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Abstract
The ratio of primary production to ecosystem respiration rates (P:R ratio) is an ostensibly simple calculation

that is used to characterize lake function, including trophic status, the incorporation of terrestrial organic car-
bon into lacustrian food webs, and the direction of carbon dioxide (CO2) flux between a lake and the atmo-
sphere. However, many predictive links between P:R ratios and lake ecosystem function stem from a historically
plankton-centric perspective and the common use of the diel oxygen curve approach. We review the evolution
of the use of P:R ratios and examine common assumptions underlying their application to (1) eutrophication,
(2) carbon flux through lake food webs, and (3) the role of lakes in the global carbon budget. Foundational P:R
studies have been complicated principally by the following: most P:R ratios were calculated from mid-lake mea-
surements and failed to incorporate nonplanktonic dynamics; there has been confusion regarding the food web
implications when P:R ≠ 1; and CO2 fluxes between lakes and the atmosphere are influenced by nonmetabolic
processes. We argue for a re-assessment, or shoring up, of several fundamental assumptions that continue to
guide metabolism research in lakes by accounting for mixing, benthic-littoral processes, groundwater fluxes,
and abiotic controls on gas dynamics to better understand lake food webs and accurately integrate lake ecosys-
tems into landscape-scale carbon cycling models.

Introduction
The recognition that inland waters are significant players

in the global carbon cycle despite their relatively small foot-
print on the terrestrial landscape (Cole et al. 2007; Tranvik
et al. 2009; Raymond et al. 2013; Drake et al. 2017) has
increased the focus on carbon cycling in and through lakes.
Primary production-to-respiration (P:R) ratios have become a
common tool in the effort to define global patterns of carbon
flux among terrestrial, aquatic, and atmospheric pools. One of
the most widely used and direct methods of calculating P:R
ratios in lakes is by comparing water column oxygen concen-
tration dynamics during the day with those at night (here
referred to as the diel oxygen technique; Staehr et al. 2010a,
2012b; McNair et al. 2013). After correcting for atmospheric
gas exchange, the rates of change in dissolved oxygen concen-
tration (O2) measured during the daytime (net ecosystem pro-
duction, NEP) and during the nighttime (ecosystem
respiration, R), are used to calculate whole ecosystem gross pri-
mary production (GPP = NEP + R). GPP is the sum of all
aquatic photosynthesis by cyanobacteria, algae, and plants
(primary producers), while R includes the autotrophic and het-
erotrophic respiration of all aquatic organisms in the system.
Researchers measure oxygen concentrations on a daily cycle

to assess whether a given body of water is net heterotrophic
(oxygen consumption exceeds oxygen evolution through pho-
tosynthesis, R > P, where P is an established abbreviation of
GPP) or autotrophic (oxygen production exceeds oxygen con-
sumption, R < P). In a heterotrophic ecosystem, NEP is nega-
tive and P:R varies between 0 and 1, while an autotrophic
ecosystem is characterized by a positive NEP and P:R > 1.
Although macrophytes can make substantial contributions in
some lakes, benthic and planktonic algae usually dominate
GPP (Wetzel 2001) and bacterial and algal respiration domi-
nates R (Wetzel 2001; Andersson and Kumblad 2006; Dodds
and Cole 2007; Brothers et al. 2013a). These broad terms,
when applied to entire lakes, are widely used to infer whether
phytoplankton or bacteria dominate material flows at the base
of the food web (Cole et al. 2000; Staehr et al. 2012a; Alfonso
et al. 2018).

