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Key Points: 

● The best predictors of methane emission differ between lakes and reservoirs. 

● Morphometric features better predict methane emission in lakes, whereas chlorophyll a is 

a better predictor in reservoirs. 

● To improve global upscaling, we need more emission measurements from small 

reservoirs, large lakes, and natural and artificial ponds. 
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Abstract 

Methane is an important greenhouse gas with growing atmospheric concentrations.  Freshwater 

lakes and reservoirs contribute substantially to atmospheric methane concentrations, but the 

magnitude of this contribution is poorly constrained.  Uncertainty stems partially from whether 

the sites currently sampled represent the global population as well as incomplete knowledge of 

which environmental variables predict methane flux. Thus, determining the main drivers of 

methane flux across diverse waterbody types will inform more accurate upscaling approaches. 

Here we use a new database of total, diffusive, and ebullitive areal methane emissions from 313 

lakes and reservoirs (ranging in surface area from 6 m2 to 5,400 km2) to identify the best 

predictors of methane emission.  We found that the best predictors of methane emission differed 

by waterbody type (lakes vs. reservoirs), and that ecosystem morphometric variables (e.g., 

surface area and maximum depth) were more important predictors in lakes whereas metrics of 

autochthonous production (e.g., chlorophyll a) were more important in reservoirs. We also found 

that productivity strongly predicted methane ebullition, whereas ecosystem morphometry and 

waterbody type were more important predictors of diffusive methane flux.  Finally, we identify 

several knowledge gaps that limit upscaling efforts. First, we need more methane emission 

measurements in small reservoirs, large lakes, and both natural and artificial ponds. Additionally, 

more accurate upscaling efforts require improved global information about waterbody surface 

area, waterbody type (lake vs. reservoir), ice phenology, and the distribution of productivity-

related predictor variables such as total phosphorus, DOC, and chlorophyll a.   

Plain Language Summary 

Methane is an important greenhouse gas, and its atmospheric concentrations are steadily rising. 

Inland waters, such as lakes and reservoirs, are an important source of methane, but there is 

uncertainty in the magnitude of emissions as well as the types of systems that emit more 

methane. Recent work suggests that high ecosystem productivity (e.g., high rates of 

photosynthesis) leads to high methane emission and that smaller waterbodies tend to emit more 

methane than larger ones.  Still, the extent to which these patterns differ in lakes versus 

reservoirs (lakes formed behind dams) is not known. Here, we examined the best predictors of 

lake and reservoir methane flux using a new dataset of methane emissions from 313 lakes and 

reservoirs.  The best predictors of methane emission differed between lakes and reservoirs: lake 

methane flux was more driven by waterbody shape and size, whereas reservoir methane flux was 
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related more to productivity. Future global-scale estimates of lake and reservoir methane 

emission should consider these systems separately. With improved understanding of the drivers 

of methane flux from lakes and reservoirs, we can better inform models of global methane 

emissions and target future emissions reductions. 

1 Introduction 

Freshwater lakes and reservoirs are an important but poorly constrained source of methane to the 

atmosphere.  Recent emission estimates range from 72 - 185 Tg CH4 yr-1 (DelSontro et al. 2018; 

Rosentreter et al., In Press), or 10-34% of the 545-745 Tg CH4 yr-1 estimated from all natural and 

anthropogenic sources combined (Kirschke et al., 2013; Saunois et al., 2016, 2019).  While 

differing estimates of lentic surface area cause some of this uncertainty (ranging from 3.23-5.36 

x 106 km2, Messager et al. 2016 ; Verpoorter et al., 2014), extreme variability and skewed 

distributions of aquatic methane fluxes pose additional challenges to upscaling efforts 

(Rosentreter et al., In Press). Identifying and quantifying key methane sources is important given 

methane’s potential to act as a “lever” on atmospheric greenhouse gas concentrations (wherein 

the combination of its potency and its short atmospheric residence time means that current 

changes in emission can have immediate consequences; Prather et al., 2012).  While some recent 

work has suggested that methane emission dynamics are controlled by similar processes across 

lentic waterbody types (e.g. lakes vs. reservoirs, DelSontro et al. 2018), other work highlights 

important differences in waterbody properties (e.g. between ponds, natural lakes, and artificial 

reservoirs) that may ultimately affect methane efflux (Downing, 2010; Hayes et al., 2017; 

Holgerson & Raymond, 2016). 

  A variety of biological, morphometric, and physical properties have been suggested as 

important predictors of lentic methane flux to the atmosphere, with recent literature identifying 

temperature (DelSontro et al., 2016; Yvon-Durocher et al., 2014), latitude (Barros et al., 2011), 

ecosystem productivity (Deemer et al., 2016; DelSontro et al., 2016, 2018; West, Creamer, et al., 

2015),  surface area (Holgerson & Raymond, 2016; Rasilo et al., 2015) and water depth (Gorsky 

et al., 2019; West, Creamer, et al., 2015) as key predictors at regional to global 

scales.  Ecosystem productivity, in particular, has been posited as a master regulator of methane 

emissions in wetlands, lakes, and reservoirs given its role in producing labile organic matter 

substrate critical to methanogenesis and its role in promoting anoxic conditions via associated 

organic matter respiration (Deemer et al., 2016; DelSontro et al., 2018; Whiting & Chanton, 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

