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Abstract
1. Microscopy and high-throughput sequencing (HTS) detect and quantify algae dif-

ferently. It is not known if microscopy-based abundance or biomass better com-
pare to HTS data or how methodological differences affect ecological inferences 
about the phytoplankton communities studied.

2. We investigated methodological (abundancemicroscopy vs. abundanceHTS, bio-
massmicroscopy vs. abundanceHTS), habitat (littoral, pelagic, deep hypolimnion), and 
year (2014 vs. 2017) differences for phytoplankton communities of Lake Tovel 
(Italy) using ANOVA. Specifically, we tested the hypothesis that depending on 
comparing abundancemicroscopy or biomassmicroscopy to abundanceHTS different ef-
fects would be indicated; we called this the metric effect. Furthermore, using 
samples from 2014 to 2017, we investigated environment–community relation-
ships by a redundancy analysis based on abundancemicroscopy, biomassmicroscopy, and 
abundanceHTS, and compared the results.

3. Approximately 9 times more operational taxonomic units were reported with HTS 
(n2014 = 819, n2017 = 891) than algal taxa with microscopy (n2014 = 90, n2017 = 109) 
in 2014 and 2017. While microscopically assessed algal taxa were evenly distrib-
uted among phyla, the vast majority of operational taxonomic units were attrib-
uted to Chrysophyta (2014 = 54%, 2017 = 62%) and Bacillariophyta (2014 = 19%, 
2017 = 17%). A metric effect for method differences was generally observed 
comparing abundancemicroscopy to abundanceHTS with Chlorophyta, Cryptophyta, 
and Dinophyta showing higher % abundance with microscopy while richness and 
Chrysophyta showed higher values with HTS. Almost no metric effects were 
found in 2014, but they were common across phyla in 2017. Bacillariophyta and 
Eustigmatophyta showed the same habitat differences when comparing bio-
massmicroscopy to abundanceHTS.

4. Dinophyta showed habitat differences only with microscopy, while Chyrsophyta 
showed habitat differences only with HTS; these results were probably related to 
technical bias and strengths of HTS, respectively.

5. Habitat differences of phyla were reasonably related to their ecological niche and 
linked to factors such as temperature and feeding preferences; furthermore, phyla 
often showed a significant 2014-versus-2017 year effect. The year 2014 was very 
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1  | INTRODUC TION

Freshwater and marine phytoplankton play a pivotal role in the 
food web and in biogeochemical cycles (Litchman et al., 2015). The 
characterisation of plankton biodiversity is at the basis of any as-
sessment of ecosystem state and environmental change, and phyto-
plankton-based methods are commonly used (e.g. Water Framework 
Directive, 2000/60/EC). Algal taxa are traditionally identified and 
counted with a microscope, a time-consuming process requiring ex-
pert knowledge. In this process, many algal species are too small to 
be identified by light microscopy, while others are rare and/or are 
cryptic species (i.e. do not have readily distinguishable morpholog-
ical characteristics). However, high-throughput sequencing (HTS) 
providing millions of reads can revolutionise biodiversity assessment 
(Bush et al., 2019; Keck et al., 2017; Taberlet, Coissac, Pompanon, 
Brochmann, & Willerslev, 2012).

For HTS, specific barcodes are selected for different microalgae. 
The 16S rRNA gene is used for cyanobacteria (e.g. Liu, Yang, Yu, & 
Wilkinson, 2015; Obertegger, Bertilsson, Pindo, Larger, & Flaim, 
2018) and also for eukaryotic microalgae (e.g. Bennke, Pollehne, 
Müller, Hansen, Kreikemeyer, & Labrenz, 2018), the rbcL gene for 
benthic diatoms (e.g. Rimet et al., 2018a; Vasselon et al., 2017), the 
tufA gene for green algae (Saunders & Kucera, 2010; Vieira et al., 
2016), and the 18S rRNA gene for protists (e.g. Bradley, Pinto, & 
Guest, 2016; Piredda et al., 2017). The sequences obtained by these 
specific barcodes are linked to species names from well-curated and 
open-access reference libraries (Table 1). Despite the relative ease 
of obtaining sequences with HTS, downstream analyses that turn 
sequences into operational taxonomic units (OTUs) and assign tax-
onomic names require proper training (Shade, Dunivin, Choi, Teal, 

& Howe, 2019); this analytical bottleneck can be circumvented 
by specialised workshops (Shade et al., 2019) and the use of com-
mercial (e.g. https://digit alins ights.qiagen.com/) or open-source 
software (e.g. https://usega laxy.org/). The possibility of repeating 
bioinformatics analyses and taxonomic assignment, once sequences 
are obtained, is an advantage of HTS, hardly achieved with micros-
copy, which requires re-analysing stored samples. However, the 
polymerase chain reaction (PCR) of HTS-based methods inflates 
sequencing success and abundance estimation (Krehenwinkel et al., 
2017; Nichols et al., 2018; Vasselon et al., 2018; Stern et al., 2018), 
and there is no easy solution on how to correct any technical bias 
(Pawlowski et al., 2018); in contrast, microscopy has the advantage 
of providing both abundance and biomass and information about 
algal morphology (e.g. size, life stages), impossible as yet to assess 
with HTS.

Microscopy- and HTS-based methods vary in their abilities to 
detect and quantify algal taxa (Boopathi & Ki, 2016; Eiler et al., 
2013; Groendahl, Kahlert, & Fink, 2017; Zimmermann, Glöckner, 
Jahn, Enke, & Gemeinholzer, 2015). As many researchers emphasise 
(e.g. Gran-Stadniczeñko et al., 2019; Hardge et al. 2018; Xiao et al., 
2014), HTS-based methods can process over 50 times the sam-
ple volume with respect to standard microscopy-related methods, 
and thus, not surprisingly, HTS generally reports a higher diversity 
compared to microscopy (e.g. Abad et al., 2016; Boopathi et al., 
2015; Groendahl, Kahlert, & Fink, 2017; Lara et al., 2015; Rimet, 
Vasselon, Barbara, & Bouchez, 2018; Xiao et al., 2014). However, 
many novel OTUs lack a taxonomic assignment, and many micro-
bial eukaryotes with a taxonomic assignment lack a DNA identity 
(De Vargas et al., 2015; Eiler et al., 2013; Stern et al., 2018; Stoeck 
& Epstein, 2003), thus hindering taxonomic assignment of OTUs 

wet while 2017 had a dry winter, and we attributed the patterns found to alloch-
thonous nutrient input by rain and decreased turbulence. Redundancy analyses 
based on phytoplankton communities assessed with microscopy and HTS, respec-
tively, equally indicated the importance of hydrology, nutrients, and temperature 
for phytoplankton communities and discriminated the littoral from the deep hy-
polimnion. However, variance explained was higher with HTS, and the pelagic was 
similar to the deep hypolimnion with microscopy but to the littoral with HTS.

