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Abstract

Methane is an important greenhouse gas with groainmgspheric concentrations. Freshwater
lakes and reservoirs contribute substantially tecspheric methane concentrations, but the
magnitude of this contribution is poorly constralndJncertainty stems partially from whether
the sites currently sampled represent the globalilation as well as incomplete knowledge of
which environmental variables predict methane fllixus, determining the main drivers of
methane flux across diverse waterbody types witirm more accurate upscaling approaches.
Here we use a new database of total, diffusive ednulitive areal methane emissions from 313
lakes and reservoirs (ranging in surface area iom to 5,400 k) to identify the best
predictors of methane emission. We found thab#st predictors of methane emission differed
by waterbody type (lakes vs. reservoirs), and ¢casystem morphometric variables (e.g.,
surface area and maximum depth) were nmaportant predictors in lakes whereas metrics of
autochthonous production (e.g., chloropl®ylivere more important in reservoirs. We also found
that productivity strongly predicted methane elbiolfi, whereas ecosystem morphometry and
waterbody type were more important predictors @iidive methane flux. Finally, we identify
several knowledge gaps that limit upscaling eftdfisst, we need more methane emission
measurements in small reservoirs, large lakespatidnatural and artificial ponds. Additionally,
more accurate upscaling efforts require improvedtbal information about waterbody surface
area, waterbody type (lake vs. reservoir), ice phlagy, and the distribution of productivity-

related predictor variables such as total phosgh®®C, and chlorophyé.

Plain Language Summary

Methane is an important greenhouse gas, and itssgimeric concentrations are steadily rising.
Inland waters, such as lakes and reservoirs, aim@@ortant source of methane, but there is
uncertainty in the magnitude of emissions as wsetha types of systems that emit more
methane. Recent work suggests that high ecosysthgivity (e.g., high rates of
photosynthesis) leads to high methane emissionttaidgmaller waterbodies tend to emit more
methane than larger ones. Still, the extent taclvtiiese patterns differ in lakes versus
reservoirs (lakes formed behind dams) is not knddare, we examined the best predictors of
lake and reservoir methane flux using a new dat#seethane emissions from 313 lakes and
reservoirs The best predictors of methane emission differedden lakes and reservoirs: lake

methane flux was more driven by waterbody shapesa®] whereas reservoir methane flux was
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related more to productivity. Future global-scad@émates of lake and reservoir methane
emission should consider these systems separ#élyimproved understanding of the drivers
of methane flux from lakes and reservoirs, we agliteb inform models of global methane

emissions and target future emissions reductions.

1 Introduction

Freshwater lakes and reservoirs are an importaradarly constrained source of methane to the
atmosphere. Recent emission estimates range 20185 Tg CHyr: (DelSontro et al. 2018;
Rosentreter et al., In Press), or 10-34% of the B4 Tg CH yr: estimated from all natural and
anthropogenic sources combined (Kirschke et al 328aunois et al., 2016, 2019). While
differing estimates of lentic surface area causeesof this uncertainty (ranging from 3.23-5.36
x 1¢° km?, Messager et al. 2016 ; Verpoorter et al., 20éxreme variability and skewed
distributions of aquatic methane fluxes padditional challenges to upscaling efforts
(Rosentreter et al., In Press). Identifying andngjiiidng key methane sources is important given
methane’s potential to act as a “lever” on atmosplgreenhouse gas concentrations (wherein
the combination of its potency and its short atrhesic residence time means that current
changes in emission can have immediate consequdregier et al., 2012). While some recent
work has suggested that methane emission dynamgieatrolled by similar processes across
lentic waterbody types (e.g. lakes vs. reserv@iigdSontro et al. 2018), other work highlights
important differences in waterbody properties (begween ponds, natural lakes, and artificial
reservoirs) that may ultimately affect methaneuefifiDowning, 2010; Hayes et al., 2017;
Holgerson & Raymond, 2016).

A variety of biological, morphometric, and phyaiproperties have been suggested as
important predictors of lentic methane flux to #imosphere, with recent literature identifying
temperature (DelSontro et al., 2016; Yvon-Duroctaal., 2014), latitude (Barros et al., 2011),
ecosystem productivity (Deemer et al., 2016; Det&oet al., 2016, 2018; West, Creamer, et al.,
2015), surface area (Holgerson & Raymond, 2016jl&at al., 2015) and water depth (Gorsky
et al., 2019; West, Creamer, et al., 2015) as kegligtors at regional to global
scales. Ecosystem productivity, in particular, besn posited as a master regulator of methane
emissions in wetlands, lakes, and reservoirs gigerole in producing labile organic matter
substrate critical to methanogenesis and its rofgomoting anoxic conditions via associated
organic matter respiration (Deemer et al., 2018Sbetro et al., 2018; Whiting & Chanton,
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1993). A number of smaller scale incubation stsidigpport the idea that autochthonous organic
matter can provide a more labile substrate thaclalhonous material for methanogenesis
(Grasset et al., 2018; West et al., 2012), buktisealso evidence that some autochthonous and
allochthonous organic matter are similarly labBrgsset et al., 2018) and that the lability of
autochthonous organic matter may decline with &sireg productivity (West, McCarthy, et al.,
2015). Thus, morphometric properties of waterbethat help determine the degree of
allochthonous organic matter inputs to the systeay atso be important predictors of methane
flux. Such properties include surface area, caitrarea : surface area ratios, and perimeter :
water volume ratios. Waterbodgpth may also affect the magnitude of methanestom$y
altering the degree of methane dissolution as lesbisethrough the water column (McGinnis

et al., 2006), the region of the water column ttaat trap methane during stratified conditions,
and the water volume that can support methane tiaidé.e., deeper waterbodies have greater
capacity for dissolutiorirapping, and oxidizing methane).