P:R ratios are used as indices of lake trophic status because
production measured mid-lake is likely low in lakes with low
phytoplankton biomass and increases with increased nutrient
loading to the water column (eutrophication, e.g., Schindler
et al. 1997). Because lakes are embedded in terrestrial land-
scapes, terrestrial organic carbon (OC) loading from the water-
shed fuels bacterial respiration, making P:R < 1 common (del
Giorgio and Peters 1994; del Giorgio et al. 1999). Conse-
quently, P:R ratios are used to infer the importance of plank-
tonic primary production (autochthonous production) relative*Correspondence: soren.brothers@usu.edu
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to the importance of allochthonous, or terrestrial, OC to
higher trophic levels of lacustrine food webs (Cole et al. 2000).
Finally, P:R ratios are used to infer the fate of carbon in lakes,
including the direction of carbon dioxide (CO2) exchange
between a lake surface and the atmosphere (e.g., Urabe
et al. 2005; Urban et al. 2005). Insights into lake ecosystem
function have been advanced by the increasing ease of contin-
uously monitoring ecosystem P:R using instrumented buoys.
However, the empirical support that has influenced progress
in this field of research comes overwhelmingly from data col-
lected from a single monitoring station over the deepest part
of the lake during the ice-free season (Staehr et al. 2010a),
with the assumption that this approach integrates littoral and
off-shore planktonic processes (Cole et al. 2000; Staehr
et al. 2012a). We review the role of the open water metabo-
lism technique in this field of work and its contribution to
several assumptions underlying the common interpretations
of P:R ratios in lakes. We encourage a more inclusive, emer-
gent perspective that accommodates spatial and temporal vari-
ation in metabolic, chemical, and physical processes that
affect oxygen and carbon dynamics at the whole-lake scale.
This perspective stems largely from recent P:R approaches that
are both spatially extensive (spanning multiple habitats) and
explicit (built on an improved understanding of habitat func-
tion and distribution). By improving spatial (littoral, benthic,
and groundwater compartments) and temporal coverage
(e.g., incorporating under-ice winter dynamics; Hampton
et al. 2017), as well as accounting for the physical processes
affecting dissolved O2 dynamics (including gas exchange,
stratification, mixing, and advection), studies can more accu-
rately estimate whole-lake metabolism. Clarifying the assump-
tions underlying metabolism monitoring will refine our
understanding of eutrophication, the role of allochthony in
food webs, and carbon cycling in lakes.

How well do diel O2 curves capture whole-lake
metabolism?

When interpreting P:R ratios, it is necessary to understand
and account for the inherent uncertainties associated with
adopted methodologies. Uncertainties associated with the
widely used diel oxygen technique in lakes have long been rec-
ognized (Staehr et al. 2010a). The conclusions of studies that
have used this technique, many derived from single off-shore
deployments (e.g., Cole et al. 2000; Staehr et al. 2010a;
Brentrup et al. 2020) are intertwined with our understanding of
the significance of patterns in P:R ratios, and thus whole-lake
carbon cycling dynamics. We revisit some of these methodo-
logical uncertainties, including the relationship between oxy-
gen and carbon dynamics and the complicating effects of
in-lake heterogeneity. We provide guidance on how methodol-
ogies may be improved in future studies of P:R ratios in lakes.

Oxygen dynamics are often used as a proxy for carbon
dynamics (as discussed by Vachon et al. 2020), but the rela-
tionship between these variables is loose. There is a 1:1 M

relationship between O2 produced and CO2 assimilated (pho-
tosynthetic quotient, PQ = 1) when a carbohydrate is pro-
duced and between CO2 produced per mole of O2 consumed
(respiratory quotient, RQ = 1) when a carbohydrate is
respired. In practice, PQ and RQ often diverge from 1 because
these quotients are linked to the elemental composition of
respired or produced compounds, which are not limited to
carbohydrates (Vachon et al. 2020). For instance, one study of
52 lakes in Quebec, Canada identified mean bacterioplankton
RQ values of 0.81 in net autotrophic (P:R > 1) lakes vs. 1.35 in
net heterotrophic (P:R < 1) lakes (Berggren et al. 2012). Errors
are propagated by estimating carbon dynamics using dissolved
O2 measurements, especially in lakes where the saturation of
O2 and CO2 may be poorly coupled (Laas et al. 2016; Peeters
et al. 2016). For instance, in highly alkaline lakes
(i.e., >1 meq L�1) calcite precipitation can surpass aquatic
metabolism as a dominant driver of lake carbon dynamics
(Laas et al. 2016; Khan et al. 2020). This problem is resolved
by simultaneously measuring O2 and CO2 in lakes (Laas
et al. 2016; Vachon et al. 2020).