1993).  A number of smaller scale incubation studies support the idea that autochthonous organic 

matter can provide a more labile substrate than allochthonous material for methanogenesis 

(Grasset et al., 2018; West et al., 2012), but there is also evidence that some autochthonous and 

allochthonous organic matter are similarly labile (Grasset et al., 2018) and that the lability of 

autochthonous organic matter may decline with increasing productivity (West, McCarthy, et al., 

2015).  Thus, morphometric properties of waterbodies that help determine the degree of 

allochthonous organic matter inputs to the system may also be important predictors of methane 

flux.  Such properties include surface area, catchment area : surface area ratios, and perimeter : 

water volume ratios.  Waterbody depth may also affect the magnitude of methane emission by 

altering the degree of  methane dissolution as bubbles rise through the water column (McGinnis 

et al., 2006), the region of the water column that can trap methane during stratified conditions, 

and the water volume that can support methane oxidation (i.e., deeper waterbodies have greater 

capacity for dissolution, trapping, and oxidizing methane). 

Relating methane emissions to waterbody properties is important for resolving upscaling 

issues associated with disproportionate sampling of certain waterbody types and/or sizes.  While 

traditional upscaling methods generally combine the arithmetic mean of flux estimates across the 

sample population with an estimate of global ecosystem surface area (Bastviken et al., 2011; 

Deemer et al., 2016),  recent efforts to upscale greenhouse gases from freshwaters have 

suggested the potential disparity between the properties of the sample population versus the 

global population of sites (Holgerson & Raymond 2016; DelSontro et al., 2018; Rosentreter et 

al., In Press).  To get around this, studies have scaled methane emissions based on waterbody 

surface area (Holgerson & Raymond 2016; Rosentreter et al., In Press) and chlorophyll a 

concentrations (DelSontro et al., 2018; Rosentreter et al., In Press).  In reservoirs, more detailed 

models incorporate both waterbody and catchment characteristics to predict emissions in support 

of greenhouse gas inventory efforts (Prairie et al., 2017). Still, problems remain with these 

methods given current limitations with global lake and reservoir datasets.  For example, satellite-

based estimates of lentic waterbody properties cannot resolve the smallest systems (Verpoorter et 

al. 2014, Messager et al. 2016). In addition, biases in the waterbody characteristics that are most 

readily measured (and the types of systems in which they are measured) may limit our ability to 

identify the best predictors of lake and reservoir methane flux (Stanley et al., 2019). 
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While lakes and reservoirs are often lumped together for the purposes of estimating 

surface area (Verpoorter et al., 2014) and for upscaling fluxes (DelSontro et al., 2018), key 

differences in the ecosystem morphometry and hydrology of these systems may result in 

different mean emissions and different controls on emission between the two waterbody 

types.  Reservoirs, which we define as any impounded waterbody, tend to have larger 

catchments, higher catchment area : surface area ratios, and longer perimeters (but with no 

significant difference in surface area or depth; Hayes et al., 2017).  These morphometric 

attributes suggest more mass input from the watershed per unit waterbody in reservoirs, such that 

reservoirs are better situated to intercept more allochthonous inputs than natural lakes in the 

same region (Hayes et al., 2017).  To this end, reservoirs experience higher areal sedimentation 

rates than natural lakes (Mendonca et al. 2017), and these high sedimentation zones can have 

particularly high rates of methane emission (Maeck et al. 2013).   Reservoirs also generally 

experience a greater degree of water level fluctuation than natural lakes (Hayes et al., 2017; 

Zohary & Ostrovsky, 2011), and water level drawdowns are known to drive large methane 

emission events in some systems (Harrison et al., 2017; Maeck et al., 2014).  Finally, there may 

be regional differences in ecosystem productivity between lakes and reservoirs; for example in 

the EPA National Lakes Assessment, natural lakes were generally more eutrophic than reservoirs 

(Doubek & Carey, 2017).   

Here we use a recently compiled global dataset of total, ebullitive, and diffusive areal 

methane emission rates from lakes and reservoirs (as described in Rosentreter et al., In Press) to 

identify the best environmental predictors of methane emission and examine whether predictors 

differ between lakes and reservoirs.  We end by discussing current challenges to upscaling efforts 

and critical future data needs.  

2 Materials and Methods 

2.1 Dataset 

We used a dataset containing estimates of total, ebullitive, and diffusive methane flux 

from 227 lakes and 86 reservoirs from around the world, spanning a wide latitudinal gradient 

(Figure 1, Figure S1; Rosentreter et al., In Press).  Fluxes were recorded on an areal basis (e.g. 

per m2), and “total flux” is used throughout the manuscript to refer to the sum of areal ebullitive 

and diffusive fluxes.  The dataset also contains basic ancillary morphometric, biological, and 
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chemical data that may correlate with methane flux.  The dataset is unique in that lentic methane 

flux studies reporting only one of the two main emission pathways (ebullition or diffusion) were 

excluded (but see Deemer et al., 2016). This was done given previous evidence that ebullition 

can make up anywhere from 0-99.6% of total emissions (Deemer et al., 2016).  

In this dataset, each site was categorized into one of two waterbody types: lake or 

reservoir. A reservoir was defined as a system whose primary outflow was dammed, excluding 

beaver ponds and river reaches upstream of weirs, however, larger run of river reservoirs were 

included. The lake category encompassed a large size gradient (0.000006 - 2500 km2), including 

small waterbodies that may be considered ponds (e.g., 51 sites <0.01 km2), and was largely 

composed of natural lakes, although a small subset (n=23) were artificial. Sites that were 

dominated by emergent vegetation were considered wetlands and excluded from the dataset.      