Relating methane emissions to waterbody propesigsportant for resolving upscaling
issues associated with disproportionate samplirggdain waterbody types and/or sizes. While
traditional upscaling methods generally combineatighmetic mean of flux estimates across the
sample population with an estimate of global eciesyssurface area (Bastviken et al., 2011;
Deemer et al., 2016), recent efforts to upscaemnouse gases from freshwaters have
suggested the potential disparity between the ptiegeof the sample population versus the
global population of sites (Holgerson & Raymond @0RelSontro et al., 2018; Rosentreter et
al., In Press). To get around this, studies haated methane emissions based on waterbody
surface area (Holgerson & Raymond 2016; Rosente¢tal, In Press) and chlorophall
concentrations (DelSontro et al., 2018; Rosentstat., In Press). In reservoirs, more detailed
models incorporate both waterbody and catchmemtctexistics to predict emissions in support
of greenhouse gas inventory efforts (Prairie et28117). Still, problems remain with these
methods given current limitations with global lsded reservoir datasets. For example, satellite-
based estimates of lentic waterbody propertiesa@amsolve the smallest systems (Verpoorter et
al. 2014, Messager et al. 2016). In addition, lsase¢he waterbody characteristics that are most
readily measured (and the types of systems in wihiey are measured) may limit our ability to
identify the best predictors of lake and reserna@thane flux (Stanley et al., 2019).
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While lakes and reservoirs are often lumped togdtivahe purposes of estimating
surface area (Verpoorter et al., 2014) and for aipsg fluxes (DelSontro et al., 2018), key
differences in the ecosystem morphometry and hgdsobf these systems may result in
different mean emissions and different controlgomssion between the two waterbody
types. Reservoirs, which we define as any impodgerbody, tend to have larger
catchments, higher catchment area : surface atieg,rand longer perimeters (but with no
significant difference in surface area or depthyétaet al., 2017). These morphometric
attributes suggest more mass input from the wagdrplr unit waterbody in reservoirs, such that
reservoirs are better situated to intercept mdoelahonous inputs than natural lakes in the
same region (Hayes et al., 2017). To this enérvess experience higher areal sedimentation
rates than natural lakes (Mendonca et al. 201d)tlaese high sedimentation zones can have
particularly high rates of methane emission (Maetcél. 2013). Reservoirs also generally
experience a greater degree of water level fluindhan natural lakes (Hayes et al., 2017,
Zohary & Ostrovsky, 2011), and water level drawdsware known to drive large methane
emission events in some systems (Harrison et@l.7;2Maeck et al., 2014). Finally, there may
be regional differences in ecosystem productivéinzen lakes and reservoirs; for example in
the EPA National Lakes Assessment, natural lakes generally more eutrophic than reservoirs
(Doubek & Carey, 2017).

Here we use a recently compiled global dataseitef,ebullitive, anddiffusive areal
methane emission rates from lakes and reservardgscribed in Rosentreter et al., In Press) to
identify the best environmental predictors of mathamission and examine whether predictors
differ between lakes and reservoif&e end by discussing current challenges to upsgaliforts

and critical future data needs.

2 Materials and Methods

2.1 Dataset

We used a dataset containing estimates of totallitale, anddiffusive methandéux
from 227 lakes and 86 reservoirs from around thddyspanning a wide latitudinal gradient
(Figure 1, Figure S1; Rosentreter et al., In PreBf)xes were recorded on an areal basis (e.qg.
per n?), and “total flux” is used throughout the manugtto refer to the sum of areal ebullitive

and diffusive fluxes. The dataset also contairssdoancillary morphometric, biological, and
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chemical data that may correlate with methane fllilke dataset is unique in thantic methane
flux studies reporting only one of the two main ssmn pathways (ebullition or diffusion) were
excluded (but see Deemer et al., 2016). This was doven previous evidence that ebullition
can make up anywhere from 0-99.6% of total emiss{@eemer et al., 2016).

In this dataset, each site was categorized intcobh&o waterbody types: lake or
reservoir. Areservoir was defined as a system whose primafioautvas dammed, excluding
beaver ponds and river reaches upstream of wavggVer, larger run of river reservoirs were
included. The lake category encompassed a largegsalient (0.000006 - 2500 Rmincluding
small waterbodies that may be considered ponds . gites <0.01 ki and was largely
composed of natural lakes, although a small subs&3) were artificial. Sites that were

dominated by emergent vegetation were considerdldmnads and excluded from the dataset.
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Figure 1. Global distribution of total methane emissiormirlakes (blue, n=227) and reservoirs
(red, n=86). The size of each point is scaledh¢omagnitude of emission.

