. Data for volumetric evaporation calculation 

The datasets used in this study, which are all available in the public 
domain, are summarized in Table 1. Specifically, the MODIS 250 m 8- 
day global surface reflectance products (i.e., MOD09Q1 and MYD09Q1) 
were used to extract lake surface area time series values. The MODIS 
1km 8-day global LST products (i.e., MOD11A2 and MYD11A2) over 
lakes were used for deriving the WST time series. The global reanalysis 
dataset, TerraClimate, was used as the meteorological forcing data to 
drive the LTEM. Built upon the widely used Climate Research Unit 4.0 
and Japanese 55-year Reanalysis data, TerraClimate provides monthly 
solar radiation, air temperature, vapor pressure, and wind speed data 
from Jan 1958 to Dec 2018, with a spatial resolution of 1/24 degree 
(Abatzoglou et al., 2018). Detailed discussion about the other ancillary 
datasets included in Table 1 (e.g., HydroLAKES) can be found in the 
following text in this section. 

Table 1 
Data used for lake surface area and WST extraction.       

Data Spatial resolution Temporal resolution Purpose Reference  

HydroLAKES shapefile Time-invariant Lake mask Messager et al., 2016 
OpenStreetMap shapefile Time-invariant Lake mask Haklay and Weber, 2008 
Terra surface reflectance (MOD09Q1) 250 m 8-day Water area extraction Vermote et al., 2015 
Aqua surface reflectance (MYD09Q1) 250 m 8-day Water area extraction Vermote et al., 2015 
Global surface water dataset (GSWD) occurrence 30 m (resample to 250 m) Time-invariant Water area enhancement Pekel et al., 2016 
Terra LST (MOD11A2) 1 km 8-day WST extraction Wan, 2014 
Aqua LST (MYD11A2) 1 km 8-day WST extraction Wan, 2014 
GloboLakes lake surface temperature 1/20° 1-day WST bias-correction Carrea and Merchant, 2019 
TerraClimate 1/24° 1-month Meteorological forcing data for LTEM Abatzoglou et al., 2018 
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2.2. Generating lake surface area time series 

Lake surface area time series were generated from MODIS image 
classifications. Instead of using water indices (e.g., normalized differ-
ence water index), only the near-infrared (NIR) band (841-876 nm) was 
selected for extracting the water area. This was based on two con-
siderations: First, NIR has been commonly used for classifying water, as 
it is strongly absorbed by water (Wozniak and Dera, 2007). Second, NIR 
is one of only two bands on the MODIS sensor that have a high spatial 
resolution (250 m). Fig. 1 shows the flowchart of the algorithm. Using 
Lake Mead as an example (Fig. 2), details about each of these steps are 
described in the following paragraphs.  

1) Lake mask generation: For a given lake of interest, the shapefiles 
from HydroLAKES and OpenStreetMap were compared and the one 
with the larger area was selected. The lake mask was then generated 
by buffering the selected shapefile outward by 1000 m. This buf-
fering approach allowed the mask to include all possible water 
pixels (Gao et al., 2012). By leveraging these two datasets, the 
possible underestimations from either of them can be eliminated. All 
of the subsequent steps were executed within the masked region.  

2) Selection of NIR images: For each 8-day period, the contamination 
percentages (CPs) were calculated for NIR images from both Terra 
(MOD09Q1) and Aqua (MYD09Q1) reflectance products using their 
respective quality assurance (QA) band. A pixel that was covered by 
cloud, cloud shadow, or snow/ice was regarded as contaminated. 
The image with less contamination was selected (Fig. 2a)—and each 
of its contaminated pixels was set to a default “no data” value 
(Fig. 2b). Instead of combining these two, using the less-con-
taminated LST image can reduce the computational cost while still 
producing satisfactory water classification results due to the im-
plementation of the following image enhancement algorithm. In 
addition, the snow/ice area percentage was estimated from the 
MOD09Q1/MYD09Q1 QA band over the enhanced water area to 
facilitate the volumetric evaporation calculation (Section 2.5) 
(Zhang and Pavelsky, 2019).  

3) Raw water area classification: The Otsu thresholding method (Otsu, 
1979; Lu et al., 2017) was applied to the selected NIR image for 
classifying the raw water area (Fig. 2c).  

4) Enhancement decision: If the CP of the image (from Step 2) was less 
than 10%, the image was regarded as clear and the raw water area 

was deemed final. If the CP was larger than 80%, the image was 
considered to be severely contaminated and thus discarded. In this 
case, the missing water area value was estimated by interpolation. 
Otherwise (10% ≤ CP ≤ 80%), an image enhancement algorithm 
was performed.  

5) Image classification enhancement: Adopted after Zhang et al. 
(2014), the basis for this procedure is that the water boundary 
should be consistent with the long-term occurrence image. Using the 
water occurrence image as a reference, the coastline in the con-
tamination-free area can be extrapolated to cover the entire lake. 
Compared to Zhao and Gao (2018), which used an empirical para-
meter to define the occurrence threshold, the proposed algorithm in 
this study is more physically-based and is parameter-independent. 
First, the edge pixels (i.e., coastline) located between water and not- 
water areas were identified (Fig. 2d). By overlapping these edge 
pixels with the occurrence image (Fig. 2e), a cumulative distribution 
function (CDF) of the occurrence values for these edge pixels was 
created. Then, the occurrence value which corresponded to a CDF of 
0.9 was selected as the threshold. This threshold was used to reduce 
the impact of possible misclassified pixels in the raw water area. 
Finally, all of the contaminated pixels (“no data” pixels after Step 2) 
in the raw water area that satisfied the condition [occurrence value 
≥ threshold] were reclassified as water (Fig. 2f). 

After applying the above steps to each selected MODIS NIR image, 
an area time series with an 8-day interval was generated. Although the 
quality control processes (Steps 2 and 4) were implemented and the 
contaminated images were corrected (Step 5), outliers still existed in 
the area time series for some lakes. This could be attributed to mis-
classifications with the raw water area, which can directly affect the 
performance of the enhancement algorithm, and/or to errors associated 
with the MODIS QA band. In addition, area values for some months 
were missing due to the removal of severely contaminated images. To 
address this issue, an outlier removal and gap interpolation procedure 
was adopted from Zhao and Gao (2018). First, the biases were calcu-
lated by subtracting the time series using a 7-timestep moving average. 
The outliers were identified as having a bias value greater than three 
times the standard deviations (of the bias time series). Then these 
outliers were removed, and the gaps were interpolated using their 
neighboring values. This scheme was executed until there were no more 
outliers identified. 