6. Despite the different strengths of microscopy and HTS for biodiversity assess-
ment, both datasets outlined similar large-scale patterns linked to strong environ-
mental control of phytoplankton communities as they related to habitat and year 
differences. According to our hypothesis, metric effects were common; however, 
no general rule was found as to whether abundancemicroscopy or biomassmicroscopy 
should be compared to abundanceHTS. Notwithstanding metric effects, HTS-based 
data provided similar and more detailed information than microscopy, supporting 
the promise of HTS becoming the tool of the future for biodiversity research.
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in downstream analysis of HTS data. Furthermore, one gene does 
not always separate all species, as it is the case for green algae 
(Marcelino & Verbruggen, 2016) where the 18S rRNA gene is too 
conserved (Krienitz & Bock, 2012). Thus, it is very common that 
HTS detects phyla that remain undetected by microscopy (e.g. 
Eiler et al., 2013; Gao et al., 2018; Liu et al., 2009; Xiao et al., 
2014), while microscopy detects species that remain undetected 
by HTS (Xiao et al., 2014). Furthermore, for certain phyla such 
as Dinophyta and Bacillariophyta, HTS shows a varying detec-
tion sensitivity with respect to microscopy; for example, fewer 
species (Dinophyta: Eiler et al., 2013), less percent dominance 
(Bacillariophyta: Piredda et al., 2017; Wright, Mitchelmore, Place, 
Williams, & Orano-Dawson, 2019), more species (Dinophyta: Xiao 
et al., 2014), and a higher percent dominance (Dinophyta: Piredda 
et al., 2017) are reported with HTS compared with microscopy. 
These differences could be linked to both bias in HTS (Pawlowski 
et al., 2018) and to varying taxonomic expertise of the operator 
providing algal counts and biomass values (Straile et al. 2015). 
Furthermore, similar relative abundance (Bacillariophyta: Banerji 
et al., 2018) and a positive correlation between biodiversity in-
dices obtained with HTS and microscopy (Bacillariophyta: Rimet 
et al., 2018b; Rivera, Vasselon, Bouchez, & Rimet, 2020) is also 
reported.

Considering the different strengths inherent to microscopy and 
HTS, several studies (e.g. Abad et al., 2016; Boopathi & Ki, 2016; 
McManus & Katz, 2009; Xiao et al., 2014) advocate the parallel use of 
both methods, especially when aiming at characterising the whole phy-
toplankton community and not only specific algal groups. Few studies 
can afford this double approach because of financial, temporal, and 
personnel limits, and thus we know little about how results obtained 
by microscopy-based methods compare to results obtained by HTS-
based methods investigating the whole phytoplankton community. 
While most comparative studies focus on completeness of taxonom-
ical inventories, few studies (Abad et al., 2016; Amorim et al. 2015; 
Eiler et al., 2013; Gao et al., 2018; Gran-Stadniczeñko et al., 2019) 
compare ecological inferences made with both traditional and more 
innovative techniques, and they report contrasting or similar results. 
Microscopy and HTS indicate similar seasonal dynamics of phytoplank-
ton composition (Eiler et al., 2013) and similar temporal differences in 
Bacillariophyceae among winter and early spring (Gran-Stadniczeñko 
et al., 2019). Phytoplankton based on microscopy and HTS equally dis-
criminate sampling stations (Gao et al., 2018) and the ecological sta-
tus of rivers using a diatom index (Amorim et al. 2015; Vasselon et al., 
2017). While Abad et al. (2016) report a good agreement of spatial and 
temporal patterns of marine zooplankton communities assessed with 
microscopy and HTS in multivariate ordination, this was not the case 
for phytoplankton. Furthermore, few freshwater studies that inves-
tigate the whole phytoplankton community (Xiao et al., 2014; Gran-
Stadniczeñko et al., 2019) compare traditional approaches with HTS for 
more than 1 year; most studies are snapshots of biodiversity (Charvet, 
Vincent, & Lovejoy, 2012; Stoeck et al., 2014; Groendahl et al., 2017) 
or cover few months (Abad et al., 2016; Eiler et al., 2013; Boopathi 
& Ki, 2016; Moreno-Pino et al., 2018). Thus, studies are needed that TA
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compare inferences about the whole phytoplankton community made 
with microscopy- and HTS-based data over a multi-year period.

Ecological studies on phytoplankton communities based on 
microscopy often report both abundance and biomass or bio-
volume, respectively (e.g. Zohary, 2004), and for the ecological 
status assessment of European lakes, total algal biomass is gener-
ally reported (Pasztaleniec, 2016). While some studies (e.g. Abad 
et al., 2016; Groendahl et al., 2017; Rimet et al., 2018) focus on 
abundance in their comparison with HTS, others focus on biomass 
or biovolume (e.g. Charvet et al., 2012; Gao et al., 2018; Gran-
Stadniczeñko et al., 2019). Thus, no consensus exists on what to 
use in comparisons with HTS data. With microscopy, abundance 
data have their validity when focusing on similar-sized taxa or fo-
cusing on one species while biomass is preferred when focusing 
on the whole phytoplankton community because abundance is 
biased in favour of small cells. Apart from technical issues (e.g. 
primer choice, primer efficiency), one major biological issue in the 
comparison between microscopy and HTS data is the variation in 
gene copy number per cell for each species that affects sequence 
abundance per species (Vasselon et al., 2018). In laboratory ex-
periments, cell length predicts the 18S gene copy number for 18 
algal strains representing several eukaryotic classes (r2 = 0.75; 
Zhu, Massana, Not, Marie, & Vaulot, 2005), and algal cell biovol-
ume predicts the rbcL gene copy number for eight diatom species 
(r2 = 0.94; Vasselon et al., 2018). For field samples, the total 18S 
gene copy number per sample predicts the total biovolume of dia-
toms (r2 = 0.65; Godhe et al., 2008), and also ciliates show a higher 
concordance between sequence abundance and biomass rather 
than cell abundance (Pitsch et al., 2019). Even though HTS data 
of the whole phytoplankton community are better correlated with 
microscopically assessed abundance than biomass (Eiler et al., 
2013), and studies may tend to prefer abundance in their compar-
isons, the latter results indicate that cell biovolume and biomass 
also are a valid proxy for gene copy number. In any case, no cor-
relation between cell abundance and sequence abundance has also 
been found (Weber & Pawlowski, 2013; Stoeck et al., 2014). Thus, 
if HTS is used quantitatively and is now becoming an alternative 
method for environmental monitoring of the whole phytoplankton 
community (Hering et al., 2018), it is important to understand how 
HTS data relate to abundance and biomass assessed with micros-
copy in different habitats and in different years.