2.2 Predictors of Methane Flux
Using this dataset, we examingidht potential predictors of waterbody methane

flux. These predictor variables related to ecasysproductivity (chlorophylé, dissolved

organic carbon, and total phosphorus concentrgtiomsrphometric features (mean depth,
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maximum depth, surface area), and climatic feat(weser temperature and latitude).
Generallythese variables were from the same study that tegbonethane emission. However,
given previous evidence that chlorophyitoncentrations were strong predictors of totatiden
methane emissions at the global scale (Deemer, &0416; DelSontro et al., 2018), the database
we used mined the literature for other studiehefdame system that reported chloropayll
within a +/- five-year time period of the primanydy (Rosentreter et al. In Press). Because TP
and chlorophylla were correlated in waterbodies where both weresorea (r = 0.71, n=50), we
used statistical relationships between total phosph(TP) and chlorophyd concentrations to
model missing chlorophy# data for temperate and boreal systems (DillonRigter 1974), for
subtropical systems (Cunha et al., 2013), andrégical systems (Salas and Martino 1991). As
we used TP measurements to model chloroghyélues, our models do not consider individual
effects of TP. Due to the potential confoundingeeffof elevation on the latitude-temperature
relationship, our analysis excluded latitude frodnsystems located >1000m above sea level.
Highly skewed variables were natural log transfatraed residual plots were examined to check
for normality.

We conducted multivariate regression models as ageilhdividual least squares
regression models to evaluate how environmentébigs predicted total, ebullitive, and
diffusive areal methane fluxes. First, we testedctorelations between predictor variables using
Pearson correlations in the corrplot package (TakieWei and Simko 2017). We identified
strong correlations among maximum depth, mean dapthsurface area¥r0.73) as well as
between latitude and water temperature (r = -0188nultiple linear regression models, we
avoided collinearity by selecting the variable wtitle highest sample size (surface area and
latitude). Our multiple linear regression modebatxcluded DOC due to low sample sizes. As
DOC was correlated with surface area (r=-0.66, @&dl), we can interpret an area effect to
potentially indicate effects of both depth and D@&cause our multivariate regression model
used only a subset of our data (due to missingatatang predictor variables), we also ran
individual least square regression models witlaadlilable data to test the relationship between
methane flux and each predictor variatle our multivariate analysis highlighted interacts
with waterbody type (lake vs. reservoir), we alsedilinear models to test for a waterbody type
interaction for each predictor variable. All ana@gsvere run in R (Version 3.3.1, R Core Team
2020).
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3 Results

3.1 Total Methane Flux

The multivariate regression model for total areatimne flux included 165 waterbodies,
and the five best models included interactions betwwaterbody type and latitude, area, and/or
chlorophyll a (Table 1). Total areal methane flngreased with chlorophyd, decreased with
surface area and latitude, and effects varied letiakes and reservoirs (Table 1). The effect of
chlorophylla was stronger in reservoirs compared to lakes,endriéa and latitude had stronger
effects in lakes. This could be due to the fact thare reservoirs were large, while more lakes

were at high latitudes (Figure 2a, b).
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Figure 2. Total (ebullitive + diffusive) areal CHemission in reservoirs (black squares) and
lakes (open circles) plotted against predictoratags: surface area (a), absolute latitude (b),
maximum depth (c), DOC (d), chlorophgle), and waterbody type (f). In panels a, c, and e
two regression lines depict a significant interactivith waterbody type (Table S2). In panel f,
boxes demarcate the 25th and 75th percentilegzdrdal lines indicate median concentrations,
diamonds indicate mean concentrations, whiskeenextio the largest value less than 1.5 times
the interquartile range, and data extending beybisdange are plotted as individual points. All
available data are plotted (with no sub-settingeamn input to the multivariate regressions).
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Using individual least squares regressions, weddbat total areal methane flux was
related to six of our seven predictor variablesl{at mean depth; Table 2). The best predictors
were maximum depth @R= 0.18) and chlorophyl (R? = 0.13), indicating that methane flux
decreases with increasing waterbody size and iseseaith increasing productivity (Table 2,
Figure 2). We found that waterbody type signifitgmteracted with surface area, maximum
depth, and chlorophyé, but not latitude, mean depth, or DOC (Figure @&I€ S2).

Specifically, area and maximum depth drove metlilarxein lakes with weaker effects in
reservoirs, whereas chlorophglhad a stronger effect in reservoirs than in lakeasfour of the
seven predictor variables had significant intecagiwith waterbody type (Figure 2, Table S2),
we conducted additional least squares regressioagpiore relationships between predictor
variables and methane flux in lakes and resergaiparately (Table 2). In lakes, total areal
methane flux was driven by maximum depth, DOC, aed, with weaker (yet significant)
relationships to chlorophyd (Table 2). In contrast, total areal flux in res@rs was only
predicted by chlorophyk (Table 2).

3.2 Diffusive Methane Flux

The multivariate regression model for areal diffesmethane flux included 131
waterbodies, and two top models included interastioetween waterbody type and latitude,
area, and chlorophydl (R’=0.26, Table S3). Diffusive fluxes increased withreasing
chlorophylla in reservoirs but not lakes, whereas diffusivedisidecreased with increasing
surface area in lakes but not reservoirs.