2.3. Generating water surface temperature time series 

The 8-day WST time series values were extracted from the MODIS 
LST products (i.e., MOD11A2 and MYD11A2) and bias-corrected using 
the GloboLakes WST climatology (Carrea and Merchant, 2019). As re-
ported in several regional studies (Crosman and Horel, 2009; Chavula 
et al., 2009; Song et al., 2016; Wan et al., 2017), MODIS based WST 
tends to have biases toward cooler temperatures (~1.5 °C) when 
compared to in-situ buoy data. Rather than the skin effect, which ty-
pically ranges from 0 °C to 0.6 °C (Horrocks et al., 2003), this cooling 
bias is likely caused by a combination of several other factors—such as 
an underestimation of atmospheric attenuation, and/or an over-
estimation of surface emissivity (Crosman and Horel, 2009). The WST 
data from GloboLakes were measured by the (Advanced) Along-Track 
Scanning Radiometer and the Advanced Very-High-Resolution Radio-
meter, and its quality has been extensively validated using in-situ ob-
servations (Hook et al., 2003; MacCallum and Merchant, 2012; Wan 
et al., 2017). To confirm the possible cooling bias of MODIS WST—and 
to independently validate the quality of GloboLakes—we compared 
both WST products with in-situ data from the Global Lake Temperature 
Collaboration (GLTC; Sharma et al., 2015) for 21 lakes across the world 
(Supplementary data Fig. S1). It was found that MODIS WST has an 
average bias of -1.86 °C, while GloboLakes has an average bias of -0.10 
°C. 

MOD09Q1
MYD09Q1

Otsu’s 
method

Raw water area

HydroLAKES
OpenStreetMap

NIR image 
(contamina�ons 

removed)

Contamina�on 
percentages

NIR image selec�on
(with less contamina�on) Edge of water 

(neighboring land pixel)

GSWD 
occurrence

Occurrence 
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Enhanced water area

Ice/snow 
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Contamina�on 
percentage
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10% to 80%

Lake mask

1

2
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5

Fig. 1. Flowchart for generating the water area from the MODIS surface re-
flectance product. “Null” means that the image has been rejected, in which case 
the area is calculated through interpolation. The numbers show the processing 
steps. Green and blue colors indicate input and output, respectively. 
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Instead of using the GloboLakes WST products directly, we bias- 
corrected MODIS using GloboLakes. This is because GloboLakes only 
contains WST time series values for 979 lakes due to its coarse re-
solution (1/20°). This limited its global application, especially for small 
lakes. Meanwhile, the comparison between MODIS and GloboLakes 
suggests that the cooling bias for MODIS WST has clear regional and 
seasonal patterns (Supplementary data Fig. S2). Thus, when GloboLakes 
data were not available for a small lake, a nearby larger lake was used 
to approximate the climatological biases. It is worth noting that MODIS 
WST has its largest cooling biases from July to September 
(Supplementary data Fig. S3), which is consistent with the findings by  
Sharma et al. (2015) and Wan et al. (2017). The detailed WST time 
series generation was implemented in the following 4 steps:  

1) Selection of LST images: For each 8-day time step, based on the 
selected NIR images (i.e., Step 2 in the area extraction processes), 
the LST images from the same satellite (MOD11A2 or MYD11A2) 
were adopted.  

2) Calculation of the WST value: For each image, the LST pixel values 
(from both daytime and nighttime) were averaged over the raw 
water area (buffered inward by 750 m to remove possible mixed 
pixels). Since the daily temperature variations roughly follow a si-
nusoidal curve, the average of the MODIS daytime and nighttime 
temperatures (1:30/13:30 local time for Aqua and 10:30/22:30 for 
Terra) can effectively represent the mean daily temperature. 

3) Outlier removal and gap filling: Outliers existed due to image con-
taminations and the misclassification of raw water areas. Thus, 
following the same method adopted by the area extraction pro-
cesses, outliers within the WST time series were removed and the 
data gaps were filled via interpolation.  

4) Bias correction: The monthly climatological biases were calculated 
for each lake as the difference between GloboLakes and the MODIS 
WST climatology. These bias values were then added to the MODIS 
WST time series to produce the bias-corrected results. 

After all of the aforementioned computations were performed, the 

Fig. 2. Water area enhancement process for contaminated MODIS images. The Terra image collected on Jan 1, 2005 for Lake Mead in the USA was selected as an 
example. 
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8-day time series for lake surface area, the WST, and the ice/snow 
percentage were aggregated to a monthly time step that was consistent 
with the meteorological data and the evaporation rate estimation. 

2.4. Calculating evaporation rate time series using LTEM 

The evaporation rate calculation in LTEM is based on the Penman 
equation, with the wind function represented, after Zhao and Gao 
(2019) (Equation 1): 

= +
+

E R f u e e( G) ( )( )
( )

n s a

v (1)  

where E is the open water evaporation rate (mm·d-1); ∆ is the slope 
of the saturation vapor pressure curve (kPa·°C-1); Rn is the net radiation 
(MJ·m-2·d-1); G is the heat storage change of the water body (MJ·m-2·d- 

1); γ is the psychrometric constant (kPa·°C-1); f(u) is the wind function 
that is dependent on lake fetch (MJ·m-2·d-1·kPa-1) (McJannet et al., 
2012); es is the saturated vapor pressure at air temperature (kPa); ea is 
the air vapor pressure (kPa); and λv is the latent heat of vaporization 
(MJ·kg-1). Because all of the other terms in the Penman equation are 
well formulated (Penman, 1948; Zhao and Gao, 2019), we focused on 
explaining the new approach for quantifying the heat storage change 
term that leverages MODIS WST data. The heat storage changes (G) can 
be calculated using temperature profile data of two consecutive time 
steps (Equation 2; Gianniou and Antonopoulos, 2007): 

=G
A t

c A T z1 d
d

d
s

D
w z t w z t z t z t0 , , , , , ,

t

(2) 

where As is the surface area of the water body (m2); t is the current time 
step (d); ρw, z, t is the density of water at depth z and time t (kg·m-3); cw, z, 

t is the specific heat of water at depth z and time t (J·kg-1·°C-1), Az, t is the 
water area at depth z and time t (m2); Tz, t is the water temperature at 
depth z and time t (°C); and Dt is the total depth of the water body at 
time t (m). 