Mid-lake measurements of dissolved gases cannot be
assumed to provide whole-lake metabolism information
because vertical and horizontal heterogeneity of metabolism
rates in lakes can be high (Fig. 1(a), (b)), while mixing rates
can be low or difficult to predict. As photosynthetic rates are
driven by light, it is unsurprising that deployment depth has a
greater influence on estimates of GPP than it does on R
(Coloso et al. 2008; Sadro et al. 2011a; Obrador et al. 2014;
Giling et al. 2017). This decoupling of GPP and R with depth
means that among-lake comparisons of P:R ratios based on
single mid-lake oxygen probes must be made with informed
care. Even when multiple probes are deployed at a single
depth, there is substantial variation in metabolism (Fig. 1;
Lauster et al. 2006; Van de Bogert et al. 2007, 2012). Compari-
sons of diel O2 curves measured concurrently in littoral and
offshore habitats have found consistent differences in GPP
and R among probes deployed at different coordinates on the
lake (Lauster et al. 2006; Van de Bogert et al. 2012; Tonetta
et al. 2016). Primary production and respiration rates are often
higher in littoral habitats compared to the off-shore zones
where measurements are typically made (Buesing and
Gessner 2006; Lauster et al. 2006; Cavalcanti et al. 2016).
Mid-lake measurements can introduce unseen bias because
each lake zone can have its own distinct metabolic balance.
For instance, benthic and littoral zones may be net autotro-
phic, but off-shore water columns net heterotrophic (Coveney
and Wetzel 1995; Andersson and Kumblad 2006; Vesterinen
et al. 2016). “Smoothing” functions may be useful for reducing
the high variability (“noisiness”) in metabolism datasets (Batt
and Carpenter 2012; Cremona et al. 2014). They do not, how-
ever, correct for systematic errors in metabolism rates that
may arise from strong habitat gradients in NEP coupled with
complex or recurrent physical mixing processes. By failing to
account for convective mixing or other physical transport
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processes within a water column, NEP can be either over-
estimated (i.e., when NEP is greater in the offshore environ-
ment; Antenucci et al. 2013) or underestimated (i.e., when

NEP is greater in the littoral environment; Brothers
et al. 2017a). Such heterogeneous O2 dynamics have
highlighted the limitation of using near-surface mid-lake diel

b. Eutrophic lake

a. Oligotrophic lake

NEP < 0

NEP < 0

NEP < 0

NEP > 0

NEP > 0

NEP < 0

NEP = 0

NEP < 0

Fig 1. Simplified lake illustrations demonstrating how diel O2 curves measured in (a) oligotrophic and (b) eutrophic lakes may theoretically differ,
depending on sonde placement within each lake. The graphs depict simplified O2 curves over 15 d. The red lines indicate O2 saturation at atmospheric
equilibrium. Terrestrial OC loads can drive localized near-shore net heterotrophy (NEP < 0, P:R < 1) and under-saturation of O2 relative to the atmosphere
in either system (left-hand nearshore sondes). High phytoplankton GPP associated with eutrophic conditions can produce net autotrophic conditions and
greater diel O2 fluctuations in the epilimnion, while fueling more rapid hypolimnetic O2 consumption during stratified periods. Sondes placed in shallow
littoral zones (right-hand nearshore sondes) may better capture the oxygen dynamics of periphyton and submerged macrophytes, potentially resulting in
higher NEP and net autotrophy (P:R > 1) compared to mid-lake measurements. However, in these shallow zones, the positive effect of phytoplankton in
the water column on NEP (associated with eutrophication) may be outweighed by the loss of benthic-littoral GPP due to shading, resulting in a slightly
diminished NEP (in this case, NEP = 0, P:R = 1).
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O2 measurements to accurately describe whole-ecosystem
metabolism. Beyond generating a more robust estimate of P:R,
consistently incorporating habitat-specific variability and lake
mixing dynamics when monitoring lake metabolism will
greatly advance our understanding of changes in lake function
across trophic, morphometric, and climatic gradients.

Even with multiple sonde deployments spanning lake habi-
tats and depths, it is possible that the diel oxygen technique
provides an incomplete picture of lake metabolism. Sediment
and hypolimnetic respiration rates are often important drivers
of CO2 and O2 dynamics in lakes and reservoirs (den Heyer
and Kalff 1998; Brothers et al. 2012; Schwefel et al. 2018), but
sondes deployed in shallow littoral waters within the photic
zone may not fully or reliably capture benthic O2 dynamics
because oxygen gradients are extremely steep (1–2 mm) in
periphyton communities located at the sediment–water inter-
face, even under experimentally stirred conditions (Carlton
and Wetzel 1987). It is difficult to deploy a sonde within milli-
meters of a lake’s sediment–water interface in the nearshore
zone because factors such as wave action or surge will disrupt
its orientation. Deployed sondes may also fail to capture ben-
thic O2 dynamics due to stratification. Even shallow (<0.6 m
mean depth) lakes and ponds can undergo transient daytime
stratification (Andersen et al. 2017; MacIntyre et al. 2018),
and this effect may be exacerbated by the presence of sub-
merged macrophytes (Madsen et al. 2001).