Using individual linear regression models, we fotinat lakes and reservoirs differed in
predictors of diffusive flux (Figure 3, Table S#ith 5 of the 7 predictor variables significantly
interacting with waterbody type (Table S5). Acrbsshwaterbody types, diffusive fluxes
increased with increasing DOC concentrations (flegla) and decreased with increasing area
and maximum depth (Figure 4b). These dynamics appdze strongly driven by lakes (which
represented much higher sample sizes), with lafkesdie flux being most strongly related to
DOC (R=0.28), followed by area @&0.22). In reservoirs, diffusive flux actually imased with
increasing maximum depth (Figure 413=R.56), and flux was most strongly related to
chlorophylla (R?=0.62).
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Figure 3. Diffusive (left) and ebullitive (right) areal GHmission in reservoirs (black squares)
and lakes (open circles) plotted against the tegiptors of flux as identified in the multivariate
regression analysis: chlorophyll (a, b), surfa@adc, d), absolute latitude (e, f), and waterbody
type (g, h). In panels a, c, and e, two regresan@s depict a significant interaction with
waterbody type (Tables S5 and S8). In panels dhabdxes demarcate the 25th and 75th
percentiles, horizontal lines indicate median cotregions, diamonds indicate mean
concentrations, whiskers extend to the largestevidsss than 1.5 times the interquartile range,
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and data extending beyond this range are plott@&udasdual points. All available data are
plotted (with no sub-setting based on input torthativariate regressions).
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Figure 4. Diffusive areal CHemission in reservoirs (black squares) and lagpsr{ circles)
plotted against the best predictors of flux asidied by linear regression analysis: DOC (a) and
maximum depth (b). Two regression lines indicasggaificant interaction with waterbody type

(Table S5).

3.3 Ebullitive Methane Flux
The multivariate regression model for areal ebulimethane flux included 130

waterbodies, and the three best models includéddat area, and an interaction between
waterbody type and chlorophgl(R?=0.29, Table S6). Specifically, ebullitive flux whaigher in

reservoirs, increased with chlorophglland decreased with area and latitude.
Using individual linear regression models, we fodimat areal ebullitive flux in lakes and

reservoirs responded similarly to predictor vagshFigure 3, Table S7), with no interactions
between waterbody type and predictor variables|ér'aB). The strongest predictor of ebullitive
flux was chlorophyll (Table S6, Figure 3b). Ebullitive flux increasedhachlorophylla when
waterbody types were pooled?R.18), and when lakes {R0.16) and reservoirs {R0.28)

were analyzed separately (Table S7).

This article is protected by copyright. All rights reserved.



4 Discussion

We found that the best predictors of methane eomsdiffered between lakes and
reservoirs, and also differed when consideringlaival versus diffusive flux. Total lake
methane fluxes and diffusive fluxes were more gilprelated to lake morphometry, whereas
productivity was more important in predicting res®er flux and overall ebullitive flux. Our
results suggest that lumping lakes and reservagstiher for the purposes of determining drivers
and/or upscaling may obscure important differersg®/een the systems. Identifying and
understanding the drivers of lentic methane flugasamount to increasing certainty in global
upscaling efforts, and for informing managemenioast to minimize emissions. Here, we report
on the environmental variables correlated with raeéhflux in lakes and reservoirs, discuss the
implications for management and the challengescesteal with current global upscaling efforts,

and conclude with future research needs.

4.1 Drivers of Methane Flux

Waterbody type, surface area, chloroplationcentration, and latitude consistently
emerged as important predictor variables in muitata models regardless of methane pathway
(total, diffusive, or ebullitive). Due to both spha size and collinearity issues, these four
variables were the only predictors included in witivariate analyses-- and each were retained
in top models. Still, the relative strength andrettee direction of the surface area, chlorophyll
and latitude effects varied by both methane emisgathway and waterbody type.

In lakes, total and diffusive areal methane fluxswast predicted by waterbody
morphometry, including surface area and maximunthgepth DOC also emerging as an
important predictor despite its small sample size/@ for lakes). All three of these variables are
highly correlated (Table S1), likely because smallaterbodies are often shallow walgreater
edge effect that increases terrestrial carbon I¢ddigyerson and Raymond 2016). Added DOC
may provide a substrate for methanogenesis in armaxiditions; however, it can also provide
electron acceptors for methane oxidation (Reedl €0a7) and it is not often a predictor of
increased methane flux (Bastviken et al., 2004 gkislon, 2015; Kankaala et al., 2013). We
hypothesize that the observed relationship betiz#@@ and methane flux may refldake
morphometry more than DOC. Small and shallow latesoften polymicticallowing methane

production from anoxic sediments to influence nmafrthe water column (Holgerson, 2015;
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Juutinen et al., 2009). Additionally, there is lps¢ential for methane oxidation in smaller,
shallower lakes (Bastviken et al., 2004).