To simulate the temperature profile for each time step (Tz, t, 
0 ≤ z ≤ Dt and 0 ≤ t ≤ END) in LTEM, we integrated MODIS WST data 
into the 1-D Hostetler Model (Hostetler and Bartlein, 1990). In this 
subsection, we first explain the lake energy budget terms (2.4.1) and 
then the Hostetler Model (2.4.2), which were used to facilitate tem-
perature profile and evaporation rate simulation in LTEM (2.4.3). 

2.4.1. Lake energy budget terms 
The evaporation process of a lake involves both energy fluxes at the 

water surface and energy transfer in the water body (Fig. 3). 
For a water body, the net radiation (Rn, MJ·m-2·d-1) can be for-

mulated after Equation 3: 

= +R K K L Ln in out in out (3) 

where Kin, Kout, Lin, and Lout are surface incoming shortwave radiation 
(MJ·m-2·d-1), outgoing shortwave radiation (MJ·m-2·d-1), surface in-
coming longwave radiation (MJ·m-2·d-1), and outgoing longwave ra-
diation (MJ·m-2·d-1), respectively. Among these terms, Kin can be di-
rectly adopted from meteorological forcing inputs, while the others are 
calculated. Kout can be calculated using the water surface albedo (α) 
following Equation 4 after Subin et al. (2012): 

= =
+

K K K0.05
cos 0.15out in

s
in (4) 

where θs is the solar zenith angle (Zhao and Gao, 2019). Lin (MJ·m-2·d-1) 
and Lout (MJ·m-2·d-1) can be calculated using Equations 5 and 6 after the 
Stefan–Boltzmann Law: 

= +L T( 273.15)in a a
4 (5)  

= +L WST( 273.15)out w
4 (6) 

where εa is the emissivity of air with a cloudiness factor included (0-1;  

Zhao and Gao, 2019); εw is the emissivity of water (0.97); σ is the 
Stefan-Boltzman constant (4.9×10-9 MJ·m-2·K-4·d-1); and Ta is the air 
temperature (°C). 

The net shortwave radiation (Kin − Kout) penetrates the water 
column and is absorbed according to the Beer-Lambert Law. The net 
shortwave radiation is divided into photosynthetically active radiation 
(PAR) and near-infrared radiation (NIR). The transmitted shortwave 
energy at depth z (denoted as Kz) can be calculated after Equation 7 
(Ingle Jr and Crouch, 1988): 

= +K K K e e( ) ( )z in out PAR NIR
z zPAR NIR (7) 

where θPAR and θNIR are the shortwave radiation fractions of PAR and 
NIR; and λPAR and λNIR are the light attenuation coefficients of PAR and 
NIR. After Escobedo et al. (2009), θPAR and θNIR are set to 0.54 and 
0.46, respectively. λNIR is set to 1.4 m-1 after Bowling and Lettenmaier 
(2010). The λPAR value is provided by the user when direct light at-
tenuation measurements are available, or it can be calculated from the 
Secchi depth measurement (Zsd, in m) using Equation 8 (Devlin et al., 
2008). Alternatively, λPAR can be empirically calculated using the lake 
average depth (D, in m) after Equation 9 (Håkanson, 1995; Bennington 
et al., 2014). 

= exp ln Z(0.253 1.029 )PAR sd (8)  

= D1.1925PAR
0.424 (9)  

Unlike shortwave radiation which can penetrate water, the in-
coming longwave radiation (Lin) is only absorbed by the water surface. 
Meanwhile, the surface also loses energy through outgoing longwave 
radiation (Lout), latent heat flux (LE, MJ·m-2·d-1), and sensible heat flux 
(H, MJ·m-2·d-1). In summary, for a given water body, the energy it re-
cieves at each time step can be separated into two parts based on lo-
cation: 1) the “penetrating” net shortwave radiation (Kin − Kout), and 2) 
the “surface” energy influx (EIs) which is defined after Equation 10: 

=EI L L LE Hs in out (10)  

2.4.2. The Hostetler model 
In this study, to facilitate the calculation of temperature profile, the 

modified Hostetler Model scheme was adopted from Bowling and 
Lettenmaier (2010) and Subin et al. (2012). The governing equation for 
water temperature profile is denoted as a partial differential equation 
(Equation 11): 

Ice cover
Wind

PAR

NIR
Eddy diffusion

Molecular diffusion
Enhanced diffusion
Convective mixing

Skin-bulk heat exchange
Water skin

Fig. 3. Schematic of the Lake Temperature and Evaporation Model (LTEM) 
model, which involves both energy fluxes at the water surface and energy 
transfer in the water body. PAR and NIR represent photosynthetically active 
radiation and near infrared radiation, respectively. Definitions for other energy 
terms can be found in Equations 3 and 10. 
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where Tz, t is the water temperature at depth z and time t; κm is the 
molecular diffusivity (1.39×10-7 m2·s-1); κE, z, t and κen are the eddy and 
enhanced diffusivities, respectively (m2·s-1); Kz, t is Kz (Equation 7) at 
time t; and Az, t is the area at depth z and time t (which is calculated 
using the lake bathymetry). Following Hostetler and Bartlein (1990), κE, 

z, t can be calculated after Equation 12: 

=
+
z P e

R
( / )

1 37E z t
s

k z

i
, ,

0
2

e

(12) 

where κ is the von Kármán constant (0.4); νs is the surface shear velocity 
(which depends on surface forcing and temperature; Vickers et al., 
2015); P0 is the neutral value of the turbulent Prandtl number (1.0); ke 

is the Ekman profile parameter; and Ri is the gradient Richardson 
number. The detailed formulation for these parameters can be found in  
Hostetler and Bartlein (1990). 