To address the uncertainties associated with the diel oxy-
gen technique, P:R studies increasingly incorporate multiple
parallel methods to assess aquatic metabolism in lakes. Addi-
tional aquatic metabolism methods can include the use of
oxygen isotopes, compartmental approaches (i.e., habitat-
specific approaches that integrate independent quantifications
of different primary producer functional groups), chamber
incubation experiments (Staehr et al. 2012c), and/or pairing
metabolic data with primary production models (Kazanjian
et al. 2018; Perga et al. 2018). Pairing multiple diel O2 curves
with sediment incubation experiments (Sadro et al. 2011b)
offers a more robust characterization of a lake’s P:R ratio than
a single lake-center sonde. Meanwhile, accounting for physical
processes such as stratification and mixing dynamics
(Antenucci et al. 2013; Brothers et al. 2017a; Andersen
et al. 2017b), as well as potential uncertainties in surface gas
exchange rates, which may be especially high in small, shel-
tered ponds (e.g., MacIntyre et al. 2020), allows researchers to
better calculate and interpret resulting metabolic data. Such
integrated approaches are a welcome and necessary develop-
ment in the field of aquatic metabolism, and have led to many
of the research advances discussed below, allowing us to re-
assess the meaning and implications of P:R ratios in lakes.

What information do P:R ratios provide about
eutrophication?

Cultural eutrophication is a global phenomenon with sig-
nificant economic and ecological implications, making it a

foremost contemporary water quality issue (Wurtsbaugh
et al. 2019). The relationship between nutrients and photo-
synthetic production has led to a widely accepted link
between metabolic P:R ratios and lake trophic status
(e.g., Richardson et al. 2017), allowing us to better understand
the effects of eutrophication on aquatic ecosystem function.
We define eutrophication as the process whereby nutrient
loading increases water column nutrient concentrations, and
consequently phytoplankton production (e.g., Wurtsbaugh
et al. 2019). Conversely, the term oligotrophic describes lakes
with low nutrient concentrations and clear waters due to low
phytoplankton productivity. Nutrient-poor (oligotrophic)
lakes often have P:R ratios below one (i.e., net heterotrophy)
due to low phytoplankton production (del Giorgio et al. 1999;
Urban et al. 2005), while eutrophication is expected to
increase P:R ratios by promoting phytoplankton production
(Dodds and Cole 2007). Within this framework, nutrients
(typically phosphorus and/or nitrogen) are the dominant
driver of primary production, and thus autochthonous OC
supply. Eutrophication increases the value of P in a P:R ratio
measured mid-lake because phytoplankton photosynthesis
responds positively to increased nutrient availability. In the
absence of a change in terrestrial OC loading, eutrophication
can increase the P:R ratio of a lake (Fig. 1(b)), often shifting it
from net heterotrophic to autotrophic (Schindler et al. 1997;
Balmer and Downing 2011). However, as discussed below, this
apparently simple relationship becomes more complicated
when accounting for multiple primary producer groups, as
well as the spatial and temporal dynamics of eutrophication
on P:R ratios (i.e., net heterotrophy vs. autotrophy) in lakes.