Productivity (e.g. chlorophyl) emerged as a significant predictor in all thetbes
multivariate models for total, ebullitive, and difive methane fluxes, but the relative strength of
this driver varied by waterbody type (strongerasarvoirs than lakes) and by pathway (more
important for ebullitive than diffusive flux). llakes, chlorophyla weakly predicted total
methane flux, which was driven by a strong relattop with ebullitive flux but was unrelated to
diffusive flux. In contrast, chlorophyd was the strongest predictor of total, ebullitivel a
diffusive methane fluxes in reservoirs. The stroglgtionship between chlorophgland
reservoir methane flux is consistent with previask (Deemer et al. 2016) and suggests that
morphometric controls are less important drivermmethane emission in reservoirs than in
lakes, although more studies are needed in smélshallow reservoirs. Autochthonous
production may be a more important regulator ofraeé dynamics in reservoirs given that
these systems generally have lower residence {jHeges et al., 2017) and thus possibly less
time to process allochthonous carbon inputs. htrest to lakes, reservoir methane emissions
were not significantly related to DOC, further sagting a less important role for watershed
carbon inputs. Reservoirs also tended to havgleehifraction of methane as ebullition (median:
78%, n=59 vs. median of 54% n=172 in lakes; Figi2§ with chlorophyla emerging as the
single best predictor of ebullitive flux regardlegsvaterbody type (Table S7). Autochthonous
carbon may generally provide more labile substi@tenethanogenesis (West et al. 2012 but see
West, McCarthy et al. 2015 and Berberich et al. 20&sulting in more ebullitive flux, but
longer residence times and more stable water |éwéddkes may promote greater fractional
methane oxidation than in reservoirs with shomsidence times. In other words, for every unit
of methane produced, methanotrophs in lakes magvera greater fraction before it reaches the
atmosphere, serving as a more efficient buffetnwoapheric emissions.

We also report several unexpected relationshipsdert morphometry and flux when
comparing lakes and reservoirs. While methanedkenreased in larger lakes, larger reservoirs
tended to have higher diffusive and total emissigingure 2, Figure 4). While more research is
needed to elucidate the mechanisms driving thatiogiship, we have several hypotheses. First,
reservoirs generally have longer, more complexnpeters than natural lakes (Hayes et al.,

2017), a phenomenon which may be most dramatargel reservoirs that have flooded more
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complex river valleys. In these systems, increatatiow edge habitats may promote
productivity and associated methane productiondaatiargely bypass oxidation due to shorter
bubble travel times from the sediments to the aphese. In contrast larger lakes are often
deeper, which reduces the methtrat is able to reach the atmosphere (Bastvikah,e2004;
McGinnis et al., 2006). Secondly, large reservoies/ be used more for water storage, and thus
experience greater water level fluctuations thanesemaller run-of-river-type systems
(although this hypothesis has not been tested¢h $ater level fluctuations may lead to
elevated ebullition as hydrostatic pressure dréfasr{son et al., 2017; Maeck et al., 2014). It's
important to note that our discussion of morphomewntrols is limited as we lack
measurements from small and shallow reservoirs@retreservoirs <1 kin this study) as

well as from the largest lakes (n=3 for lakes >k086 in this study). We stress the need for
more methane emission measurements from smalvmegrespecially given the ongoing global
proliferation of small hydropower facilities (Couand Olden 2018) as well as a need for more
measurements from the largest lakes.

While global datasets that cross ecosystem types $teown that methane emissions are
highly temperature dependent (Yvon-Durocher e2@14), we found only a weak climatic effect
on methane flux in reservoirs and lakes. Latituserged in all the best models of total,
diffusive, and ebullitive flux, but was not as stgoa covariate as either chlorophg/lbr surface
area (Table 1, Table S4, Table SWhen broken down by waterbody type, the relatiomshi
between methane emission and water temperaturaatasgnificant in reservoirs and was only
weakly significant in lakes (R= 0.08; Table 2). Previous research suggestsdtitaide predicts
methane emissions, with tropical reservoirs oftdaasing more methane than temperate and
boreal systems (Barros et al., 2011; Bastviken.e2@11; but see Deemer et al., 2016) and
temperate lakes emitting more methane than boaikes|(Bastviken et al., 2011; Holgerson &
Raymond 2016). Recent work in lakes suggests aergigtic link between productivity and
water temperature that is generally consistent thighweak but significant link between
methane emission and latitude that we report H2e¢Sontro et al. 2016, Davidson et al. 2018,
Jansen et al. 2020). Still, the strongest latieffiect we report here is for diffusive flux from
reservoirs (R=0.14, n=67, Table S4) which is somewhat surprigirgn that ebullitive flux has
often been found to be more sensitive to tempexdhan diffusive flux (Davidson et al. 2018,

Jansen et al. 2020). Seasonal sampling bias (veiteseare sampled more in the summer than in
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the winter) can substantially overestimate fluxarthern systems (Jansen et al. 2020) and may
be masking a stronger latitude effect than we tdpene. The extent to which the latitude effect
we report here may have to do with temperatureugengher ecosystem properties is an

important area for future work.