 

Figure 1. Global distribution of total methane emissions from lakes (blue, n=227) and reservoirs 
(red, n=86).  The size of each point is scaled to the magnitude of emission.   

 

2.2 Predictors of Methane Flux 

Using this dataset, we examined eight potential predictors of waterbody methane 

flux.  These predictor variables related to ecosystem productivity (chlorophyll a, dissolved 

organic carbon, and total phosphorus concentrations), morphometric features (mean depth, 
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maximum depth, surface area), and climatic features (water temperature and latitude).  

Generally, these variables were from the same study that reported methane emission.  However, 

given previous evidence that chlorophyll a concentrations were strong predictors of total lentic 

methane emissions at the global scale (Deemer et al., 2016; DelSontro et al., 2018), the database 

we used mined the literature for other studies of the same system that reported chlorophyll a 

within a +/- five-year time period of the primary study (Rosentreter et al. In Press).  Because TP 

and chlorophyll a were correlated in waterbodies where both were measured (r = 0.71, n=50), we 

used statistical relationships between total phosphorus (TP) and chlorophyll a concentrations to 

model missing chlorophyll a data for temperate and boreal systems (Dillon and Rigler 1974), for 

subtropical systems (Cunha et al., 2013), and for tropical systems (Salas and Martino 1991).  As 

we used TP measurements to model chlorophyll a values, our models do not consider individual 

effects of TP. Due to the potential confounding effect of elevation on the latitude-temperature 

relationship, our analysis excluded latitude from 19 systems located >1000m above sea level. 

Highly skewed variables were natural log transformed and residual plots were examined to check 

for normality. 

We conducted multivariate regression models as well as individual least squares 

regression models to evaluate how environmental variables predicted total, ebullitive, and 

diffusive areal methane fluxes. First, we tested for correlations between predictor variables using 

Pearson correlations in the corrplot package (Table S1; Wei and Simko 2017). We identified 

strong correlations among maximum depth, mean depth, and surface area (r ≥ 0.73) as well as 

between latitude and water temperature (r = -0.88). In multiple linear regression models, we 

avoided collinearity by selecting the variable with the highest sample size (surface area and 

latitude). Our multiple linear regression model also excluded DOC due to low sample sizes. As 

DOC was correlated with surface area (r=-0.66, Table S1), we can interpret an area effect to 

potentially indicate effects of both depth and DOC. Because our multivariate regression model 

used only a subset of our data (due to missing data among predictor variables), we also ran 

individual least square regression models with all available data to test the relationship between 

methane flux and each predictor variable. As our multivariate analysis highlighted interactions 

with waterbody type (lake vs. reservoir), we also used linear models to test for a waterbody type 

interaction for each predictor variable. All analyses were run in R (Version 3.3.1, R Core Team 

2020).  
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3 Results 

 

3.1 Total Methane Flux 

The multivariate regression model for total areal methane flux included 165 waterbodies, 

and the five best models included interactions between waterbody type and latitude, area, and/or 

chlorophyll a (Table 1). Total areal methane flux increased with chlorophyll a, decreased with 

surface area and latitude, and effects varied between lakes and reservoirs (Table 1). The effect of 

chlorophyll a was stronger in reservoirs compared to lakes, while area and latitude had stronger 

effects in lakes. This could be due to the fact that more reservoirs were large, while more lakes 

were at high latitudes (Figure 2a, b).  
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Figure 2. Total (ebullitive + diffusive) areal CH4 emission in reservoirs (black squares) and 
lakes (open circles) plotted against predictor variables: surface area (a), absolute latitude (b), 
maximum depth (c), DOC (d), chlorophyll a (e), and waterbody type (f). In panels a, c, and e, 
two regression lines depict a significant interaction with waterbody type (Table S2). In panel f, 
boxes demarcate the 25th and 75th percentiles, horizontal lines indicate median concentrations, 
diamonds indicate mean concentrations, whiskers extend to the largest value less than 1.5 times 
the interquartile range, and data extending beyond this range are plotted as individual points. All 
available data are plotted (with no sub-setting based on input to the multivariate regressions).   
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Using individual least squares regressions, we found that total areal methane flux was 

related to six of our seven predictor variables (all but mean depth; Table 2). The best predictors 

were maximum depth (R2 = 0.18) and chlorophyll a (R2 = 0.13), indicating that methane flux 

decreases with increasing waterbody size and increases with increasing productivity (Table 2, 

Figure 2).  We found that waterbody type significantly interacted with surface area, maximum 

depth, and chlorophyll a, but not latitude, mean depth, or DOC (Figure 2, Table S2). 

Specifically, area and maximum depth drove methane flux in lakes with weaker effects in 

reservoirs, whereas chlorophyll a had a stronger effect in reservoirs than in lakes. As four of the 

seven predictor variables had significant interactions with waterbody type (Figure 2, Table S2), 

we conducted additional least squares regressions to explore relationships between predictor 

variables and methane flux in lakes and reservoirs separately (Table 2). In lakes, total areal 

methane flux was driven by maximum depth, DOC, and area, with weaker (yet significant) 

relationships to chlorophyll a (Table 2). In contrast, total areal flux in reservoirs was only 

predicted by chlorophyll a (Table 2). 