The enhanced diffusion is introduced by turbulence sources other 
than wind-driven eddies, such as surface water inflow/outflow, seiches, 
the horizontal temperature gradient, and aquatic life movement. κen can 
be written as Equation 13: 

= × N1.04 10 ( )en
8 2 0.43 (13) 

where ακ is the enhanced diffusion coefficient (0 ≤ ακ ≤ 1000;  
Bennington et al., 2014), and N2 is the Brunt-Vaisala frequency (s-2) 
(Fang and Stefan, 1996; Subin et al., 2012). The value of ακ can be 
calibrated using temperature profile measurements (Ellis et al., 1991). 
In this study, we used an empirical value of 20 for ακ to show the 
general applicability of the LTEM model. We did, however, test the 
sensitivity of ακ (using Lake Mead as an example) to find its impacts on 
the temperature profile and the evaporation rate (Section 4.4). 

For general Hostetler Model applications, the water temperature 
profiles are calculated after Equation 11 with Kin − Kout and EIs as 
energy inputs. Then, the convection is implemented from the top layer 
to the bottom according to the temperature-based density gradient. For 
instance, if an upper layer is denser than its adjacent lower layer 
(density calculated based on temperature), then these two layers will be 
mixed and the resulting thickness-weighted average temperature will 
be assigned to both of them. This convection process is executed until 
there is no inverse density gradient. 

2.4.3. Lake temperature profile and evaporation simulation 
The Hostetler Model can be used to recursively calculate Tz, t 

(0 ≤ z ≤ Dt) if the external energy inputs at each time step (i.e., 
shortwave radiation, Kin − Kout, and surface influx, EIs) are provided. 
However, conventional methods for quantifying LE and H contain large 
uncertainties—which makes it difficult to estimate EIs at each time step. 

To resolve this issue, we applied the MODIS WST at time t as a 
boundary condition to constrain the calculation of Tz, t. At time t, the 
known variables were Tz, t−1 (0 ≤ z ≤ Dt−1), Lin − Lout, and WSTt. An 
iterative solver (similar to a Kalman Filter) was developed in LTEM to 
calculate Tz, t. Before the calculation of temperature for each new time 
step, the lake depth (Dt) was calculated using the lake bathymetry and 
the remotely sensed lake area (Section 2.2). This lake depth was divided 
into layers using a layer thickness value (0.6 m was used for this study, 
but this can be set by users as needed). The process at each time step is 
summarized in the following 6 steps (and in the flowchart in Fig. 4):  

1. Prior to the iteration at the current time step (t), it was first assumed 
that there is no heat storage effect in the Penman equation (i.e., G = 
0 in Equation 1). Thus, an initial value of EIs can be calculated, with 
LE =λvE and H calculated after Equation 14 (with the same wind 
function as used in Equation 1): 

=H f u WST T( )( )t a (14)  

2. Tz, t (0 ≤ z ≤ Dt) can then be calculated using the Hostetler Model 
based on Tz, t−1 (0 ≤ z ≤ Dt−1), along with Kin − Kout, EIs, and the 
layer configuration derived from the lake bathymetry. 

3. The remotely sensed skin temperature at time t (WSTt) was con-
verted to the bulk temperature (Tt

bulk) by considering the cool-skin 
effect (∆Tskin, t) after Equation 15 (Artale et al., 2002). Compared to 
the more complex formulation provided by Fairall et al. (1996), the 
formulation by Artale et al. (2002) significantly simplifies the 
computation and still produces satisfactory outputs (Tu and Tsuang, 
2005). 

= + = +T WST T WST EI
k

/0.0864
t
bulk

t skin t t
s

, (15) 

where δ is the thickness of the skin layer (m), and k is the thermal 
conductivity of water (W·m-1·K-1). This bulk temperature represents the 
water temperature of the first water layer right beneath the skin layer.  

4. If the simulated T0, t was different from the remotely sensed 
Tt

bulk—which indicated that the initial EIs was biased— ∆EI was 
subtracted from EIs, and Steps 2 and 3 were repeated. This iteration 
was executed until |T0, t − Tt

bulk| was smaller than ϵ (e.g., 0.01 °C). 
∆EI is defined as: 

= lr T T( )EI t t
bulk

0, (16) 

where lr is the learning rate (e.g., π, or other irrational numbers).  

5. After the model had converged (i.e., |T0, t − Tt
bulk|  <  ϵ), the heat 

storage change (G) was calculated following Equation 2 (Gianniou 
and Antonopoulos, 2007).  

6. The evaporation rate (E) was then calculated using the Penman 
equation (with the wind function represented) after Zhao and Gao 
(2019) (Equation 1). 

In summary, by implementing the above iterations, the water tem-
perature profile at the previous time step (Tz, t−1)—and the water skin 
temperature at the current time step (WSTt)—can lead to the water 
temperature profile at the current time step (Tz, t). To get a stable 
temperature profile time series, LTEM can be spun up for a sufficient 
period of time (e.g., 24-months), and then normal simulations can be 
started. In this study, we implemented LTEM at a monthly time 
step—meaning that we solved the temperature profile for each month, 
and then calculated the evaporation rate for each month. It is worth 
noting, that LTEM can be implemented at a finer time step (e.g., daily or 
weekly) if higher temporal resolution meteorological data (e.g., 
Daymet) and WST data (e.g., derived from ECOSTRESS) are available. 

2.5. Calculating volumetric evaporation 

After calculating the evaporation rate time series, the volumetric 
evaporation can be inferred by multiplying the evaporation rate with 
the surface area (with the fraction of ice/snow cover excluded) 
(Equation 17). 

= × ×V E A r(1 )E ice (17) 

where A is the enhanced water area (km2), and rice is the fraction of ice/ 
snow coverage. As described in Section 2.2, rice is calculated by dividing 
the area of snow/ice pixels (from MODIS QA band) with the enhanced 
water area. Because the portion of evaporation from snow/ice (i.e., ice 
sublimation) can be approximated as zero, the snow/ice area was not 
considered when the volumetric evaporation was calculated. 

3. Algorithm test sites 

The performance of LTEM was evaluated over 11 lakes where 
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Fig. 4. Flowchart for calculating the water temperature profile from t − 1 to t, and the heat storage and evaporation rates. Green and blue colors indicate inputs and 
outputs, respectively. 