Here, we assessed microscopy abundance and biomass and HTS 
sequence abundance, and compared inferences on phytoplankton 
communities made with both approaches. For HTS, the 18S rRNA 
gene was used that covers a wide range of different microalgae and 
is the preferred barcode for phytoplankton (Bennke et al., 2018). 
Furthermore, we focused on three distinct habitats within Lake 
Tovel that reflect a varying degree of hydrological stability, light cli-
mate, and community composition; the littoral is the most hydrolog-
ically unstable because it receives >80% of the lake’s water inflow 
through underground springs (Borsato & Ferretti, 2006) while the 
hypolimnion is considered the most stable because of its sheltered 
position from the in- and outflow, and the pelagic is intermediate 

(Obertegger et al., 2018). Furthermore, the littoral shows highest, 
the hypolimnion lowest, and the pelagic intermediate light trans-
parency (Obertegger, Pindo, & Flaim, 2019), an important param-
eter for phytoplankton (Richardson, Beardall, & Raven, 1983). 
Planktonic communities respond to hydrological stability (Winder & 
Hunter, 2008; Shade, Jones, & McMahon, 2008; Obertegger et al., 
2018) and changing light climate (Edwards, Thomas, Klausmeier, 
& Litchman, 2016), and varying community composition in differ-
ent habitats should be equally indicated by microscopy and HTS 
data. Specifically, we (1) tested for method (abundancemicroscopy vs. 
abundanceHTS, biomassmicroscopy vs. abundanceHTS), habitat (littoral, 
pelagic, hypolimnion), and year differences (2014 vs. 2017) in phyto-
plankton community composition, and (2) tested the hypothesis that 
these differences were not equally indicated by microscopically as-
sessed abundance and biomass, respectively, compared to sequence 
abundance; we call this the metric effect. The most fortunate situa-
tion is not finding any metric effect. However, when a metric effect is 
present, the best case is when microscopically assessed abundance 
or biomass, respectively, and sequence abundance indicate the same 
effect while the worst case is when an effect is indicated by only one 
method, microscopy or HTS. The latter result could be related to the 
technical strength or bias of microscopy or HTS. We (3) related HTS 
and microscopy data, both abundance and biomass, to environmen-
tal parameters in a redundancy analysis (RDA) and compared the 
results. Thus, our study fills a knowledge gap by providing a com-
prehensive overview on the comparability of microscopy and HTS-
based data and on the strength of HTS to draw ecological inferences 
with respect to microscopy data; this is an important aspect when 
HTS will gradually substitute microscopy in the future.

2  | METHODS

2.1 | Site description

Lake Tovel (LTER site IT09-005-A; 46.261 N, 10.949 E; 1178 m above 
sea level) is a glacial lake (area: 0.4 km2; maximum depth: 39 m; mean 
depth: 19 m; volume: 7.4 × 106 m3) located in the Brenta Dolomites 
(Trentino, Italy). Geological substrate is dolomite and limestone, and 
the pseudokarst catchment leads to marked changes in water level 
(Borsato & Ferretti, 2006). The lake has a deep (39 m) north-east 
basin, partially separated by a submerged dyke from a shallow (4 m) 
south-west basin.

2.2 | Sampling

We sampled three distinct habitats within the lake: the littoral (0–4 m 
over the deepest part of the shallow basin), the pelagic euphotic 
zone (0–20 m over the deepest part of the main basin), and the deep 
hypolimnion (in the deepest part of the main basin at a depth from 
30 m to 35 m). Sampling was done monthly during the ice-free period 
from April 2014 to December 2017. The shallow basin usually dries 
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out completely during winter and refills in spring through snowmelt 
inflow; thus, under-ice and often spring sampling were not possible.

2.3 | Environmental variables

In the shallow basin, water samples for nutrients (NO3 [μg/L], NH3 
[μg/L], PO4 [μg/L], silica [mg/L]) were taken at 0 and 4 m and were 
averaged. In the main basin, water samples for nutrients were taken 
at 5-m intervals, and 0-, 5-, 10-, 15-, and 20-m values were averaged 
for the pelagic and 30- and 35-m values for the deep hypolimnion. 
Water transparency (i.e. light penetration of photosynthetically ac-
tive radiation; PAR) was assessed by a LICOR radiometer (LI 250A). 
Percentage light transmission (% transmission) was calculated from 
the coefficient of attenuation as % PAR reaching 4 m for the littoral, 
and 20 and 35 m, respectively, for the two habitats in the main basin. 
Temperature values taken with a multiparametric probe (Idronaut 
Ocean Seven 316 Plus) at 1-m intervals were averaged within the 
respective profile for the littoral (0–4 m), pelagic (0–20 m), and deep 
hypolimnion (30–35 m). Precipitation (mm), provided from the on-
shore meteorological station, and water level change (cm) were aver-
aged for the 10 days before sampling as in Obertegger et al. (2019). 
Total yearly precipitation (mm) at Lake Tovel showed a decreasing 
gradient from 2014 to 2017 (2014: 1867 mm; 2015: 1027 mm; 2016: 
1110 mm; 2017: 978 mm; Obertegger et al., 2018).

2.4 | Sampling of phytoplankton communities

Integrated water samples for microscopy and HTS were taken with a 
weighed tube for the littoral and the pelagic; for the deep hypolim-
nion, bottle samples from 30 and 35 m were combined. All phyto-
plankton samples for microscopy were immediately preserved with 
acidified Lugol’s solution, and samples for HTS were stored at 4°C 
until filtration in the laboratory within 24 hours.

2.5 | Microscopy-based analysis of phytoplankton

Quantitative phytoplankton analysis was according to the Utermöhl 
method (Lund, Kipling, & Le Cren, 1958). For each sample, a 25-mL 
aliquot of Lugol-preserved sample was sedimented for at least 
24 hours in a sedimentation chamber. Counts and measurements 
were made with an inverted microscope (LEICA DMIRB) linked to 
a DFK41BF02 digital camera (The Imaging Source Europe GmbH, 
Bremen, Germany) and using the software PlanktoMetrix (Zohary, 
Shneor, & Hambright, 2016). For each sample, at least 400 individual 
entities (filament, colony, or single-celled organisms) were counted 
at 400× magnification. Algal biomass (µg/L) was estimated from 
species-specific biovolume, obtained by geometrical approximations 
according to Hillebrand, Dürselen, Kirschtel, Pollingher, & Zohary 
(1999) and Sun & Liu (2003). The PlanktoMetrix software greatly fa-
cilitates biovolume measurements, and therefore it was possible to 

measure 10-25 individuals for each taxon per sample. Species were 
identified using updated phytoplankton taxonomic literature, and 
nomenclature was according to Guiry & Guiry (2019). Taxa without 
a proper taxonomic assignment (e.g. small flagellates) were assigned 
to algae incertae sedis. Some phytoplankton samples were lost result-
ing in 94 samples (littoral: n = 29; pelagic: n = 36; deep hypolimnion: 
n = 29). The subscript MIC indicates algal groups and phyla assessed 
with microscopy (e.g. DinophytaMIC).

2.6 | DNA extraction for HTS

For DNA extraction, generally 1.5 L of water from each of the three 
habitats was gently vacuum-filtered onto sterile 0.2-µm membrane 
filters (Supor 200 Membrane Disc Filters, 47 mm; Pall Corporation, 
East Hills, NY, U.S.A.). Filters were stored at −80 °C until further pro-
cessing. DNA was extracted from the filters with the PowerWater 
DNA isolation Kit (MOBIO Laboratories Inc, CA, U.S.A.) and pro-
cessed as described below.

2.7 | Gene amplification, library 
construction, and sequencing

The preferred barcode to assess taxonomic and phylogenetic diver-
sity of phytoplankton and other protists is the 18S rRNA (Bennke 
et al., 2018). Here, environmental DNA was PCR amplified by target-
ing a 470-basepair fragment of the eukaryotic 18S rRNA variable 
region V4 (primer set Next.For [5′-CCAGCASCYGCGGTAATTCC-3′] 
and Next.Rev [5′-ACTTTCGTTCTTGATYRATGA-3′]; Piredda et al., 
2017) with overhanging Illumina adapters. Polymerase chain re-
action amplification and library construction were performed as 
described in Obertegger et al. (2018). All libraries were pooled in 
equimolar concentrations in a final amplicon library and analysed 
on a Typestation 2200 platform (Agilent Technologies). Barcoded 
libraries were sequenced on an lllumina®MiSeq (PE300) platform 
(MiSeq Control Software 2.6.2.1 and Real-Time Analysis software 
1.18.54) of the Fondazione Edmund Mach.