 

3.2 Diffusive Methane Flux 

 The multivariate regression model for areal diffusive methane flux included 131 

waterbodies, and two top models included interactions between waterbody type and latitude, 

area, and chlorophyll a (R2=0.26, Table S3). Diffusive fluxes increased with increasing 

chlorophyll a in reservoirs but not lakes, whereas diffusive fluxes decreased with increasing 

surface area in lakes but not reservoirs.  

 Using individual linear regression models, we found that lakes and reservoirs differed in 

predictors of diffusive flux (Figure 3, Table S4), with 5 of the 7 predictor variables significantly 

interacting with waterbody type (Table S5). Across both waterbody types, diffusive fluxes 

increased with increasing DOC concentrations (Figure 4a) and decreased with increasing area 

and maximum depth (Figure 4b). These dynamics appear to be strongly driven by lakes (which 

represented much higher sample sizes), with lake diffusive flux being most strongly related to 

DOC (R2=0.28), followed by area (R2=0.22). In reservoirs, diffusive flux actually increased with 

increasing maximum depth (Figure 4b, R2=0.56), and flux was most strongly related to 

chlorophyll a (R2=0.62). 
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Figure 3.  Diffusive (left) and ebullitive (right) areal CH4 emission in reservoirs (black squares) 
and lakes (open circles) plotted against the top predictors of flux as identified in the multivariate 
regression analysis: chlorophyll (a, b), surface area (c, d), absolute latitude (e, f), and waterbody 
type (g, h). In panels a, c, and e, two regression lines depict a significant interaction with 
waterbody type (Tables S5 and S8). In panels g and h, boxes demarcate the 25th and 75th 
percentiles, horizontal lines indicate median concentrations, diamonds indicate mean 
concentrations, whiskers extend to the largest value less than 1.5 times the interquartile range, 
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and data extending beyond this range are plotted as individual points. All available data are 
plotted (with no sub-setting based on input to the multivariate regressions). 
 

 

      

Figure 4.  Diffusive areal CH4 emission in reservoirs (black squares) and lakes (open circles) 
plotted against the best predictors of flux as identified by linear regression analysis: DOC (a) and 
maximum depth (b). Two regression lines indicate a significant interaction with waterbody type 
(Table S5). 
 

3.3 Ebullitive Methane Flux 

The multivariate regression model for areal ebullitive methane flux included 130 

waterbodies, and the three best models included latitude, area, and an interaction between 

waterbody type and chlorophyll a (R2=0.29, Table S6). Specifically, ebullitive flux was higher in 

reservoirs, increased with chlorophyll a, and decreased with area and latitude.       

 Using individual linear regression models, we found that areal ebullitive flux in lakes and 

reservoirs responded similarly to predictor variables (Figure 3, Table S7), with no interactions 

between waterbody type and predictor variables (Table S8). The strongest predictor of ebullitive 

flux was chlorophyll a (Table S6, Figure 3b). Ebullitive flux increased with chlorophyll a when 

waterbody types were pooled (R2=0.18), and when lakes (R2=0.16) and reservoirs (R2=0.28) 

were analyzed separately (Table S7). 
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4 Discussion 

We found that the best predictors of methane emission differed between lakes and 

reservoirs, and also differed when considering ebullitive versus diffusive flux. Total lake 

methane fluxes and diffusive fluxes were more strongly related to lake morphometry, whereas 

productivity was more important in predicting reservoir flux and overall ebullitive flux. Our 

results suggest that lumping lakes and reservoirs together for the purposes of determining drivers 

and/or upscaling may obscure important differences between the systems. Identifying and 

understanding the drivers of lentic methane flux is paramount to increasing certainty in global 

upscaling efforts, and for informing management actions to minimize emissions. Here, we report 

on the environmental variables correlated with methane flux in lakes and reservoirs, discuss the 

implications for management and the challenges associated with current global upscaling efforts, 

and conclude with future research needs. 

4.1 Drivers of Methane Flux 

Waterbody type, surface area, chlorophyll a concentration, and latitude consistently 

emerged as important predictor variables in multivariate models regardless of methane pathway 

(total, diffusive, or ebullitive).  Due to both sample size and collinearity issues, these four 

variables were the only predictors included in our multivariate analyses-- and each were retained 

in top models. Still, the relative strength and even the direction of the surface area, chlorophyll a, 

and latitude effects varied by both methane emission pathway and waterbody type.  

In lakes, total and diffusive areal methane flux was best predicted by waterbody 

morphometry, including surface area and maximum depth, with DOC also emerging as an 

important predictor despite its small sample size (n=73 for lakes). All three of these variables are 

highly correlated (Table S1), likely because smaller waterbodies are often shallow with a greater 

edge effect that increases terrestrial carbon loads (Holgerson and Raymond 2016). Added DOC 

may provide a substrate for methanogenesis in anoxic conditions; however, it can also provide 

electron acceptors for methane oxidation (Reed et al. 2017) and it is not often a predictor of 

increased methane flux (Bastviken et al., 2004; Holgerson, 2015; Kankaala et al., 2013). We 

hypothesize that the observed relationship between DOC and methane flux may reflect lake 

morphometry more than DOC. Small and shallow lakes are often polymictic, allowing methane 

production from anoxic sediments to influence more of the water column (Holgerson, 2015; 
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Juutinen et al., 2009). Additionally, there is less potential for methane oxidation in smaller, 

shallower lakes (Bastviken et al., 2004).  