Fig. 5. The 11 lakes selected for evaluating LTEM. The scale indicated for Lake Nasser also applies to the other lakes. The number for each lake is the HydroLAKES ID 
as listed in Table 2. 
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observed temperature and/or evaporation rate data were available 
(Fig. 5 and Table 2). These 11 lakes are located on different continents 
and in various climate regions. They cover a good range of sizes, depths, 
and elevations, and thus are representative for testing the robustness of 
LTEM (Table 2). Among them, 4 of the lakes have eddy covariance (EC) 
evaporation rate measurements, and 2 have evaporation rate estimates 
using the BREB method. The EC method is regarded as the most accu-
rate evaporation measurement technique (Friedrich et al., 2018). 
However, its expense has limited it from widespread application. In the 
BREB method, the heat storage change is addressed by measuring the 
temperature profiles. Although it is less accurate than the EC method, 
BREB has been widely employed due to its simplicity and reliability 
(Lenters et al., 2005b). In addition, 6 lakes with routinely monitored 
multi-depth temperature data were selected to validate the simulated 
temperature profiles. Among these lakes, Lake Mead has both EC eva-
poration rate and multi-depth temperature measurements, which makes 
it ideal for fully testing LTEM. Because these in-situ evaporation rate 
and temperature data are of different temporal resolutions, they were 
aggregated to monthly to be comparable with the simulated results. 

In addition to the time-variant inputs (i.e., meteorological forcings 
and WST; Section 2.1) required to drive the model, LTEM also needs 
parameters such as lake bathymetry and the light attenuation coeffi-
cient (λPAR). The in-situ measured lake bathymetry data were collected 
from multiple sources for the 11 different lakes (Supplementary data 
Table S1). For large scale applications, coarse bathymetry data can be 
obtained using estimation methods such as those from Li et al. (2019),  
Li et al. (2020), Mu et al. (2020), Yigzaw et al. (2018), and Messager 
et al. (2016). Specifically, Li et al. (2020) developed a global reservoir 
bathymetry dataset for 347 of the world’s reservoirs based on satellite 
radar/lidar data; and Messager et al. (2016) reported empirical depth- 
area relationships for 1.42 million lakes. Similarly, λPAR can be esti-
mated using Equation 9 for large scale applications where only the 
depth data are available. In this study, we calculated λPAR from the in- 
situ measured Secchi depths (Supplementary data Table S1) using the 
logarithmic function (Equation 8). While LTEM supports the use of 
monthly λPAR values, we adopted a constant value for each lake in order 
to show the general applicability of the model. Results of sensitivity 
tests, and discussion about the uncertainty of λPAR, can be found in  
Sections 4.4 and 5.2, respectively. 

4. Results 

4.1. Lake surface area validation 

The MODIS based lake surface area values were validated using the 
global surface water dataset (GSWD; Pekel et al., 2016). Based on 
Landsat imagery, GSWD provides monthly global water classifications 
(along with land and contaminated pixels) at 30 m resolution from 
March 1984 to December 2018. Here, only the lake areas from clear 
GSWD images were used to validate the enhanced MODIS image clas-
sifications. 

Overall, the MODIS based lake surface area values agree well with 
those from GSWD (Fig. 6). The R2 value is 0.99 for the 11 lakes, and the 
averaged relative bias is -2% (from -10% to 8% for individual lakes). In 
general, the algorithm performs better for the lakes with large area 
variations (e.g., Lake Mead and Lake Nasser). For the lakes with small 
area changes (e.g., Lake Taihu), the range of area variations from 
MODIS tends to be underestimated. 

4.2. LTEM validations 

4.2.1. Validation of temperature profile 
In Fig. 7, the simulated water temperature profiles are compared 

with observed ones for 6 lakes: 1) Oneida Lake (HydroLAKES ID 770); 
2) Lake Mead (ID 809); 3) Lake Biwa (ID 1381); 4) Lake Geneva (ID 
1261); 5) Lake Mendota (ID 9086); and 6) Lake Ammersee (ID 13962). Ta
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Overall, the simulated temperature profiles agree well with the ob-
served ones. Validations of the average temperature profile (Columns a 
and b in Fig. 7) confirm the capability of LTEM to capture the seasonal 
variations of vertical thermal mixing for these lakes. For example, solar 
energy can penetrate to the bottom of Oneida Lake (Fig. 7-a1, b1) due 
to the shallow water depth (11 m). In contrast, for deep lakes such as 
Lake Mead (Fig. 7-a2, b2) and Lake Biwa (Fig. 7-a3, b3), the vertical 
thermal mixing depth varies by season. The underestimation of the 
deep water temperature of Lake Biwa is likely caused by the under- 
specification of the enhanced diffusion (κen) (Aota et al., 2006; Auger 
et al., 2013). To demonstrate the general applicability of LTEM, we 
used a universal value of 20 for ακ to calculate κen. However, ακ needs to 
be adjusted for water bodies like Lake Biwa which have strong turbu-
lence. 

Temperature values observed at multiple depths for each month 
were also used to validate the temperature profiles simulated by LTEM 
(Column c in Fig. 7). For the 5 lakes, the R2 values are all greater than 
0.9, the root mean square errors (RMSE) range from 1.1 °C to 1.8 °C, 
and the average biases range from -0.5 °C to 0.5 °C. This suggests that 
LTEM performs well at simulating the monthly dynamics of the tem-
perature profiles (Antonopoulos and Gianniou, 2003). However, with 
regard to individual monthly value at a certain depth, the biases (si-
mulated minus observed) can be large, ranging from -5.4 °C to 6.0 °C. 
These biases can be attributed to three sources of uncertainty: 1) MODIS 
WST data, 2) observed temperature data at multiple depths, and 3) 
model uncertainties. Because MODIS WST serves as the boundary 
condition for LTEM, its uncertainty (e.g., due to various weather con-
ditions) can affect the temperature profile simulation results. Mean-
while, observed water temperatures are inclined toward uncertainties 
related to data collection times and locations. Like other physically- 
based numerical models, LTEM is susceptible to uncertainties from 
forcing inputs, parameters, and model structure (Ajami et al., 2007). In 
this study, it was found that the bulk temperature calculated from 
MODIS WST is biased from its in-situ counterpart (measured at 0.5 m) 
by -3.8 °C to 5.8 °C, which is similar to the total simulation bias range 
(i.e., -5.4 °C to 6.0 °C). Thus, we expect that the major sources of bias 
for the temperature profile are from observation and/or MODIS WST 
data, rather than from the model. Further discussion about these un-
certainties can be found in Section 5.2. 