2.8 | Sequence analysis

Sequences were processed with MICCA version 1.7.2 (Albanese, 
Fontana, De Filippo, Cavalieri, & Donati, 2015). Paired-end se-
quences from the different samples were merged, forward and re-
verse primers were trimmed, and sequences were quality-checked 
(discarding sequences with an expected error rate > 0.5% and 
shorter than 470 nucleotides). Finally, we used the de novo greedy 
OTU clustering algorithm OTUCLUST as implemented in MICCA 
(Albanese et al., 2015) with a similarity threshold of 99% (Edgar, 
2018) to cluster sequences. Singletons and doubletons of se-
quences were eliminated as potential chimeras. The 18S sequence 
data were submitted to the EMBL database under Accession no. 
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PRJEB32348. The 18S OTUs were taxonomically classified with 
CREST using SilvaMod128 (Lanzén et al., 2012) and with PR2 
(Guillou et al., 2013). Only when CREST assignment stopped at 
a lower taxonomical level than PR2 and when CREST and PR2 
indicated the same high order classification, the PR2 classifica-
tion reaching a higher taxonomical level was used. In addition, 
we checked all OTUs by manual Blast against NCBI to verify the 
taxonomic assignation. Nevertheless, some OTUs did not have 
a taxonomic assignment beyond Eukaryota, Stramenopiles, or 
marine Stramenopiles and were assigned to algae incertae sedis. 
Animals, fungi, higher plants, and parasitic taxa including parasitic 
dinoflagellates (Table S1) were excluded to obtain a dataset of 18S 
phytoplankton-like OTUs.

Not all samples amplified and one sample showed extremely low 
sequencing depth (487 sequences per sample). Thus, 86 samples re-
mained for analyses (littoral: n = 25; pelagic: n = 26; hypolimnion: 
n = 35). Sequencing depth of this dataset of phytoplankton-like OTUs 
ranged from 2999 to 47 530 sequences per sample (median = 12 
442; mean = 13 529, standard deviation = 8250) with a total of 2176 
OTUs. The OTU table was rarefied without replacement to the low-
est abundance obtained for a sample. The subscript HTS indicates 
groups and phyla assessed with HTS (e.g. DinophytaHTS).

2.9 | Statistical analysis

Cyanobacteria were counted with microscopy but cannot be de-
tected using the 18S rRNA barcode, and therefore we excluded 
cyanobacteria from all analyses. With microscopy, cyanobacteria 
showed a high % contribution to abundance and a low % con-
tribution to total biomass (mean yearly value < 10%; Table S2). 
Because cyanobacteria were included in the phytoplankton 
counts, other algae could have been less represented, a situation 
similar to preferential PCR amplification (Wintzingerode, Gobel, 
& Stackebrandt, 1997) that reduces sequencing success for cer-
tain taxa in HTS. Thus, α-diversity estimates based on microscopy 
might be an underestimation of algal biodiversity because of this 
technical bias. For a comparison between microscopy and HTS, we 
only considered those sampling months (1) where both datasets 
had data and (2) most months per year were available (i.e. 2014: 
April, June, August, October, November; 2017: June, July, August, 
October, November).

The assessment of habitat generalists and specialists plays an im-
portant role in biogeographical patterns and inference on community 
assembly (Luo et al., 2019). We assessed the % entities (algal taxa and 
OTUs) shared among habitats (i.e. common taxa) and unique to hab-
itats (i.e. habitat-specific taxa) for single periods (i.e. Venn diagram).

Alpha diversity indices of phytoplankton are often linked to envi-
ronmental cues such as warming and brownification (Urrutia-Cordero 
et al., 2017), depth (Novais et al., 2019), and conductivity gradients 
(Stefanidou et al., 2020). We calculated richness and evenness based 
on abundanceMIC, biomassMIC, and abundanceHTS. Differences in α-di-
versity were assessed by a two-way ANOVA with method (microscopy 

vs. HTS: abundanceMIC vs. abundanceHTS, biomassMIC vs. abundance-

HTS) and habitat (all comparisons between littoral, pelagic, and hypo-
limnion) as factors for the years 2014 and 2017. In two-way ANOVA, 
we focused on significant differences between methods for the same 
habitat (e.g. richness in the littoral: HTS > microscopy) and between 
habitats for the same method (e.g. richness assessed with HTS: litto-
ral > deep hypolimnion). The same months were available for 2014 
and 2017 (June, August, October, November), and thus testing for be-
tween-year differences was possible by a three-way ANOVA; in three-
way ANOVA, we focused on significant differences between years for 
the same method (e.g. HTS—littoral: 2014 < 2017) and did not report 
differences between methods and habitats. When the interaction ef-
fect was statistically significant, post hoc mean-separation testing was 
conducted only on the interaction effect (Mangiafico, 2016).

Trait research holds the potential to increase our ability to explain 
and predict community changes (Litchman & Klausmeier, 2008). We 
focused on carbon acquisition (i.e. autotrophy, mixotrophy, heterotro-
phy) because of its importance for phytoplankton fitness. While with 
microscopy each taxon can be assigned to a trophic role based on 
genus or species identification, with HTS this assignation is based on 
phylum or family level (Machado et al., 2019; Minicante et al., 2019). 
Furthermore in biodiversity assessments, the % contribution of phyla 
to the total community is often compared between microscopy and 
HTS (Eiler et al., 2013; Giner et al., 2016; Piredda et al., 2017; Wright 
et al., 2019; Xiao et al., 2014). Thus, we assessed the % abundance 
and % biomass of trophic groups and phyla with respect to total abun-
dance and biomass, respectively, and the % sequence abundance of 
each trophic group and phylum, respectively, with respect to total se-
quence abundance. Heterotrophs showed very low % abundanceMIC, 
biomassMIC, and abundanceHTS for most samples (Table S3), and thus 
were not considered. Because of the low contribution of heterotrophs 
to % values of trophic role, autotrophs and mixotrophs were inversely 
related (high values of autotrophs implied low values of mixotrophs), 
and thus only % autotrophs were tested. Testing for a method, habi-
tat, and a year effect was done as for α-diversity indices.