Productivity (e.g. chlorophyll a) emerged as a significant predictor in all the best 

multivariate models for total, ebullitive, and diffusive methane fluxes, but the relative strength of 

this driver varied by waterbody type (stronger in reservoirs than lakes) and by pathway (more 

important for ebullitive than diffusive flux).  In lakes, chlorophyll a weakly predicted total 

methane flux, which was driven by a strong relationship with ebullitive flux but was unrelated to 

diffusive flux.  In contrast, chlorophyll a was the strongest predictor of total, ebullitive and 

diffusive methane fluxes in reservoirs.  The strong relationship between chlorophyll a and 

reservoir methane flux is consistent with previous work (Deemer et al. 2016) and suggests that 

morphometric controls are less important drivers of methane emission in reservoirs than in      

lakes, although more studies are needed in small and shallow reservoirs.  Autochthonous 

production may be a more important regulator of methane dynamics in reservoirs given that 

these systems generally have lower residence times (Hayes et al., 2017) and thus possibly less 

time to process allochthonous carbon inputs.  In contrast to lakes, reservoir methane emissions 

were not significantly related to DOC, further suggesting a less important role for watershed 

carbon inputs.  Reservoirs also tended to have a higher fraction of methane as ebullition (median: 

78%, n=59 vs. median of 54% n=172 in lakes; Figure S2), with chlorophyll a emerging as the 

single best predictor of ebullitive flux regardless of waterbody type (Table S7).  Autochthonous 

carbon may generally provide more labile substrate for methanogenesis (West et al. 2012 but see 

West, McCarthy et al. 2015 and Berberich et al. 2019) resulting in more ebullitive flux, but 

longer residence times and more stable water levels in lakes may promote greater fractional 

methane oxidation than in reservoirs with shorter residence times.  In other words, for every unit 

of methane produced, methanotrophs in lakes may remove a greater fraction before it reaches the 

atmosphere, serving as a more efficient buffer to atmospheric emissions.  

We also report several unexpected relationships between morphometry and flux when 

comparing lakes and reservoirs. While methane flux decreased in larger lakes, larger reservoirs 

tended to have higher diffusive and total emissions (Figure 2, Figure 4). While more research is 

needed to elucidate the mechanisms driving this relationship, we have several hypotheses. First, 

reservoirs generally have longer, more complex perimeters than natural lakes (Hayes et al., 

2017), a phenomenon which may be most dramatic in larger reservoirs that have flooded more 
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complex river valleys. In these systems, increased shallow edge habitats may promote 

productivity and associated methane production that can largely bypass oxidation due to shorter 

bubble travel times from the sediments to the atmosphere.  In contrast larger lakes are often 

deeper, which reduces the methane that is able to reach the atmosphere (Bastviken et al., 2004; 

McGinnis et al., 2006). Secondly, large reservoirs may be used more for water storage, and thus 

experience greater water level fluctuations than some smaller run-of-river-type systems 

(although this hypothesis has not been tested).  Such water level fluctuations may lead to 

elevated ebullition as hydrostatic pressure drops (Harrison et al., 2017; Maeck et al., 2014).  It’s 

important to note that our discussion of morphometric controls is limited as we lack 

measurements from small and shallow reservoirs (n=16 for reservoirs <1 km2 in this study) as 

well as from the largest lakes (n=3 for lakes >100 km2 in this study).  We stress the need for 

more methane emission measurements from small reservoirs, especially given the ongoing global 

proliferation of small hydropower facilities (Couto and Olden 2018) as well as a need for more 

measurements from the largest lakes.  

While global datasets that cross ecosystem types have shown that methane emissions are 

highly temperature dependent (Yvon-Durocher et al. 2014), we found only a weak climatic effect 

on methane flux in reservoirs and lakes. Latitude emerged in all the best models of total, 

diffusive, and ebullitive flux, but was not as strong a covariate as either chlorophyll a or surface 

area (Table 1, Table S4, Table S7).  When broken down by waterbody type, the relationship 

between methane emission and water temperature was not significant in reservoirs and was only 

weakly significant in lakes (R2 = 0.08; Table 2). Previous research suggests that latitude predicts 

methane emissions, with tropical reservoirs often releasing more methane than temperate and 

boreal systems (Barros et al., 2011; Bastviken et al., 2011; but see Deemer et al., 2016) and 

temperate lakes emitting more methane than boreal lakes (Bastviken et al., 2011; Holgerson & 

Raymond 2016).  Recent work in lakes suggests a synergistic link between productivity and 

water temperature that is generally consistent with the weak but significant link between 

methane emission and latitude that we report here (DelSontro et al. 2016, Davidson et al. 2018, 

Jansen et al. 2020). Still, the strongest latitude effect we report here is for diffusive flux from 

reservoirs (R2=0.14, n=67, Table S4) which is somewhat surprising given that ebullitive flux has 

often been found to be more sensitive to temperature than diffusive flux (Davidson et al. 2018, 

Jansen et al. 2020). Seasonal sampling bias (where sites are sampled more in the summer than in 
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the winter) can substantially overestimate flux in northern systems (Jansen et al. 2020) and may 

be masking a stronger latitude effect than we report here. The extent to which the latitude effect 

we report here may have to do with temperature versus other ecosystem properties is an 

important area for future work.   