Many studies continue to view eutrophication through a
lens of phytoplankton production alone, despite calls to
broaden the concept of lake trophic status to include hetero-
trophic processes and terrestrial inputs (Dodds and Cole 2007)
or to consider a broader range of autotrophs (Canfield
et al. 1983). Nutrient enrichment stimulates phytoplankton
productivity (reviewed by Elser et al. 1990), but the effects of
enrichment on whole-lake primary production across broad
trophic gradients is less certain. Benthic primary production
can represent a major source of autochthonous OC for fish
(Vander Zanden et al. 2011), but benthic primary production
often decreases with nutrient enrichment of the surface water
(Vadeboncoeur et al. 2003, 2008). Therefore, it is necessary to
re-evaluate the phytoplankton-centric conceptual link
between eutrophication and net autotrophy (P:R > 1). Studies
measuring the response of P:R ratios to nutrient enrichment
using off-shore water column measurements are biased
towards describing the response of phytoplankton production,
and may thus predictably report an increase in P:R with eutro-
phication. By excluding the littoral zone, compensatory
decreases in light-limited benthic primary production associ-
ated with increasing phytoplankton biomass (Vadeboncoeur
et al. 2003, 2008; Genkai-Kato et al. 2012) are not accounted
for. Whole-lake primary productivity may decline with
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nutrient enrichment across certain gradients of water clarity
and lake morphometry (Blindow et al. 2006; Hagerthey
et al. 2010; Brothers et al. 2013b), but declines in benthic GPP
are not fully captured by free-water diel O2 curves (Brothers
et al. 2013b). Conversely, groundwater nutrient pollution can
cause excessive growth of littoral algae that is not captured by
measurements of metabolism and autotrophic biomass made
offshore (Timoshkin et al. 2018; Vadeboncoeur et al. 2021).
When evaluating the effects of changes in trophic status on
food webs or biogeochemical cycling in lakes, it is therefore
necessary to account for compensatory dynamics between pri-
mary producer groups, and recognize that changes in P:R mea-
sured off-shore primarily represent water column processes.

The relationship between eutrophication and P:R ratios is
complicated by the spatial and temporal effects of eutrophica-
tion on aquatic metabolism. A common negative effect of
eutrophication in lakes, especially when coupled with stratifi-
cation, is the development of anoxia or hypoxia. Given that
hypoxia/anoxia is indicative of localized net heterotrophy
(P < R), an implied link between eutrophication and autotro-
phy requires careful consideration of whether this designation
can or should ever be applied to a whole lake. High rates of
phytoplankton production are coupled with elevated rates
of respiration by algae and bacteria (Cole et al. 1988). Epi-
limnetic nutrient enrichment increases phytoplankton bio-
mass; hypolimnetic and sediment oxygen demand
subsequently increase owing to the decomposition of settled
phytoplankton, leading to anoxia (Hargrave 1973;
Nürnberg 1995). Decreases in benthic primary production due
to light limitation can also potentially produce or exacerbate
hypoxic conditions independent of changing respiration rates
(Brothers et al. 2014, 2017b). Alternatively, the likelihood of
under-ice anoxia occurring in a given year may be reduced by
wintertime primary production oxygenating the water col-
umn, as a function of snow cover and light transmission
through the ice (Obertegger et al. 2017; Song et al. 2019). If
epilimnetic autotrophy often drives hypolimnetic and benthic
heterotrophy through increased biological oxygen demand
(increased R) or through shading (decreased P) then the causal
link between nutrients and P:R > 1 may depend strongly on
lake morphometry.

The effects of eutrophication on P:R in lakes are complex,
temporally sensitive, and modulated by shifts in community
structure and food web interactions (Hilt et al. 2017). Thus,
studies interpreting the interactions between lake metabolism
and eutrophication must account for which lake zones are being
measured (e.g., epilimnion vs. hypolimnion), and how different
responses of various primary producer groups to nutrients may
affect P:R ratios in each of those zones. In small or shallow
lakes, the presence of emergent or floating leaved vegetation
complicate these estimates because their potentially substantial
contributions to primary production are not captured by oxy-
gen dynamics in the water, but their detritus accumulates on
the lake bottom and consumes oxygen (Engle et al. 2008).

Do P:R ratios < 1 indicate a dominance of allochthonous
OC in metazoan food webs?

P:R ratios < 1 have frequently been interpreted as evidence
of consumer reliance on allochthonous organic carbon (Thorp
and Delong 2002). Central to the foundational understanding
of the relationship between net heterotrophy (R > P) and ter-
restrial support of aquatic food webs are the ideas that in per-
sistently net autotrophic ecosystems (where P:R > 1), food
webs are based on phytoplankton OC (e.g., Defore
et al. 2016), while in persistently heterotrophic ecosystems
(where P:R < 1) terrestrial OC is actively incorporated into the
food web (e.g., Urabe et al. 2005). We review evidence that
mid-lake P:R ratios, despite their appealing simplicity, offer
limited insights into metazoan reliance on allochthonous OC
owing to (1) the strong effect of microbial production effi-
ciency on R; (2) the strong reliance of metazoan production
on autochthonous production irrespective of the rate and
amount of allochthonous OC supplied; and (3) the differential
effects of external OC supplied in dissolved forms in the water
column relative to particulate forms to the benthos.