We performed an RDA to link environmental data to algal taxa 
and OTUs, respectively. From the available samples (microscopy 
n = 94; HTS: n = 86), all samples were used for which data based on 
microscopy and on HTS were available (n = 75). Even though this 
resulted in a dataset with a different number of samples per habi-
tat (nlittoral = 24, npelagic = 25, nhypolimnion = 26) and year (n2014 = 22, 
n2015 = 15, n2016 = 16, n2017 = 22), it reflected a real-world example 
of data acquisition and inferences made on the same community 
by two different methodological approaches. Species data (algal 
taxa and OTUs) were Hellinger transformed. For algal taxa, we 
used (1) abundance and (2) biomass data. For OTUs, we used (1) 
all OTUs and (2) OTUs with a minimum of 10 reads in the entire 
dataset (OTUs>10 reads) similar to Gran-Stadniczeñko et al. (2019) and 
Palacin-Lizarbe et al. (2019) to focus on abundant OTUs and reduce 
noisiness in the data. In these four RDAs, we applied forward selec-
tion of environmental predictors (precipitation, water level change, 
% transmission, temperature, NO3, NH3, PO4, silica) and reported 
the explained variability corrected for the number of observations 
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and parameters of the fitted model (r2 adjusted; Borcard, Gillet, & 
Legendre, 2018).

All statistical analyses were performed using R 3.6.1 (R Core 
Team, 2019), package lsmeans (Russell 2016), packfor (Dray et al. ), 
and vegan (Oksanen et al. 2019).

3  | RESULTS

3.1 | Biodiversity assessment for the years 2014 
and 2017

For 2014 and 2017, approximately 9 times less algal taxa were re-
ported with microscopy (n2014 = 90, n2017 = 109) than 18S phyto-
plankton-like OTUs with HTS (n2014 = 819, n2017 = 891). There were 
few common OTUs and most OTUs were rare (common OTUs: 
n2014 = 156; n2017 = 143; rare OTUs: %2014 = 81, %2017 = 84), show-
ing ≤10 reads in all samples. Taxa richness of algae incertae sedis 
assessed with microscopy and HTS (Table S4), biomassMIC and abun-
danceHTS (Table S5) were similarly low while abundanceMIC of algae 
incertae sedis was relatively high (Table S5). Generally, more taxa were 
reported per phylum with HTS except for the phyla Chlorophyta, 
Charophyta, and Haptophyta with the latter two having low richness 

(≤5 taxaMIC; Table S4). While with microscopy an even distribution 
of taxa among phyla was evident, with HTS most OTUs were attrib-
uted to Chrysophyta (2014 = 54%, 2017 = 62%) and Bacillariophyta 
(2014 = 19%, 2017 = 17%; Table S4). With microscopy, only one 
species of the phylum Eustigmatophyta (Pseudotetraëdriella kamillae) 
was reported while, with HTS, 10 times more OTUs were reported. 
Xanthophyta (OTUs n2014 = 3, n2017 = 4) showed low % sequence 
abundance (<1%; Table S6) and were only detected with HTS. With 
microscopy, 32% of taxa did not have a species-level attribution, 
while, with HTS, 68% of OTUs did not even have a genus-level 
attribution.

Considering the number of entities (i.e. algal taxa or OTUs) 
unique to habitats for the years 2014 and 2017, HTS generally re-
vealed a higher percent of unique entities in all habitats and less en-
tities shared between habitats (Figure 1).

3.2 | ANOVA testing—α-diversity and 
functional groups

As expected, richnessHTS (Table S6) was higher than richnessMIC 
for both years. Furthermore for 2017, method-specific habitat dif-
ferences were found (richnessHTS: deep hypolimnion < littoral and 

F I G U R E  1   Venn diagram for 
microscopy (a) and high-throughput 
sequencing (b) for the years 2014 and 
2017; given is the present of unique 
and shared algal taxa (a) and operational 
taxonomic units (b), respectively, 
between habitats; colour code refers to 
all panels
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pelagic; Table 2). In both years, evennessMIC showing higher values 
than evennessHTS.

In 2014, % autotrophs showed neither method nor habitat dif-
ferences with microscopy and HTS (Table 2). In 2017, HTS showed 
higher % values, but only when comparing abundances. In addition, 
the same habitat differences (i.e. higher values in the deep hypolim-
nion than in the littoral and the pelagic) were only indicated by HTS 
when comparing abundances while they were indicated by both 
methods when comparing biomassMIC to abundanceHTS (Table 2).

Comparing years, 2017 had higher mean values for rich-
ness. Similarly, evenness had higher values in 2017 but only when 

comparing evennessMIC-abundance to evennessHTS (Table 2). For % au-
totrophs, microscopy and HTS did not indicate any year differences.

3.3 | ANOVA testing of phyla (% values)

Chlorophyta and Haptophyta were only sporadically found with 
HTS, and Xanthophyta were not found with microscopy (Table S5, 
S6); thus, these phyla were not analysed with ANOVA.

For Bacillariophyta (Table 3) method and habitat differences 
were the same as for % autotrophs (Table 2). However, while no year 
differences were found for % autotrophy, Bacillariophyta showed 
higher values in 2014 than in 2017 for the littoral when comparing 
abundanceMIC to abundanceHTS and for the littoral and the pelagic 
when comparing biomassMIC to abundanceHTS.

Charophyta showed neither method nor habitat differences 
with microscopy and HTS (Table S6; Table 3) in 2014. In 2017, only 
abundanceMIC showed higher values than abundanceHTS. Comparing 
years, no differences were found with microscopy or HTS.

Chrysophyta showed higher values with HTS in both years 
(Table S6; Table 3). While in 2014 no habitat differences were found, 
in 2017 higher values in the littoral and pelagic than in the hypolim-
nion were only found with HTS. Comparing years, only with HTS the 
littoral and pelagic showed higher values in 2014.

Cryptophyta (Table S6; Table 3) showed higher values with mi-
croscopy in both years. In addition, the littoral showed higher values 
than the other habitats in 2017 with both methods but only when 
comparing abundanceMIC to abundanceHTS. Comparing years, no dif-
ferences were found with microscopy and HTS.

Dinophyta showed higher values for all habitats with micros-
copy in 2014. In 2017, however, Dinophyta showed higher values 
with microscopy only for the littoral and the pelagic when compar-
ing abundanceMIC with abundanceHTS and for all habitats when com-
paring biomassMIC to abundanceHTS (Table S6; Table 3). Comparing 
years, different habitats showed higher values in 2014 only with 
microscopy.

In both years, Eustigmatophyta showed higher values with abun-
danceMIC but not with biomassMIC compared to abundanceHTS. While 
habitat differences (i.e. higher values in the deep hypolimnion than 
the littoral) were generally the same, they were not equally indicated 
by microscopy and HTS (Table S6; Table 3). In 2014, habitat differ-
ences were found with both methods only when comparing abun-
danceMIC to abundanceHTS; however, in 2017 they were only found 
with microscopy when comparing abundance while they were found 
with both methods when comparing biomassMIC to abundanceHTS. 
Comparing years, no differences were found with microscopy and 
HTS.