4.2 Implications for Managing Methane Emissions from Lakes and Reservoirs 

Our results inform the management of aquatic methane emissions, particularly with 

respect to eutrophication and the widespread construction of reservoirs and ponds. Chlorophyll a 

concentrations were strongly correlated with ebullition across waterbody types and for diffusive 

flux in reservoirs, suggesting that future emissions from these systems may be particularly 

sensitive to aquatic eutrophication (Beaulieu et al., 2019; Deemer et al., 2016). Methane 

emissions may be reduced by strategies to site new reservoirs and artificial ponds in locations 

where they are less likely to intercept nutrient runoff (Almeida et al. 2019), as well as through 

watershed nutrient management efforts to reduce runoff. Limiting nutrient loads to ponds may be 

particularly difficult as created ponds are often in agricultural (Webb et al., 2019) and urban 

(Peacock et al., 2019) landscapes, while natural upland ponds are critical storage sites for 

phosphorus and sediment that would otherwise enter lakes and rivers (Schmadel et al., 2019).  

Beyond eutrophication, we found that small lakes (i.e., ponds) had high methane 

emissions, which raises concern surrounding the global expansion of constructed farm ponds and 

retention ponds (Downing, 2010; Downing et al., 2006; Fairchild et al., 2013; Ollivier et al., 

2018). Pond creation is prevalent because ponds can provide important ecosystem services, 

ranging from sediment, nutrient, and water retention to water supply, aesthetic value, and 

recreation (Fairchild et al., 2013; Schmadel et al., 2019). We did not evaluate methane emissions 

from natural vs. artificial ponds due to the low (n=23) sample size and geographical bias of 

artificial ponds, but this is an important future research question. Preliminary evidence suggests 

that artificial ponds may have higher methane fluxes, even in cases where diffusion was the only 

pathway measured (Gorsky et al., 2019; Ollivier et al., 2018, but see Miller et al. 2019), and that 

artificial pond type matters (Grinham et al., 2018). In cases where ponds are constructed, 

methane emissions may be managed through morphometric design as deeper ponds often emit 

less methane than shallower ones (Gorsky et al., 2019; Webb et al., 2019). 
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4.3 Challenges with Global Upscaling 

 There are numerous challenges associated with upscaling methane fluxes measured in 

individual lakes and reservoirs to estimates of global methane flux. Currently upscaling is 

affected by biases in the types of waterbodies we sample, our limited understanding of methane 

flux and drivers over space and time, and the coarse resolution of global lake and reservoir 

databases. In the following section we discuss some of these challenges and highlight potential 

avenues for future work to resolve areas of limited understanding (Table 3). 

 

4.3.1 Across site sampling 

Arguably one of the most critical challenges to global upscaling efforts is a bias in the 

types of waterbodies sampled. While our sample size of 227 lakes and 86 reservoirs is on par 

with other global upscaling efforts, it is miniscule compared to an estimated 22.6 - 27.5 million 

lakes and 17,356 reservoirs larger than 0.1 km2 (sites < 0.1 km2 substantially more uncertain, 

with lakes estimated between 647 million - 3.48 billion; reservoirs estimated at 16.7 million) 

(Downing, 2010; Downing et al., 2006; Holgerson & Raymond, 2016; Lehner et al., 2011; 

Messager et al., 2016; Verpoorter et al., 2014). While this dataset appears to represent the 

latitudinal distribution of lakes and reservoirs globally (Figure S1), it does not likely represent 

the global size distribution of lakes and reservoirs. For instance, the dataset only includes 20 

large lakes ≥ 1 km2, with only three ≥ 100 km2. In contrast, we have only 16 small reservoirs < 1 

km2. Additionally, we do not know the global area or distribution of the smallest waterbodies < 

0.1 km2, which comprise most of the world’s lakes. Lastly, these study sites may not 

proportionately represent the global distribution of waterbodies in terms of chemical and 

biological characteristics. We suggest that future studies focus on large lakes (>1 km2), small 

reservoirs (<1 km2), and the smallest lakes (e.g. ponds, <0.01 km2), as well as select sites 

randomly to avoid sampling bias (Table 3).  

 

4.3.2 Within site sampling 

Current upscaling efforts are limited by the scope of smaller-scale field studies in terms 

of the environmental variables measured, the methane flux pathways measured (e.g. ebullitive 

vs. diffusive vs. total), and spatial and temporal coverage. We suggest that gas sampling studies 

measure and report DOC, chlorophyll a, surface area, and maximum depth, which were our 
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strongest predictors of methane fluxes (Table 2).  In our dataset, only 32% of lakes and 19% of 

reservoirs reported DOC concentrations, while maximum depth was reported for 61% of lakes 

and only 10% of reservoirs (Table 2). Under-sampling of DOC is not unique to methane flux 

datasets and may be universal in lake sampling efforts (Stanley et al. 2019). The limited data we 

do have suggest that reservoirs are low DOC systems, begging the question: do reservoirs tend to 

have less DOC than natural lakes? In a global study, low DOC was correlated with larger 

watersheds, higher shoreline complexity, and longer shorelines (Toming et al., 2020), which are 

all characteristics of reservoirs compared to lakes (Hayes et al. 2017). Yet, the same global study 

also found higher DOC in smaller, shallower systems (Toming et al., 2020), emphasizing the 

need for more DOC and flux measurements from small reservoirs. While depth and productivity 

metrics are more commonly reported than DOC, greater measurements (particularly in 

reservoirs) are needed given the strong patterns we observed.  