4.2.2. Validation of evaporation rate 
The simulated evaporation rate results were validated using either 

EC measurements or BREB estimates (Fig. 8 and Table 3). With the heat 
storage effect considered, the R2 values range from 0.67 to 0.98. For 
each of the 6 lakes, the R2 with the heat storage effect considered is 
higher than it is without (by 0.28 on average). This suggests that the 
seasonality of evaporation has been better represented. In particular, 
the largest improvements are observed for deep lakes, such as Lake 
Nasser (0.34 increase) and Lake Mead (0.44 increase). For Lake Taihu 
(average depth of 2.2 m), the improvement of R2 is insignificant (0.03). 
This is because the heat storage changes are very small compared to the 
other energy terms for shallow lakes. 

The absolute (relative) biases of the evaporation rates range from 
-0.19 mm/d (-8%) to 0.27 mm/d (9%) for the 6 lakes. However, apart 
from the R2 measurement, the incorporation of heat storage simulation 
does not result in a notable improvement of the biases. This is because 
the heat storage is a seasonal phenomenon, and the errors tend to be 
canceled out in the annual average values. However, the RMSE values 
show significant improvement when the heat storage simulation is in-
cluded. As with the R2 values, the improvements of RMSE are generally 
larger for deeper lakes. For instance, the RMSE is reduced by 1.25 mm/ 
d for Lake Kinneret (average depth of 26 m) while the reduction is only 
0.12 mm/d for Lake Taihu (2.2 m). On average, the RMSE value has 
been reduced by 0.70 mm/d for these 6 lakes. 

4.3. Evaporation losses from the lakes 

Volumetric evaporation was calculated by multiplying the eva-
poration rate with the surface area (Equation 17). Using Lake Nasser as 
an example, Fig. 9 illustrates the time series of surface area, evapora-
tion rate, and volumetric evaporation from 2000 to 2018 (as well as the 
seasonal cycles). With regard to surface area, it shows clear inter-annual 
and seasonal variabilities—both of which are consistent with the re-
gional climate patterns (Gelete et al., 2019). For example, the decline of 
the surface area from 2002 to 2006 can be explained by the reduction of 
annual precipitation in the Nile Basin during this period (Awange et al., 
2014). For each single year, the surface area typically decreases in the 
summer (due to limited precipitation in the upstream basins before 
June) and then increases after the rainy season (June to September). 

The seasonality of the evaporation rate is mainly affected by the 
annual cycle of solar energy and the heat storage effect (Fig. 9b). Al-
though the solar radiation generally peaks in June, the maximum va-
lues of evaporation rate (average 8.13 mm/d) usually occur in Au-
gust—which is two months lagged due to the heat storage effect. The 
inter-annual and seasonal variabilities of volumetric evaporation are 
affected by both surface area and evaporation rate (Fig. 9c). For in-
stance, volumetric evaporation shows low values in 2006 and 
2012—which is consistent with the inter-annual changes of surface 
area. With respect to seasonality, volumetric evaporation peaks in 
September (1.08 km3)—which results from a high evaporation rate and 
a relatively large surface area during this month. On average, the an-
nual volumetric evaporation for Lake Nasser is 10.2 km3, accounting for 
6.3% of its storage capacity (162 km3). 

4.4. Parameter sensitivity 

In LTEM, the simulated temperature profile—which directly affects 
the heat storage changes, and thus the evaporation rate—is sensitive to 
the light attenuation coefficient for PAR (λPAR) and to the enhanced 
diffusion coefficient (ακ). In this study, time-invariant values of λPAR 

(calculated using the Secchi depth for each lake) and ακ (equal to 20) 
have been used. To identify the effects of using these constants on the 
estimate of temperature profile and evaporation rate, two series of 
sensitivity tests were conducted using Lake Mead as an example. For 
λPAR, the simulations were conducted with values from 0.05 to 0.30 at 
an increment of 0.05; and for ακ the sensitivity testing values were set 
between 0 to 200, depending on the mixing level. 

Fig. 10 shows the sensitivities of the temperature profile and the 
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Fig. 7. Validation of temperature profiles simulated by LTEM against observed values for 6 lakes. Columns a and b show the climatological temperature profile for 
the observed and simulated data, while column c shows the comparisons of multi-depth temperature values for each month at each lake. For Lake Biwa, only the 
climatological temperature is shown due to data availability (a3 and b3). For Lake Geneva, only the monthly data comparison is shown (c3) because the observed 
temperatures are only reported as column-averaged values for the top 20 m. 
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evaporation rate seasonality to these two parameters. With a smaller 
λPAR (i.e., a clearer water column), PAR can penetrate deeper into the 
water body (Fig. 10a). For instance, a value of 0.30 means that 90% of 
the PAR will be absorbed by the top 8 m of water, while this depth 
would be 46.5 m when λPAR equals 0.05. When the radiation energy can 
penetrate deeper, the evaporation on the water surface becomes more 

lagged in terms of the seasonality (Fig. 10b). For example, the eva-
poration rate peaks in July if λPAR is 0.30, and it peaks in September if 
λPAR is 0.05. ακ mainly affects the heat conduction in the relatively 
deeper part of the water body (generally > 20 m). Fig. 10c suggests that 
with a larger ακ, deep water mixing becomes more significant. The 
value of ακ also impacts the evaporation seasonality (Fig. 10d). Similar 
to λPAR, a larger ακ leads to deeper transmission of the radiation energy, 
resulting in a lagged evaporation rate. 

5. Discussion 

Accurate simulations of lake energy budgets and evaporation losses 
can benefit ecosystem protection, aquaculture management, and water 
resources planning. The results described above show that LTEM le-
veraged with MODIS WST data can be applied around the world to 
obtain more accurate estimates of lake temperature profiles and eva-
poration rates. Details regarding the algorithm’s merits, uncertainties, 
and limitations, as well as some broader LTEM applications, are further 
discussed in this section. 

5.1. Algorithm merits 

A physically-based classification enhancement algorithm was 
adopted to overcome the limitations of MODIS image contaminations. 
Although the 8-day image composite algorithm can effectively improve 
image quality, water monitoring based on MODIS is still a challenging 
task due to frequent cloud contamination (Khandelwal et al., 2017;  
Klein et al., 2017). Compared to an earlier version developed for 
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Fig. 8. Validation of the evaporation rate for 6 lakes with EC measurements or BREB estimates.  