3.4 | Multivariate analysis with algal entities

In the RDAs with algal abundanceMIC, biomassMIC (n = 146), all OTUs 
(n = 1836), and OTUs> 10 reads (n = 385), variability explained was 

TA B L E  2   Summary of two-way and three-way ANOVA with 
indices of α-diversity and % autotrophs; results for taxa richness are 
independent of abundance (abund) or biomass (mass) assessment 
with microscopy (MIC); the method effect (testing high-throughput 
sequencing [HTS] against MIC) relates to the difference between 
microscopy (either abundance or biomass) and HTS (operational 
taxonomic unit abundance); habitat differences (hab) refer to 
differences between the littoral, pelagic, and hypolimnion (hypo); 
in the three-way ANOVA, we focused on the year effect (2014 
vs. 2017); significant effects (method and habitat effect in two-
way ANOVA and year effect in three-way ANOVA) and their 
significance are reported, followed by significant differences as 
assessed by post hoc testing; only significant results are reported; 
when a significant interaction effect was found, significant main 
effects were not reported when included in the interaction effect 
(indicated by a colon); the > sign indicates interactions for which 
level higher values were found; significance levels: ***p < 0.001, 
**p < 0.01, *p < 0.05, not significant (n.s.) p > 0.05; yearn.s. indicates 
no significant year effect

Testing HTS 
against

Two-way ANOVA
Three-way 
ANOVA

2014 2017 2014 vs. 2017

Richness

MIC
Abund 
or mass

Method***;
HTS > mic

hab: method*;
HTS > MIC;
HTS: 
littoral > hypo*;
pelagic > hypo**

year**;
2017 > 2014

Evenness

MIC Abund Method***;
MIC > HTS

Method***;
Mic > hts

year*;
2017 > 2014

Mass Method***;
MIC > HTS

Method***;
Mic > hts

yearn.s.

% autotrophs

MIC Abund n.s. hab: method**;
MIC > HTS: 

littoral**, 
pelagic***;

HTS: 
hypo > littoral***,

hypo > pelagic***

n.s.

Mass n.s. hab***;
hypo > littoral***,
hypo > pelagic***

n.s.
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TA B L E  3   Summary of two-way (years 2014 to 2017) and three-way (years 2014 and 2017) ANOVA with % values of phyla assessed with 
microscopy (MIC; abundance—abund—and biomass—mass) and high-throughput sequencing (HTS); the method effect (testing HTS against 
MIC) relates to the difference between microscopy (either abundance or biomass) and HTS (operational taxonomic unit abundance); habitat 
differences (hab) refer to differences between the littoral, pelagic, and hypolimnion (hypo); in the three-way ANOVA, we focused on the 
year effect (2014 vs. 2017); significant effects (method and habitat effect in two-way ANOVA and year effect in three-way ANOVA) and 
their significance are reported, followed by significant differences as assessed by post hoc testing; only significant results are reported; 
when a significant interaction effect was found, significant main effects were not reported when included in the interaction effect (indicated 
by a colon); the > sign indicates interactions for which level higher values were found; significance levels: ***p < 0.001, **p < 0.01, *p < 0.05, 
not significant (n.s.) p > 0.05; yearn.s. indicates no significant year effect

Testing HTS against

Two-way ANOVA Three-way ANOVA

2014 2017 2014 vs. 2017

% Bacillariophyta

Abund n.s. hab: method**;
HTS: hypo > littoral***;
hypo > pelagic***;
HTS > MIC: hypo***

year: hab*;
2014 > 2017: littoral*

Mass n.s. hab***;
hypo > littoral***,
hypo > pelagic*

year: hab*;
2014 > 2017: littoral**, pelagic*

% Charophyta

Abund n.s. method*;
MIC > HTS

yearn.s.

Mass n.s. n.s. n.s.

% Chrysophyta

Abund method***;
HTS > MIC

hab: method***;
HTS > MIC:
littoral***, pelagic***, hypo**;
HTS: littoral > hypo***,
pelagic > hypo***

year: method**;
HTS—2014 < 2017: littoral***, pelagic***

Mass method***;
HTS > MIC

hab: method***;
HTS > MIC:
littoral***, pelagic***, hypo***;
HTS: littoral > hypo ***,
pelagic > hypo ***

year: method*;
HTS—2014 < 2017: littoral***, pelagic***

% Cryptophyta

Abund method**;
MIC > HTS

method** + hab**;
MIC > HTS;
littoral > pelagic**,
littoral > hypo*

yearn.s.

Mass method***;
MIC > HTS

method**;
MIC > HTS

yearn.s.

% Dinophyta

Abund method***;
MIC > HTS

hab: method*;
MIC > HTS: littoral***, pelagic**
MIC: littoral > hypo***,
pelagic > hypo*

hab: method: year*;
MIC—2014 < 2017: littoral***

Mass method***;
MIC > HTS

hab: method*;
MIC > HTS:
littoral***, pelagic**, hypo*
MIC: littoral > hypo***,
pelagic > hypo*

method: year**;
MIC—2014 < 2017: pelagic*, hypo***

% Eustigmatophyta

Abund method**+hab*;
MIC > HTS;
hypo > littoral*

hab: method*;
MIC > HTS: hypo***
MIC: hypo > littoral**,
hypo > pelagic***

yearn.s.

Mass n.s. hab***;
hypo > littoral***,
hypo > pelagic***

yearn.s.
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higher with HTS than microscopy (Table 4). With forward selec-
tion, similar environmental variables were selected in RDAsMIC and 
RDAsHTS, even though water level change was additionally selected 
in RDAsHTS. For microscopy, we focus on biomassMIC because the 
RDA with abundanceMIC explained lowest variability and only two 
explanatory variables were selected as important. For HTS, we 
focus on RDAOTUs> 10 reads because a higher variability was explained 
compared to using all OTUs even though similar environmental vari-
ables were selected. In both RDAs (RDAbiomass MIC, RDAOTUs> 10 reads), 
% transmission and temperature were positively related to the lit-
toral, while the hydrological proxies water level change (RDAbiomass 

MIC, RDAOTUs> 10 reads) and rain (RDAOTUs> 10 reads) were not specific 
for a single habitat (Figure 2). In RDAbiomass MIC, silica and NH3 were 
positively related to the pelagic and the deep hypolimnion while in 
RDA> 10 reads only to the deep hypolimnion. In the RDAbiomass MIC, 
samples from the pelagic and the deep hypolimnion overlapped and 
samples from the littoral were quite distinct, while in RDAOTUs> 10 

reads samples from the deep hypolimnion were distinct and those 
from the pelagic and the littoral slightly overlapped. RDAbiomass MIC 
and RDAOTUs> 10 reads did not evidence any clustering of years. We 
refrained from reporting and discussing relationships between taxa 
and environmental parameters because of the different taxonomic 
detail of microscopy and HTS data.

4  | DISCUSSION

4.1 | Method differences in biodiversity assessment

Attributable to method-specific characteristics, HTS generally re-
ports more taxa (Rimet et al., 2018; Zimmermann et al., 2015) and 
more rare taxa (Rimet et al., 2018; Zhan et al., 2013) than micros-
copy. Here, approximately 100 times more water volume was filtered 
and analysed with HTS with respect to the microscopically analysed 
water volume, and already this volume difference contributes to 
the superiority of HTS for the detection of taxa (Gran-Stadniczeñko 
et al., 2019; Hardge et al. 2018; Xiao et al., 2014). Thus, it was not 
surprising that also in this study more taxa were reported with HTS 

Algal taxa OTUs

Abundance Biomass All > 10 reads

r2 adjusted 6.8 8.9 17.7 20.1

RDA1 58 48 58 53

RDA2 42 30 19 17

ENV

Hydrological proxies No Water level 
change

Rain Water level 
change, rain

Temperature No Yes Yes Yes

% transmission Yes Yes Yes Yes

Nutrients Silica No Silica Silica

TA B L E  4   Results of redundancy 
analysis (RDA) with algal taxa and 
operational taxonomic units (OTUs); given 
are variability explained (r2 adjusted; %), 
variability explained by the first (RDA1) 
and second (RDA2) components in %, and 
significant environmental variables (ENV)

F I G U R E  2   Redundancy analysis (RDA) with (a) algal taxabiomass 
and (b) operational taxonomic units >10 reads; shown are the 
95% confidence ellipse for the centroid of habitat membership; 
temperature (temp), % transmission (% trans), water level change 
(WLC), silica (Si)
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and most OTUs were rare. These rare entities might constitute the 
rare algal biosphere similar to bacterioplankton (Pedrós-Alió, 2012) 
and their rarity might be linked to unfavourable environmental con-
ditions or adaptation (Skopina, Vasileva, Pershina, & Pinevich, 2016). 
Evenness was higher with microscopy than with HTS, and we sug-
gest that this method difference was also attributable to the smaller 
sample volume analysed with microscopy that favours finding more 
common taxa.