4.2 Implications for Managing Methane Emissiongifribakes and Reservoirs

Our results inform the management of aquatic metleanissions, particularly with
respect to eutrophication and the widespread aactgtn of reservoirs and ponds. Chloroplayli
concentrations were strongly correlated with ebahi across waterbody types and for diffusive
flux in reservoirs, suggesting that future emissiboom these systems may be particularly
sensitive to aquatic eutrophication (Beaulieu gt24119; Deemer et al., 2016). Methane
emissions may be reduced by strategies to siteregsvvoirs and artificial ponds in locations
where they are less likely to intercept nutriemtafi (Almeida et al. 2019), as well as through
watershed nutrient management efforts to reduceffrinimiting nutrient loads to ponds may be
particularly difficult as created ponds are ofteragricultural (Webb et al., 2019) and urban
(Peacock et al., 2019) landscapes, while natudahdpponds are critical storage sites for
phosphorus and sediment that would otherwise ¢aites and rivers (Schmadel et al., 2019).

Beyond eutrophication, we found that small lakes (ponds) had high methane
emissions, which raises concern surrounding thieaglexpansion of constructed farm ponds and
retention ponds (Downing, 2010; Downing et al., 0airchild et al., 2013; Ollivier et al.,
2018). Pond creation is prevalent because pondproaide important ecosystem services,
ranging from sediment, nutrient, and water retentmwater supply, aesthetic value, and
recreation (Fairchild et al., 2013; Schmadel ¢t24119). We did not evaluate methane emissions
from natural vs. artificial ponds due to the low23) sample size and geographical bias of
artificial ponds, but this is an important futuesearch question. Preliminary evidence suggests
that artificial ponds may have higher methane fpeen in cases where diffusion was the only
pathway measured (Gorsky et al., 2019; Ollivieslet2018, but see Miller et al. 2019), and that
artificial pond type matters (Grinham et al., 2Q18)cases where ponds are constructed,
methane emissions may be managed through morphormesign as deeper ponds often emit
less methane than shallower ones (Gorsky et d@9;20ebb et al., 2019).

This article is protected by copyright. All rights reserved.



4.3 Challenges with Global Upscaling

There are numerous challenges associated witlalipgenethane fluxes measured in
individual lakes and reservoirs to estimates obglanethane flux. Currently upscaling is
affected by biases in the types of waterbodiesamepte, our limited understanding of methane
flux and drivers over space and time, and the eo@solution of global lake and reservoir
databases. In the following section we discuss sufitigese challenges and highlight potential

avenues for future work to resolve areas of limilederstanding (Table 3).

4.31Across site sampling

Arguably one of the most critical challenges tobgloupscaling efforts is a bias in the
types of waterbodies sampled. While our samplediZ27 lakes and 86 reservoirs is on par
with other global upscaling efforts, it is miniseldompared to an estimated 22.6 - 27.5 million
lakes and 17,356 reservoirs larger than 0.1 (sites < 0.1 krhsubstantially more uncertain,
with lakes estimated between 647 million - 3.48dml reservoirs estimated at 16.7 million)
(Downing, 2010; Downing et al., 2006; Holgerson &yrond, 2016; Lehner et al., 2011,
Messager et al., 2016; Verpoorter et al., 2014)il&\this dataset appears to represent the
latitudinal distribution of lakes and reservoirslgghlly (Figure S1), it does not likely represent
the global size distribution of lakes and resemsdior instance, the dataset only includes 20
large lakes> 1 kn?, with only three> 100 kn#. In contrast, we have only 16 small reservoirs < 1
km?. Additionally, we do not know the global area @tdbution of the smallest waterbodies <
0.1 kn?, which comprise most of the world’s lakes. Lasthgse study sites may not
proportionately represent the global distributiénvaterbodies in terms of chemical and
biological characteristics. We suggest that fusiuglies focus on large lakes (>1%nsmall
reservoirs (<1 ki), and the smallest lakés.g. ponds, <0.01 k) as well as select sites

randomly to avoid sampling bias (Table 3).

4.3.2 Within site sampling

Current upscaling efforts are limited by the scopsmaller-scale field studies in terms
of the environmental variables measured, the metfiar pathways measured (e.g. ebullitive
vs. diffusive vs. total), and spatial and tempamlerage. We suggest that gas sampling studies

measure and report DOC, chlorophyll a, surface, amé maximum depth, which were our
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strongest predictors of methane fluxes (Tablel2)ur dataset, only 32% of lakes and 19% of
reservoirs reported DOC concentrations, while maxmaepth was reported for 61% of lakes
and only 10% of reservoirs (Table 2). Undampling of DOC is not unique to methane flux
datasets and may be universal in lake samplingtsft8tanley et al. 2019). The limited data we
do have suggest that reservoirs are low DOC systeagging the question: do reservoirs tend to
have less DOC than natural lakes? In a global stodyDOC was correlated with larger
watersheds, higher shoreline complexity, and losgerelines (Toming et al., 2020), which are
all characteristics of reservoirs compared to ldkisy/es et al. 2017). Yet, the same global study
also found higher DOC in smaller, shallower systéhmning et al., 2020), emphasizing the
need for more DOC and flux measurements from sreséirvoirs. While depth and productivity
metrics are more commonly reported than DOC, greagasurements (particularly in
reservoirs) are needed given the strong patterrsbserved.