Secondly, future studies should measure both diffusive and ebullitive pathways in order 

to aid upscaling efforts. This is because 1.) the fractional contribution of each pathway to total 

flux is highly variable by system (ranging from 0-100% in this dataset; Figure S2) and 2.) the 

controls on each flux pathway differ (Figure 3, Table S4, Table S7).  While some methods 

cannot easily differentiate diffusive and ebullitive fluxes (e.g. eddy covariance), other methods 

can discern pathways (e.g. floating chambers). Studies that examine each pathway independently 

allow a better understanding of specific mechanisms driving fluxes via each pathway and will 

possibly support upscaling each flux pathway separately. 

Lastly, the high degree of sampling needed to resolve waterbody methane fluxes (see 

Wik et al., 2016 and Jansen et al., 2020) poses a significant challenge to the research 

community.  Methane emissions can be highly variable through space (DelSontro et al., 2011) 

and on diel (Podgrajsek et al., 2014,  Sieczko et al. 2020), seasonal (Jansen et al., 2020; Denfeld 

et al., 2018; Jammet et al., 2015; Schubert et al., 2012), and event-based timescales (Harrison et 

al., 2017). For example, a water level drawdown event lasting a few weeks was responsible for 

>90% of the annual methane emission from a temperate reservoir (Harrison et al., 2017).  This 

variability can make the use of average open water flux values problematic given that very large 

fractions of an annual waterbody’s methane budget can be emitted over very short time frames. 

General increases in the sampling effort put forward within single systems will help to better 

narrow in on the actual average fluxes (Wik et al., 2016) as will efforts to better synthesize the 
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average effect of short-term or seasonal events (e.g. as in Denfeld et al., 2018 and Jansen et al., 

2020) and diel patterns in flux (Sieczko et al. 2020, Podgrajsek et al. 2014). 

 

4.3.3 Global database needs 

 The accuracy of global methane emission upscaling efforts is currently limited by global 

estimates of environmental predictors and lake and reservoir surface area and distribution. First, 

relating methane emissions to widely measured predictor variables may resolve some of the 

problems associated with sample representativeness (DelSontro et al., 2018). In the last five 

years, global databases have been created for both chlorophyll a (using satellite-based estimates;      

Sayers et al., 2015) and DOC (using machine learning; Toming et al. 2020). These databases are 

excellent advances considering the importance of both chlorophyll a and DOC in predicting 

reservoir and lake methane fluxes, respectively, and the chlorophyll a database was recently used 

to predict lentic water greenhouse gas emissions (DelSontro et al. 2018) and large reservoir 

greenhouse gas emissions (Rosentreter et al. In Press).   

However, these databases still have major limitations for upscaling greenhouse gas 

emissions. The chlorophyll a database is based on chlorophyll a concentrations from a single 

year in August (Sayers et al., 2015), while the DOC database was built from DOC measurements 

only in lakes, most of which were only measured once (Sobek et al., 2007). Both datasets ignore 

small waterbodies with minimum size thresholds of 1 km2 for the chlorophyll a database (Sayers 

et al., 2015) and 0.1 km2 for the DOC database (Toming et al. 2020). Lastly, both databases lump 

together lakes and reservoirs. Yet our analysis indicates that lakes and reservoirs respond 

differently to chlorophyll a and DOC, with chlorophyll a strongly predicting methane flux in 

reservoirs but not lakes (with the exception of ebullition), and DOC strongly predicting flux in 

lakes but not reservoirs (Table 1). While regional analyses suggest different distributions of 

chlorophyll a in reservoirs compared to that in lakes (Doubek and Carey 2017), it is not known 

how this plays out at the global scale.  Similarly, improvements to spatially explicit models of 

watershed nutrient transport may allow improved global modeling of lentic waterbody trophic 

status, although at present these models are not resolved enough to be useful at the scale of single 

waterbodies (Deemer et al., 2016).   

Global databases of lake and reservoir surface area coverage are also critical to upscaling 

efforts. Current global databases contain lake and reservoir surface area estimates that can differ 
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dramatically among size classes, with 7% to 95% differences in lakes greater than 0.1 km2 

(comparing Messager et al., 2016 and Downing et al., 2006) and even greater uncertainty in the 

smaller size classes (34% - 141% differences comparing Downing et al., 2006, Downing 2010, 

and extrapolations from Verpoorter et al., 2014). Without accurate estimates of global lake size 

distribution, particularly for small waterbodies, upscaling results in uncertain estimates. This 

includes problems with differentiating ponds from wetlands and lakes from reservoirs as well as 

identifying waterbodies under forest cover.  Advancing technologies that support mapping small 

waterbodies is critical for upscaling efforts, and there are some promising advancements at local 

scales using LiDAR (Wu et al., 2014), real-color aerial images (Halabisky, 2011) and leaf-off 

color-infrared aerial imagery (Van Meter et al., 2008).  In addition, recent regional-scale studies 

have improved waterbody mapping by digitizing high-resolution (1:24,000) paper maps 

(Schmadel et al., 2019) and using color-infrared imagery (Kyzivat et al., 2019). In addition to 

estimating the global size distribution of waterbodies, more accurate annual flux estimates will 

require a better understanding of changing surface areas due to drying as well as reduced flux 

during periods of ice cover. 