Even though HTS provided a higher biodiversity assessment 
for certain phyla, it provided a lower taxonomic resolution than 
the microscopy-based biodiversity assessment, a situation that will 
improve as reference DNA sequence databases increase in species 
coverage. Likewise, algae incertae sedis were similarly prevalent 
with both methods, and thus no advantage was gained using HTS, 
although it seems reasonable that also this situation will rapidly im-
prove with more complete databases.

The higher biodiversity reported with HTS was mainly linked to the 
detection of OTUs of Xanthophyta, Eustigmatophyta, Bacillariophyta, 
and to the overwhelming presence of OTUs of Chrysophyta. 
Xanthophyta were absent with microscopy, and their detection with 
HTS corroborates its superiority to detect rare taxa. Furthermore, 
more OTUs of Bacillariophyta than morphospecies often are reported 
because HTS uncovers cryptic diversity (Rimet et al., 2018; Rivera 
et al., 2018; Zimmermann et al., 2015). The lower biodiversity of 
Chrysophyta with microscopy can be related to preservation and mag-
nification issues because these algal cells preserve poorly in Lugol and 
accurate taxonomic assignment depends on details only visible with 
scanning electron microscopy (Wujek & O’Kelly, 1992). In many oligo-
trophic and cold freshwater ecosystems where the mixotrophic nature 
of Chrysophyta (Rothhaupt 1996) is an advantage (Hansson, Grossart, 
del Giorgio, St-Gelais, & Beisner, 2019) a high diversity of Chrysophyta-
related OTUs has been observed along with a high total abundance 
of sequences (e.g. 25–50% Charvet et al., 2012; 25–60% Lara et al., 
2015; 37% Ortiz-Álvarez, Triadó-Margarit, Camarero, Casamayor, & 
Catalan, 2018; 33% Llorens-Marès et al. 2020). Lake Tovel is an oligo-
trophic and cold-water lake (Cellamare et al., 2016), and thus the dom-
inance of Chrysophyta (40-85% of total sequence abundance) was not 
surprising.

Contrary to the above-mentioned phyla, a higher diversity was 
reported for Charophyta and Chlorophyta with microscopy than 
with HTS. Despite the higher richness of Charophyta reported 
with microscopy, microscopy and HTS data showed similarly low % 
values (generally <2%), corroborating that this phylum was a rare 
component of the phytoplankton community. For Chlorophyta, tufA 
(Vieira et al., 2016) or a combination of different primers should be 
used (Marcelino & Verbruggen, 2016); however, the V4 region of 
the 18S rRNA reveals a vast diversity of Chlorophyta in marine wa-
ters (Tragin, Zingone, & Vaulot, 2018; Tragin & Vaulot, 2019). While 
Chlorophyta showed relatively high % values with microscopy, with 
HTS they were rarely detected and with a low % sequence abun-
dance. The discrepancy in the detection of Chlorophyta in a fresh-
water lake (this study) with respect to marine waters (Tragin et al., 
2018; Tragin & Vaulot, 2019) might indicate that the efficiency of 

HTS for Chlorophyta can be habitat dependent. Dinophyta and 
Eustigmatophyta showed the odd situation of a higher diversity but 
a lower % abundance with HTS compared to microscopy. Dinophyta 
can have a high gene copy number (Galluzzi et al. 2004), but prefer-
ential PCR amplification (Wintzingerode et al., 1997) for certain taxa 
such as Chrysophyta might have decreased the sequencing success 
for less frequent taxa such as Dinophyta and Eustigmatophyta. In 
summary, the degree of mismatch between microscopy and HTS as-
sessed biodiversity was phyla dependent and can be related to tech-
nical and biological factors such as screened water volume, cryptic 
diversity, preservation and magnification issues, and PCR bias.

4.2 | Metric effect for diversity, functional 
groups, and phyla

The scientific community has not reached a consensus on whether 
to compare HTS data with microscopy-based abundance or bio-
mass data. The presence of a metric effect could be revealed only 
by investigating two different years. According to our hypothesis 
different method and/or habitat effects were found depending on 
whether comparing abundanceHTS to abundanceMIC or biomassMIC, 
respectively, for 2017 and comparing years (2014 vs. 2017).

A metric effect for method differences (autotrophs2017, 
Bacillariophyta2017, Bacillariophyta2014vs2017, Charophyta2017, 
Charophyta2014vs2017, Eustigmatophyta2017, Eustigmatophyta2014vs2017) 
was generally observed when comparing abundanceMIC to abundance-

HTS. While a method effect might not be very interesting and import-
ant for environmental inferences because inherent to the methods 
used, we expected that habitat and year differences would be prop-
erly indicated by HTS that will substitute microscopy in the future. 
Metric effects for habitat differences were faceted; autotrophs2017, 
Bacillariophyta2017, and Eustigmatophyta2017, 2014vs2017 showed the 
best metric effect with biomassMIC to abundanceHTS comparisons 
while, with abundance comparisons, only HTS showed habitat differ-
ences. Contrarily, Cryptophyta2017, 2014vs2017 and evenness2014vs2017 
showed the best metric effect with abundance comparisons while 
with biomassMIC to abundanceHTS comparisons no effect was found. 
Method differences were not indicative of this pattern because, 
while for autotrophs2017 and Bacillariophyta2017 higher values were 
found with HTS in abundance comparisons, for Eustigmatophyta, 
Cryptophyta, and evenness, the opposite was found. Thus, we suggest 
that detection efficiency of microscopy and HTS was important: only 
when microscopy, either abundance or biomass, and HTS showed the 
same range of variability, the best metric effect was found. This is an 
unfortunate situation because it cannot be known a priori if abundan-
ceMIC or biomassMIC are best compared to abundanceHTS. We favoured 
abundance comparisons for Cryptophyta and evenness while biomass-

MIC to abundanceHTS comparisons for autotrophs, Bacillariophyta and 
Eustigmatophyta.

An effect indicated by microscopy but not by HTS was found for 
Dinophyta. For this phylum, a higher diversity was found with HTS 
in combination with a lower sequence abundance attributable to 
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preferential PCR amplification, and thus microscopy seemed superior 
to HTS.