Secondly, future studies should measure both dvéusnd ebullitive pathways in order
to aid upscaling efforts. This is because 1.) thetfonal contribution of each pathway to total
flux is highly variable by system (ranging from 0&P46 in this dataset; Figure S2) and 2.) the
controls on each flux pathway differ (Figure 3, Tea4, Table S7). While some methods
cannot easily differentiate diffusive and ebulkiffluxes (e.g. eddy covariance), other methods
can discern pathways (e.g. floating chambers).i&utiat examine each pathway independently
allow a better understanding of specific mechanidridng fluxes via each pathway and will
possibly support upscaling each flux pathway sdpbra

Lastly, the high degree of sampling needed to veseihterbody methane fluxes (see
Wik et al., 2016 and Jansen et al., 2020) poseméisant challenge to the research
community. Methane emissions can be highly vaeightough space (DelSontro et al., 2011)
and on diel (Podgrajsek et al., 2014, Sieczkd. &020), seasonal (Jansen et al., 2020; Denfeld
et al., 2018; Jammet et al., 2015; Schubert e2@1.2), and event-based timescales (Harrison et
al., 2017). For example, a water level drawdowmelasting a few weeks was responsible for
>90% of the annual methane emission from a tempeeservoir (Harrison et al., 2017). This
variability can make the use of average open whtewalues problematic given that very large
fractions of an annual waterbody’s methane budaethe emitted over very short time frames.
General increases in the sampling effort put foduaithin single systems will help to better

narrow in on the actual average fluxes (Wik et2016) as will efforts to better synthesize the
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average effect of short-term or seasonal evergs#s.in Denfeld et al., 2018 and Jansen et al.,
2020) and diel patterns in flux (Sieczko et al. 20Rodgrajsek et al. 2014).

4.3.3 Global database needs

The accuracy of global methane emission upscalifogts is currently limited by global
estimates of environmental predictors and lakerasdrvoir surface area and distribution. First,
relating methane emissions to widely measured gi@dvariables may resolve some of the
problems associated with sample representativéDetSontro et al., 2018). In the last five
years, global databases have been created focblatophylla (using satellite-based estimates;
Sayers et al., 2015) and DOC (using machine legriliaming et al. 2020). These databases are
excellent advances considering the importance tf blalorophylla and DOC in predicting
reservoir and lake methane fluxes, respectivelg,tha chlorophylh database was recently used
to predict lentic water greenhouse gas emissioetS@tro et al. 2018) and large reservoir
greenhouse gas emissions (Rosentreter et al. §sPre

However, these databases still have major limitatior upscaling greenhouse gas
emissions. The chlorophydldatabase is based on chloroplatloncentrations from a single
year in August (Sayers et al., 2015), while the Dda@base was built from DOC measurements
only in lakes, most of which were only measuredeof8obek et al., 2007). Both datasets ignore
small waterbodies with minimum size thresholds &frf for the chlorophyll database (Sayers
et al., 2015) and 0.1 knfior the DOC database (Toming et al. 2020). Lagthth databases lump
together lakes and reservoirs. Yet our analysigates that lakes and reservoirs respond
differently to chlorophylla and DOC, with chlorophyth strongly predicting methane flux in
reservoirs but not lakes (with the exception oflinan), and DOC strongly predicting flux in
lakes but not reservoirs (Table 1). While regicaralyses suggest different distributions of
chlorophylla in reservoirs compared to that in lakes (Doubek@arey 2017), it is not known
how this plays out at the global scale. Similaiyprovements to spatially explicit models of
watershed nutrient transport may allow improvedglanodeling of lentic waterbody trophic
status, although at present these models are swit/egl enough to be useful at the scale of single
waterbodies (Deemer et al., 2016).

Global databases of lake and reservoir surfacecnesrage are also critical to upscaling

efforts. Current global databases contain lakerasdrvoir surface area estimates that can differ
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dramatically among size classes, with 7% to 95%extifices in lakes greater than 0.1°km
(comparing Messager et al., 2016 and Downing eP@06) and even greater uncertainty in the
smaller size classes (34% - 141% differences cangp&owning et al., 2006, Downing 2010,
and extrapolations from Verpoorter et al., 2014jthaut accurate estimates of global lake size
distribution, particularly for small waterbodiegscaling results in uncertain estimates. This
includes problems with differentiating ponds froratlands and lakes from reservoirs as well as
identifying waterbodies under forest cover. Advagdechnologies that support mapping small
waterbodies is critical for upscaling efforts, dhdre are some promising advancements at local
scales using LIiDAR (Wu et al., 2014), real-colori@emages (Halabisky, 2011) and leaf-off
color-infrared aerial imagery (Van Meter et al.08Q In addition, recent regional-scale studies
have improved waterbody mapping by digitizing hrglselution (1:24,000) paper maps
(Schmadel et al., 2019) and using color-infraredgery (Kyzivat et al., 2019). In addition to
estimating the global size distribution of waterigsgd more accurate annual flux estimates will
require a better understanding of changing surdaeas due to drying as well as reduced flux

during periods of ice cover.