Allochthonous (terrestrial) OC is incorporated into meta-
zoan food webs through direct consumption (e.g., by
detritivores; Marcarelli et al. 2011; Bartels et al. 2012) or by
sequestration by bacteria that are subsequently consumed
by metazoans (Cole et al. 2006). As mentioned previously,
organic carbon processing in lakes is typically dominated by
the microbial pathway. In the open-water zone of lakes, about
90% of OC is in dissolved form (DOC; Wetzel 2001; Carpenter
et al. 2005) and this DOC is predominantly of terrestrial origin
(Hanson et al. 2011; Wilkinson et al. 2013). Open-water R is
exceedingly sensitive to microbial respiration of DOC
(Hanson et al. 2003; Sadro and Melack 2012). However, the
magnitude of the influence of bacteria on R is inversely related
to the proportion of metabolized OC that bacteria convert
into biomass. Bacterial growth efficiency (BGE) refers to the
fraction of assimilated OC that contributes to bacterial bio-
mass. BGE is less than one and is calculated by dividing the
rate of production of new bacterial biomass (BP) by the sum of
BP and bacterial respiration. BGE can range from <0.05 to over
0.6, and increases with increasing temperature (del Giorgio
and Cole 1998). For instance, with a low BGE of 0.05, 95% of
the DOC processed is affecting R and 5% of the DOC is con-
tributing to biomass potentially available to higher trophic
levels (Fig. 2). BGE can be as low as 0.01 in nutrient-poor lakes
with high ratios of allochthonous to autochthonous OC (del
Giorgio and Cole 1998), but BGE increases to around 0.5 in
eutrophic lakes where abundant algae provide a labile carbon
source for bacteria (Larsson and Hagström 1979; del Giorgio
and Cole 1998; Cotner et al. 2001; Kritzberg et al. 2005).
Under nutrient-poor conditions or in lakes with high concen-
trations of refractory OC, bacteria act as a carbon “sink”
through respiration, rather than a link between terrestrial OC
and metazoans in the food chain (Cole et al. 2002, 2006). A P:
R ratio derived from open-water measurements cannot be used
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CE =1

P:R = 0.36
FishAuto= 95.2%
RAllo = 65%

CE = 0.5

CE = 0.5
BGE = 0.05

CE =1
P:R = 1
FishAuto= 100%
RAllo = 0

Storage

CE =0.75
P:R = 1.29
FishAuto = 100%
RAllo = 0%

CE =1 P:R = 0.53
FishAuto= 97.5%
RAllo = 46%

CE =1 P:R = 0.62
FishAuto= 75%
RAllo = 20%

BGE = 0.65

CE = 0.5

BGE = 0.05

DOC Shading

Fig 2. Hypothetical examples, based on simplified models, that demonstrate how uncertainties about the accessibility of food resources and BGE affect
our conclusions about entrainment of basal resources into the metazoan food web. (a) A lake food web based entirely on algae when the fraction of basal
algal resources eaten by primary consumers (consumption efficiency, CE) is 0.75. Unconsumed algae is stored in the lake, resulting in a P:R ratio of 1.29.
Autotrophic production supports all animal production (animal %auto = 100) and there is no bacterial respiration of allochthonous carbon (R% Allo = 0).
(b) When all autotrophic production is consumed by primary consumers, P:R = 1. (c) Allochthonous OC is added to the ecosystem in the same mass as
autochthonous production. Low BGE (0.05) leads to a very small contribution to metazoan production (2.5%), but respiration of allochthonous OC
drives P:R below 1. (d) If BGE was higher and consumed by primary consumers, terrestrial OC would boost fish production. However, BGE = 0.65 is typi-
cal of bacteria growing on algal, not terrestrial carbon. (e) When colored terrestrial DOC shades benthic and planktonic algae (here, reducing autochtho-
nous production by 50%) and it is difficult for bacteria to convert to biomass (BGE = 0.05), DOC suppresses both the P:R ratio and secondary
production. Differences in sizes of zooplankton and fish scale to differences in production among scenarios. Differences in arrow size scale to differences
in biomass transfer across trophic levels. Consumption efficiency of bacteria by metazoans was set to 0.5. These scenarios together illustrate that P:R ratios
are not necessarily correlated with an increase in food web support by terrestrial OC but rather a decrease in overall secondary production. Although zoo-
plankton are depicted, the effect of shading by terrestrial OC would disproportionately impact benthic primary production, and thus benthic grazers.
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to infer allochthonous support of the metazoan food web
because (1) open-water measurements are biased towards mea-
suring the dynamics of dissolved allochthonous OC (due to
the dominance of allochthonous DOC in water columns) and
(2) bacterial respiration, rather than biomass production, is
often the primary fate of allochthonous DOC (Kankaala
et al. 1996; Kritzberg et al. 2005; Cole et al. 2006).