For Chrysophyta, no metric effect was found because HTS data 
indicated habitat differences that were not indicated by microscopy, 
using both abundance and biomass data. We suggest that the meth-
odological strength of HTS reporting more species in high abun-
dance was the cause for this, and therefore patterns not seen with 
microscopy could be revealed with HTS.

In summary, our study showed that different metric effects can 
be found, and despite the gene copy number issue, for some phyla, 
abundance comparisons were appropriate while for others biomass-

MIC to abundanceHTS comparisons were better. Also, a higher diver-
sity reported with HTS did not guarantee that habitat differences 
were indicated with HTS in the same way as with microscopy. Thus, 
no general rule was found for the presence and type of the metric 
effect.

4.3 | Habitat and year effects on α-diversity, 
functional groups, and phyla in relation to 
environmental conditions

Different habitat and year differences were found. We discussed 
those differences that were either linked to the best metric ef-
fect or reflected the consensus among results. Higher α- diversity 
was generally found for 2017. We attributed this year effect to a 
change in the lake’s hydrology. The years from 2014 to 2017 showed 
a decreasing gradient in precipitation (Obertegger et al., 2019). 
Furthermore during the year 2017, Lake Tovel experienced a shift 
from nival to pluvial origin of its waters, leading to whole lake warm-
ing and increased stability of the water column (Flaim et al. 2019). 
Warmer and more stable upper water layers in a cold-water lake 
might have opened niches for less cold-water adapted species, and 
thus reasonably increased algal diversity. This 2017-year effect was 
also indicated for several phyla with different aspects of hydrology 
affecting phyla.

Functional groups as investigated by % autotrophs did not show 
consistent patterns across years. While no effects were found for 
2014, for 2017, the same habitat differences were indicated that 
were closely related to Bacillariophyta and Eustigmatophyta mak-
ing the highest contribution to autotrophs. The higher abundance 
and biomass of Bacillariophyta and Eustigmatophyta in the hypo-
limnion with respect to the other habitats in 2017 can be linked to 
more pronounced stratification leading to more sedimentation of 
Bacillariophyta and lowest temperature in hypolimnion necessary 
for cold-stenothermal Eustigmatophyta. In the littoral and the pe-
lagic, Bacillariophyta showed higher values in 2014 than in 2017, 
while Chrysophyta showed this year effect with the opposite out-
come (2017 > 2014). Small autotrophic flagellated chrysophytes are 
particularly adapted to low nutrient, cold conditions, and high light 
availability (Reynolds, 1980; Holmgren, 1984; Hansson et al., 2019) 
while Bacillariophyta depend on allochthonous nutrient input by 
rain (Tolotti, Corradini, Boscaini, & Calliari, 2007) and tend to have 

an advantage in more hydrodynamic waters that aid in floatation 
(Padisák et al. 2003). We suggest that the lower % values of auto-
trophs and Bacillariophyta were related to reduced nutrient input in 
2017 with respect to 2014 where mixotrophic Chrysophyta could 
take advantage of this situation. The missing year effect for the hypo-
limnion corroborates its status as a stable habitat (Obertegger et al., 
2018). Furthermore, the habitat effect (littoral and pelagic > deep 
hypolimnion) corresponded to the preference of Chrysophyta for 
high light availability, and this effect was observable only during pe-
riods with stable conditions (i.e. reduced mixing) showing distinct 
light differences (i.e. 2017).

Habitat differences of Cryptophyta, Dinophyta, and 
Eustigmatophyta were also related to their environmental niche. 
Grujcic et al. (2018) experimentally show that Cryptophyta are 
major bacterivores feeding on betaproteobacteria. In Lake Tovel, 
Cryptophyta dominate in the littoral characterised by a steep tem-
perature gradient (Cellamare et al., 2016) and abundant betaproteo-
bacteria with respect to the pelagic (Obertegger et al., 2018). Thus, 
the dominance of Cryptophyta in the littoral could be related to its 
feeding habits. For Dinophyta, habitat (i.e. littoral and pelagic > deep 
hypolimnion) and year differences (2014 < 2017) were only found 
with microscopy. In Lake Tovel, Dinophyta are prevalent in the litto-
ral because under-ground inflow limits the occurrence of potential 
grazers (Cellamare et al., 2016) and they can avoid cold tempera-
tures (Flaim et al. 2003). Eustigmatophyta also showed niche-related 
habitat differences indicated both by microscopy and HTS. In Lake 
Tovel, the cold-tolerant eustigmatophyte P. kamillae dominates in the 
deep hypolimnion (Cellamare et al., 2016). We suggest that, during 
2014, the pelagic was similar to the deep hypolimnion because of 
cooler water temperatures associated with the very wet year and 
thus only the littoral showed lower values than the hypolimnion; in 
contrast, during 2017, the deep hypolimnion provided the coldest 
environment with respect to the more stable conditions and warm-
ing waters of the littoral and the pelagic.

4.4 | Community–environment relationships

Linking environmental conditions to biodiversity, RDAs with abun-
dance and biomass of algal taxa, respectively, and abundanceHTS 
indicated similar habitat effects: both methods differentiated be-
tween the two environmentally most extreme habitats (the deep 
hypolimnion vs. the littoral), with the pelagic showing a method-
dependent similarity to the other two habitats: with microscopy, 
the pelagic was more similar to the hypolimnion; with HTS, the 
pelagic was more similar to the littoral. Prokaryotes assessed with 
HTS also distinguish the littoral habitat from the deep hypolimnion 
with the pelagic habitat intermediate (Obertegger et al., 2018). 
Thus, results assessed with HTS (Obertegger et al., 2018, this 
study) coincided in their assessment of the pelagic being interme-
diate with respect to the other two habitats. Only RDAbiomassMIC 
and RDAOTUs>10 reads were further discussed because of their su-
perior explanatory power of community composition. Both RDAs 
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indicated the importance of hydrology (directly by water level 
change or indirectly by rain), the physical environment (tempera-
ture and/or light penetration), and nutrients (silica) on phytoplank-
ton communities. Hydrology plays an important role in shaping 
plankton communities in Lake Tovel (prokaryotes assessed with 
HTS: Obertegger et al. 2018; phytoplankton and zooplankton 
assessed by microscopy: Flaim et al., 2006; Tolotti et al., 2007; 
Obertegger et al., 2007; Cellamare et al., 2016) with phytoplank-
ton influenced through allochthonous nutrient (nitrate and silica) 
input by rain (Tolotti et al., 2007). With both RDAs, no differences 
between years was found. Thus, multivariate analysis also corrob-
orated a strong environmental control, similarly emphasised by mi-
croscopy and HTS-based data, even though variability explained 
was higher with HTS than with microscopy.

In summary, we conclude that despite the different strengths 
inherent to both methods especially leading to differences in bio-
diversity assessment, both datasets outlined similar large-scale 
patterns emphasising the environmental control of phytoplankton 
communities. Furthermore, even though metric effects were found, 
HTS-based data provided similar and more detailed information 
than microscopy, supporting the promise of HTS becoming the tool 
of the future for biodiversity research. Nevertheless, we agree with 
Lara et al. (2015) that interpreting the huge amount of information 
provided by HTS not only requires bio-informatic skills but also tra-
ditional skills, originating from extensive background knowledge of 
the organisms and ecosystems studied.
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