Table 3 
Statistics of the evaporation rate simulation with and without the heat storage effect.         

HydroLAKES ID Lake Depth R2 (with/without 
heat storage) 

Absolute bias in mm/d (with/ 
without heat storage) 

Relative bias (with/ 
without heat storage) 

Root mean square error in mm/d 
(with/without heat storage)  

148 Lake Taihu 2.2 0.96/0.93 0.27/0.28 9%/9% 0.49/0.61 
152 Lake Nasser 30 0.67/0.33 0.14/0.25 2%/4% 0.96/1.67 
809 Lake Mead 63 0.70/0.26 -0.02/0.22 -1%/4% 0.97/2.59 
1361 Lake Kasumigaura 7 0.92/0.68 -0.19/-0.19 -8%/-8% 0.39/0.73 
1414 Lake Kinneret 26 0.98/0.50 0.09/0.14 2%/3% 0.34/1.59 
9475 Ross Barnett 

Reservoir 
10.7 0.82/0.70 0.23/-0.16 8%/-5% 0.75/0.90 
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Fig. 9. Monthly time series and seasonality of a) surface area, b) evaporation 
rate, and c) volumetric evaporation for Lake Nasser, Egypt. 
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Landsat images (Zhao and Gao, 2018), this new algorithm does not rely 
on the use of an empirical parameter to calculate the occurrence 
threshold. Rather, it is similar to the method described in Yao et al. 
(2019), which expanded the visible coastlines into the cloudy areas 
through extrapolation. However, our algorithm implemented the ex-
pansion according to historical occurrence map, which is similar to a 
bathymetry map (Li et al., 2019). Therefore, our image enhancement 
approach is more physically based. The validation against Landsat 
classifications from clear images suggests that the algorithm and results 
are robust, despite the contaminations and the relatively coarse spatial 
resolution of MODIS images (Fig. 6). 

By using the MODIS WST as the boundary condition of LTEM, the 
lake temperature profile can be simulated accurately. Similar to a 
Kalman Filter, MODIS WST can help to reduce the simulation un-
certainty, which generally propagates with time (Samaniego et al., 
2017). Results from six lakes across different continents (Fig. 7) show 
RMSE values of monthly temperature profiles that range from 1.1 °C to 
1.8 °C; and long-term average biases that range from -0.5 °C to 0.5 °C. 
These results indicate good agreement between simulated and observed 
data in terms of both vertical thermal mixing and its seasonal variations 
(Perroud et al., 2009; Martynov et al., 2010). Benefiting from explicit 
temperature profile simulation, heat storage changes and evaporation 
rates were estimated with improved accuracy. As emphasized in  
Friedrich et al. (2018), the heat storage change is an important com-
ponent for all energy-based evaporation estimation methods (e.g., 
Penman and BREB)—but it is difficult to obtain via either measurement 
or modeling methods. We have shown in this paper that LTEM can 
alleviate this issue. Compared to the bulk aerodynamic method that is 
commonly used in lake models (e.g., Bowling and Lettenmaier, 2010;  
Hipsey et al., 2019) for evaporation calculation, LTEM can provide 
better accuracy by explicitly incorporating heat storage simulations. 
Through the simulations, it was found that the heat storage effect re-
duces and delays the peak values in the monthly evaporation curves 
(Fig. 8). This effect is more significant for deep lakes (due to their large 

heat storage capacity) than for shallow lakes (Duan and Bastiaanssen, 
2015; Zhao and Gao, 2019). 

As discussed in several previous studies, the Hostetler Model tends 
to underestimate diffusive mixing—especially for deep lakes 
(Stepanenko et al., 2010; Martynov et al., 2010). This is likely due to 
additional turbulence introduced by sources not addressed in the 
model—such as surface inflow/outflow (notable in lakes with short 
residence times), seiches, the horizontal temperature gradient, and 
aquatic life movement (Fang and Stefan, 1996; Subin et al., 2012). This 
issue was also resolved in LTEM by adopting the enhanced diffusion 
scheme with a calibratable parameter (ακ in Equation 13). Although we 
adopted a fixed value of ακ (i.e., 20) for the lakes we tested, ακ can be 
adjusted to unique values to achieve better thermal simulations for a 
specific lake. For instance, the underestimation of the deep mixing in 
Lake Biwa (Fig. 7-b3) can be mitigated by adopting a larger ακ. 

5.2. Algorithm uncertainties and limitations 

The uncertainties associated with the final volumetric evaporation 
can be attributed to the uncertainties of surface area and evaporation 
rate—as well as to the preceding temperature profile, which determines 
the heat storage changes. 

Although our image classification algorithm is advantageous in 
terms of raw image enhancement, uncertainties with regard to the area 
time series can originate from the Otsu thresholding step. Due to the 
low resolution (250 m) of MODIS, the Otsu method may misclassify 
mixed pixels (especially for lakes with large shoreline to area ratios;  
Gao et al., 2012), leading to biased area estimations (Jones and Sirault, 
2014). This could further affect the accuracy of image enhancement, 
which uses the Otsu raw classifications as inputs. Although we used an 
occurrence threshold (Step 5 in Section 2.2) to alleviate such effects 
during enhancement, outliers may still exist in the time series for some 
lakes. Thus, the outlier removal process in Section 2.2 was designed to 
eliminate abnormal values (and thus can help to obtain high-quality 
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area time series values). 
Sources of evaporation rate uncertainty mainly include forcing data 

uncertainty (Zhao and Gao, 2019) and model structure/parameter un-
certainty (Fig. 10). Specifically, the forcing data used in this study (i.e., 
TerraClimate) is a land-based meteorological record (Abatzoglou et al., 
2018). Although the increased humidity on the lake surface is re-
presented by the wind function (McJannet et al., 2012; Zhao and Gao, 
2019), differences in the wind speeds between lake and land regions are 
ignored—which might introduce some uncertainties (Schwab and 
Morton, 1984). In addition, the LTEM and its parameters can also 
produce uncertainties. For example, the formulation of the light at-
tenuation coefficient (λPAR) is simplified using Equations 8 and 9. 
However, λPAR is affected by suspended solids, phytoplankton con-
centration level, and spectral distribution of solar radiation, and thus is 
constantly changing (Lee et al., 2005; Pinhassi et al., 2016). This lim-
itation can possibly be alleviated using remotely sensed water quality 
products (Ritchie et al., 2003). 