The importance of a resource to the metazoan food web
depends upon its contribution to secondary production of ani-
mals. Metazoan production cannot be quantified with ecosys-
tem respiration (R), but is correlated with controls of P across
lakes (Karlsson et al. 2009) because algae is a high quality
resource (Brett et al. 2009). Metazoan growth efficiency (new
biomass produced/resource consumed) depends on food qual-
ity (Bilby and Bisson 1992; Marcarelli et al. 2011), and con-
sumer growth efficiency is higher on an algal diet compared
with a diet of terrestrial OC (Brett et al. 2009, 2017; Wenzel
et al. 2012). Thus, terrestrial OC loaded into lakes with high
phytoplankton production may lower P:R ratios while making
only minor contributions to the metazoan food web, even
when the supply rate of allochthonous OC greatly exceeds
that of autochthonous OC (Carpenter et al. 2005; Mehner
et al. 2016). Zooplankton preferentially consume autochtho-
nous OC (Carpenter et al. 2005; Marcarelli et al. 2011), and
incorporation of terrestrial OC may be greatest when phyto-
plankton OC is unavailable (Taipale et al. 2016).

There is an active debate concerning whether allo-
chthonous OC metabolized by the base of the planktonic food
web (lowering lake P:R ratios) necessarily represents a resource
subsidy to metazoan consumers because it often reduces the
supply of high quality autochthonous OC (Jones et al. 1998,
2012; Pace et al. 2004; Daniel et al. 2005). Most allochthonous
OC loaded into lakes is in the form of highly colored DOC
that suppresses benthic and planktonic autochthonous OC
production by shading (Ask et al. 2009; Jones et al. 2012; Kelly
et al. 2018), thereby reducing the absolute amount of autoch-
thonous OC available to consumers (Hessen et al. 2017). Allo-
chthonous OC can only be a subsidy if its use more than
offsets the reduction in secondary production caused by
depression in primary production. Thus, colored DOC can
lower P:R ratios by suppressing primary production by shad-
ing, as well as by increasing bacterial respiration. DOC
shading of primary production tends to occur above concen-
trations of ~5 to 15 mg/L (Seekell et al. 2015; Kelly
et al. 2018), which is the same concentration range above
which temperate lakes tend to be net heterotrophic (Prairie
et al. 2002). This makes it difficult to establish whether terres-
trial OC is reducing P:R ratios in DOC-rich lakes via decreasing
GPP or increasing R.

The insensitivity of mid-lake metabolism monitoring to lit-
toral dynamics (Van de Bogert et al. 2012) is particularly prob-
lematic because colored DOC in the water column
disproportionately affects benthic algal production (Jones
et al. 2012; Batt et al. 2015), and littoral-benthic primary

production makes large contributions to metazoan food webs
(Vander Zanden and Vadeboncoeur 2020). Benthic primary
production supports zoobenthos, which in turn can be
responsible for a substantial fraction of fish biomass produc-
tion (Vander Zanden et al. 2011; Sierszen et al. 2014). Water
column transparency determines the amount of benthic
autochthonous OC available to lake food webs (Vadeboncoeur
et al. 2008; Doi 2009; Solomon et al. 2011), and allo-
chthonous OC reduces the production of benthic autochtho-
nous OC (Vadeboncoeur et al. 2008; Jones et al. 2012). The
suppression of benthic primary production through DOC
shading reduces invertebrate and fish reliance on littoral
autochthonous OC and reduces fish biomass (Karlsson
et al. 2009; Bartels et al. 2016; Mariash et al. 2018; van Dorst
et al. 2019). Thus, the indirect negative effects of DOC on
benthic primary and secondary production often result in allo-
chthonous DOC suppressing rather than subsidizing resources
in lakes. This occurs in the littoral benthic habitat, and plank-
ton P:R ratios alone cannot elucidate these fascinating whole-
ecosystem effects.