  

4.4 Conclusions 

While there remain significant challenges to upscaling global methane emissions from 

inland waters, we are in the midst of an incredible growth of methane measurements: of the 313 

lakes and reservoirs considered here, 205 (65%) were published since 2015 (Rosentreter et al., In 

Press). As increased effort is put into methane measurements, more thought could be given to the 

types of waterbodies sampled and the types of supplemental data gathered at each waterbody 

(Table 3). Here we highlight the potential for different types of systems to behave very 

differently with respect to both ecosystem drivers and overall magnitude of methane emissions 

and suggest the utility of further delineating and quantifying these differences to inform future 

upscaling efforts.   
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Table Legends 
 
Table 1. Results of multivariate linear regression predicting total methane flux in 167 
waterbodies (n=134 lakes, n=31 reservoirs). The global model included was fit as LN(CH4+1) ~ 
waterbody_type*latitude_absolute + waterbody_type*area_ln + 
waterbody_type*chlorophylla_modeled_ln. Dashes indicate that variable was not included in 
that particular model. Top models within 2 AICc of the best model are reported. 
 
Table 2. Individual linear least squares regression models predicting total methane flux for all 
data (n=313 waterbodies), lakes (n=227), and reservoirs (n=86). Boxes are shaded to emphasize 
significant variables (p<0.05) with R2>0.10. Note that chlorophyll a represents measured values 
and modeled values from TP (see text). 
 
Table 3. Recommendations for future research to increase certainty in upscaling global methane 
emissions from inland waters. 
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Table 1. Results of multivariate linear regression predicting total methane flux in 167 waterbodies (n=134 lakes, n=31 reservoirs). The 
global model included was fit as LN(CH4+1) ~ waterbody_type*latitude_absolute + waterbody_type*area_ln + 
waterbody_type*chlorophylla_modeled_ln. Dashes indicate that variable was not included in that particular model. Top models within 
2 AICc of the best model are reported. 
 

  
Model 

AICc Delta 
AICc 

Adj R2 Intercept 
estimate 

Waterbody 
Type Est 
(Res) 

Abs. 
Latitude 
Est 

Area 
Est 

Chla 
Est 

Waterbody
*lat 

Waterbody*
area 

Waterbody
*chla 

Null 642.96 -- -- 3.36 -- -- -- -- -- -- -- 

latitude + area + 
watertype*chla 

555.36 0 0.43 3.16 1.30 -0.03 -0.27 0.36 -- -- 0.33 

watertype*latitude + 
area + watertype*chla 

555.46 0.56 0.44 3.49 0.02 -0.03 -0.26 0.35 0.03 -- 0.42 

watertype + latitude + 
area + chla 

556.69 1.25 0.42 3.02 1.94 -0.03 -0.28 0.43 -- -- -- 

latitude + 
watertype*area + 
watertype*chla 

556.87 1.41 0.43 3.07 1.12 -0.03 -0.28 0.36 -- 0.08 0.36 

watertype*latitude + 
watertype*area + 
watertype*chla 

557.09 1.51 0.43 3.40 -0.12 -0.04 -0.28 0.35 0.03 0.08 0.44 
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Table 2. Individual linear least squares regression models predicting total methane flux for all data (n=313 waterbodies), lakes 
(n=227), and reservoirs (n=86). Boxes are shaded to emphasize significant variables (p<0.05) with R2≥0.15. Note that chlorophyll a 
represents measured values and modeled values from TP (see text). 
 

  All data (n=317) Lakes (n=227) Reservoirs (n=86) 

  n R2 p sign n R2 p sign n R2 p sign    

Water temperature 173 0.03 0.02 + 137 0.08 <0.001 + 36 0.00 0.33 -    

Latitude (absolute) 294 0.02 0.006 - 210 0.05 <0.001 - 84 0.01 0.22 -    

Surface area (LN) 276 0.04 <0.001 - 198 0.15 <0.001 - 78 0.00 0.52 +    

Maximum depth (LN) 147 0.18 <0.001 - 138 0.19 <0.001 - 9 0.15 0.17 +    

Mean depth (LN) 104 0.00 0.66 - 51 0.03 0.13 - 53 0.00 0.75 -    

DOC (LN) 89 0.07 0.006 + 73 0.19 <0.001 + 16 0.00 0.98 -    

Chlorophyll a (LN) 178 0.13 <0.001 + 147 0.08 <0.001 + 31 0.43 <0.001 +    
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Table 3.  

Table 3. Recommendations for future research to increase certainty in upscaling global 
methane emissions from inland waters 

Across site sampling:  
● Increased effort sampling large lakes (> 1 km2), small reservoirs (< 1 km2), and very 

small lakes (< 0.01 km2) to reduce uncertainty 
● Randomized samples to determine true distribution of methane flux 

Within site sampling:  
● Measure DOC, chlorophyll a, and report surface area 
● Sample both ebullition and diffusion  
● More sampling during ice off and fall turnover  
● More spatial and temporal coverage at individual study sites 

Global database needs: 
● Create database for global lake nutrient concentrations 
● Expand global chlorophyll and DOC databases to small lakes and for increased 

temporal coverage 
● Expand global surface area database to small lakes 
● Improve mapping of lake vs. reservoir surface areas 

 
 