4.4 Conclusions

While there remain significant challenges to upscadjlobal methane emissions from
inland waters, we are in the midst of an incredds@wth of methane measurements: of the 313
lakes and reservoirs considered here, 205 (65%9 manlished since 2015 (Rosentreter et al., In
Press). As increased effort is put into methanesomeanents, more thought could be given to the
types of waterbodies sampled and the types of suppital data gathered at each waterbody
(Table 3). Here we highlight the potential for di#nt types of systems to behave very
differently with respect to both ecosystem drivansl overall magnitude of methane emissions
and suggest the utility of further delineating apuéntifying these differences to inform future

upscaling efforts.
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Table Legends

Table 1.Results of multivariate linear regression predigtiotal methane flux in 167
waterbodies (n=134 lakes, n=31 reservoirs). Thbajlmodel included was fit as LN(CH4+1) ~
waterbody_type*latitude absolute + waterbody_type&aln +
waterbody_type*chlorophylla_modeled_In. Dashesdat# that variable was not included in
that particular model. Top models within 2 AlCctbé best model are reported.

Table 2. Individual linear least squares regression mopidicting total methane flux for all
data (n=313 waterbodies), lakes (n=227), and regsrin=86). Boxes are shaded to emphasize
significant variables (p<0.05) with?R0.10. Note that chlorophyll a represents measuagtkes
and modeled values from TP (see text).

Table 3.Recommendations for future research to increadaicty in upscaling global methane
emissions from inland waters.
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Table 1.Results of multivariate linear regression predigtiotal methane flux in 167 waterbodies (n=134%k=31 reservoirs). The
global model included was fit as LN(CH4+1) ~ watadlp type*latitude_absolute + waterbody_type*areat In
waterbody_type*chlorophylla_modeled_In. Dashesdat# that variable was not included in that paldiccnodel. Top models within

2 AICc of the best model are reported.

AlCc Delta | Adj R: | Intercept | Waterbody | Abs. Area | Chla | Waterbod' | Waterbody | Waterbod'

Model AlCc estimate | Type Est Latitude | Est | Est | *lat area *chla
(Res) Est

Null 642.9¢ | -- - 3.3¢ - - - - -- - -
latitude + area 555.3¢ | O 0.43 3.1€ 1.3C -0.C3 -0.27 1 0.26 | -- - 0.33
watertype*chla
watertypelatitude + 555.4¢ [ 0.5¢ | 0.44 34¢ 0.0z -0.0: -0.2€ | 0.35 | 0.0¢ - 042
area + watertype*chla
watertype + latitude 556.6¢ | 1.2 0.4z 3.0Z 1.9¢ -0.0¢ -0.2¢ | 0.4% | -- - -
area + chla
latitude + 556.87 [ 141 | 0.43 3.07 1.1 -0.C3 -0.2¢ | 0.56 | -- 0.c8 0.3€
watertype*area +
watertype*chla
watertypelatitude + 557.0¢ [ 151 |[0.4< 34C -0.12 -0.¢4 -0.28 | 0.35 | 0.0¢ 0.08 044
watertype*area +
watertype*chla
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Table 2. Individual linear least squares regression mopiedicting total methane flux for all data (h=318terbodies), lakes

(n=227), and reservoirs (n=86). Boxes are shadedhghasize significant variables (p<0.05) witke®15. Note that chlorophyll a
represents measured values and modeled valuesTtPofsee text).

All data (n=317) Lakes (n=227) Reservoirs (n=86)

n R? p sign| n R |p sign| n | R p sign
Water temperature 173 0.3 0.02 + 137 0J08 <0.001 ++36 | 0.00 | 0.33 -
Latitude (absolute) 294 0.0 0.006 - 210 0.p5 <D.Q0 84 | 0.01 | 0.22 -
Surface area (LN) 27§ 0.04 <0.001 - 11 0.15 | <0.001 | - 78| 0.00| 0.52 +
Maximum depth (LN) | 147| 0.18 | <0.001 | - 138/ 0.19 | <0.001 | - 9 0.15| 0.17 +
Mean depth (LN) 104/ 0.00 0.66 - 51 0.03 0.13 - 53000 | 0.75 -
DOC (LN) 89 0.07| 0.006 + 7310.19 | <0.001 | + 16| 0.00| 0.98 -
Chlorophyll a (LN) 178 | 0.13 | <0.001| + 147| 0.08) <0.001 + 3/ 0.43 |<0.001]| +
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Table 3.

Table 3. Recommendations for future research to increasaioty in upscaling global
methane emissions from inland waters

Across site sampling:
e Increased effort sampling large lakes (> Pxramall reservoirs (< 1 kfjy and very
small lakes (< 0.01 kfito reduce uncertainty
e Randomized samples to determine true distributianethane flux

Within site sampling:
e Measure DOC, chlorophyll a, and report surface area
Sample both ebullition and diffusion
More sampling during ice off and fall turnover
More spatial and temporal coverage at individuadlgtsites

Global database needs:
e Create database for global lake nutrient conceotrsit
e Expand global chlorophyll and DOC databases to Idaieds and for increased
temporal coverage
Expand global surface area database to small lakes
e Improve mapping of lake vs. reservoir surface areas
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