With regard to LTEM thermal simulation, the temperature profile 
biases can be attributed to several possible reasons. First, there are 
temporal inconsistencies between the observation data and the simu-
lated results. Ideally, to calculate monthly/daily average temperatures, 
in-situ data need to be collected continuously in both daytime and 
nighttime. However, most monitoring sites report instantaneous mea-
surements at a certain time of the day/month. For instance, the tem-
perature data for Lake Mendota were mainly collected in the afternoon, 
while data for Lake Ammersee were reported only for the first 8 days in 
each month (BLfU, 2019). As a result, biases are introduced by ignoring 
diurnal and intra-monthly temperature changes (Vercauteren et al., 
2011). Second, biases can also result from the uncertainties related to 
the WST data. Due to the intrinsic limitations of thermal infrared re-
mote sensing, cloud contamination and weather conditions can notably 
impact the quality of the MODIS LST product (Wan, 2008). Meanwhile, 
the daytime LST is less accurate than the nighttime LST due to differ-
ential solar heating (Hook et al., 2003; Schneider et al., 2009). Third, 
the spatial representations of the observed temperature and the simu-
lated temperature profiles are not exactly the same. Observation data 
were collected for a single water column (latitude and longitude), while 
the simulated data were averaged for the entire lake surface. Thus, the 
spatial heterogeneity caused by surface water currents can add biases to 
the validation results (Crosman and Horel, 2009). 

There are two limitations of LTEM that are worth noting. First, the 
current version of LTEM does not consider the convective heat flux. For 
reservoirs whose inflow and outflow temperatures are significantly 
different, the convective energy flux can be large and thus affect the 
accuracy of the evaporation rate estimations (Huntington et al., 2014). 
Second, for the ice cover period, we assumed that there were no heat 
fluxes between the air and water, and there was no infiltration of 
shortwave radiation. The water temperature was simulated by only 
considering diffusion and convection (with the first layer temperature 
set to 0°C). This assumption might not be fully valid for cases in which 
there is only a very thin ice cover, and solar radiation can still penetrate 
through. Nonetheless, this simplification only has a limited impact on 
the evaporation rate, as evaporation from ice surfaces (i.e., ice sub-
limation) is close to zero. 

5.3. Potential applications 

Given the general availability of the meteorological forcings and of 
the MODIS WST data, LTEM can be employed to provide near real-time 
temperature profiles and evaporation information for lakes/reservoirs 
in any region around the world. This is expected to fill in a critical gap 
with regard to the current MODIS evapotranspiration product, in which 
evaporation from open water is not yet included. Furthermore, al-
though a monthly time step was applied in this study, a shorter time 
step (e.g., daily) can be implemented with high temporal-resolution LST 
data. For instance, LST data from the Geostationary Operational 

Environmental Satellite (GOES) is provided every 3 hours at 4 km re-
solution, enabling diurnal simulations of the water temperature profiles 
for large lakes. Other promising LST products include Landsat-8 (16- 
day 30 m resolution), ECOSTRESS (2-4 days 70 m), and Sentinel-3 (2- 
day 1 km). 

By adding more reliable volumetric evaporation data to the re-
servoir components of regional water management models (e.g., 
RiverWare; Zagona et al., 2001), water availability at the local, regional 
and continental scales can be estimated with improved accuracy 
(Maestre-Valero et al., 2013). Moreover, incorporating accurate volu-
metric evaporation information will provide a more accurate reservoir 
simulation module to watershed and regional hydrological models 
(Zhao et al., 2018) as well as to regional climate models (Mironov et al., 
2010). This will improve the human dimension of climatic and hydro-
logical models at various scales, and allow us to build more robust 
coupled nature-human system models (Vogel et al., 2015). 

In addition, the temperature profiles from LTEM can be used to 
investigate lake thermal stratification, which is essential for improving 
water quality and ecosystem services (Antonopoulos and Gianniou, 
2003). Under climate change and human interferences, thermal stabi-
lity is especially important for understanding nutrient upwelling, lake 
eutrophication, and ecosystem service degradation for lakes across the 
world (Jankowski et al., 2006; Park et al., 2001). 

6. Conclusion 

An advanced framework has been developed in this study for an 
end-to-end quantification of volumetric lake evaporation. For lake 
surface area time series, we used the MODIS near-infrared and QA 
bands to develop a parameter-independent enhancement algorithm that 
reduces the impacts of image contamination on water classification. To 
better estimate heat storage changes, a new lake evaporation 
model—LTEM—was developed. Built upon the Hostetler Model, LTEM 
employs the MODIS WST as the boundary condition to provide a dy-
namic temperature profile, which is then used to quantify the heat 
storage changes and evaporation rate. To our best knowledge, this is the 
first time that the satellite measured skin temperature has been trans-
lated to a water column temperature profile, and then used to further 
facilitate quantification of the evaporation rate. The major conclusions 
of this study are summarized as follows: 

1) By applying a classification enhancement algorithm, area estima-
tions based on 250 m resolution MODIS near-infrared images can 
provide satisfactory information about lake area dynamics. Relative 
biases of the MODIS-based water areas range from -10% to 8% when 
compared to Landsat-based values.  

2) Constrained by MODIS WST data, LTEM is capable of accurately 
simulating vertical thermal mixing and its seasonal variations. The 
long-term average temperature biases range from -0.5 °C to 0.5 °C. 
The biases of the monthly temperature profile range from -5.4 °C to 
6.0 °C, which is mainly attributed to the uncertainties from WST 
and/or the observed temperature data.  

3) By including explicit temperature profile simulation in LTEM, the 
heat storage change and the subsequent evaporation rate can be 
more accurately quantified than in existing methods. The average 
improvement of the R2 values of the evaporation rates for the 6 lakes 
(after the heat storage simulations) is 0.28 and the average reduc-
tion of RMSE values is 0.70 mm/d. 

4) Our proposed framework can support a broad spectrum of applica-
tions across spatiotemporal scales—including water resource man-
agement, lake ecological modeling, regional climate modeling, and 
global water cycle evaluations. 
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