A less well-studied pathway by which OC is imported into
lakes is through particulate detritus loaded to littoral benthic
habitats from riparian (Attermeyer et al. 2013; Scharnweber
et al. 2014a) and/or emergent vegetation (Waichman 1996;
Forsberg et al. 2016). This POC is often less processed (and of
higher quality) than the DOC in the water and is directly
entrained into the food web by consumption by littoral meta-
zoans (Glaz et al. 2012). We know of no studies that assess P:R
responses to these material transfers from terrestrial vegetation
to the littoral zone. However, an experimental littoral POC
addition caused a short-term stimulation of planktonic, but
not benthic, microbial production (Attermeyer et al. 2013),
yet stable isotope analyses indicated that the benthic
macroinvertebrate community was key in transferring this
POC to secondary and tertiary lake consumers (Scharnweber
et al. 2014a) and even to the surrounding terrestrial environ-
ment (Scharnweber et al. 2014b).

In summary, the differential consumption and growth effi-
ciencies associated with diets of autochthonous
vs. allochthonous OC complicates the interpretation of P:R
ratios with respect to metazoan food webs, which tend to rely
on littoral autochthonous OC (Fig. 2a–d). The sensitivity of P:
R ratios to terrestrial DOC and associated bacterial respiration
often indicates a sink, not a source of carbon for metazoans,
while metazoan respiration contributes little to R at the
whole-lake scale (Cole et al. 1988; Andersson and Sobek 2006;
Brothers et al. 2013a). A hypothetical lake with no allo-
chthonous OC use but with a 100% efficient incorporation
and respiration of autochthonous primary production by a
robust metazoan food web would feature a P:R ratio of one
(Fig. 2b). Any algae or macrophyte not consumed and respired
would result in a P:R ratio > 1 (Fig. 2a), without altering the
relative importance of allochthonous OC to this food web.
Similarly, any incorporation of allochthonous OC into a food
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web characterized by highly efficient utilization of autochtho-
nous resources would shift the P:R ratio below one (Fig. 2c,d).
When accounting for the negative effect of terrestrial DOC
shading on autochthonous OC, decreased metazoan produc-
tivity may be anticipated, and lower P:R ratios, despite a
sustained consumer reliance upon autochthonous OC
(Fig. 2e). Thus, a P:R < 1 does not necessarily indicate that ter-
restrial OC is important for its metazoan food web (Thorp and
Delong 2002), especially when P:R is measured mid-lake
and is tracking respiration of DOC and phytoplankton
productivity.

What are the connections between P:R ratios and carbon
cycling within lakes at the landscape scale?

P:R ratios have expanded our understanding of the impor-
tance of lakes in the global carbon cycle (Cole et al. 2007;
Tranvik et al. 2009). Lakes throughout the world tend to be
supersaturated in CO2 relative to the atmosphere, and thus are
net CO2 emitters (Kling et al. 1992; Cole et al. 1994; Raymond
et al. 2013). Lakes also typically accumulate organic carbon in
their sediments (Mendonça et al. 2017), and the storage of car-
bon is expected to increase in tandem with increasing autotro-
phy (Pacheco et al. 2014) because elevated phytoplankton
production results in higher rates of accumulation of dead
autochthonous production in the sediments (Heathcote and
Downing 2012; Brothers et al. 2013a). High supersaturation of
pCO2 in north-temperate lakes has been associated with ele-
vated microbial respiration (Striegl et al. 2001), and the stimu-
lation of phytoplankton production by inorganic nutrient
enrichment can shift lakes from net sources to net sinks of
atmospheric CO2 (Schindler et al. 1972; Gelbrecht et al. 1998;
Balmer and Downing 2011; Trolle et al. 2012; Pacheco
et al. 2014). Conversely, stimulation of bacterial respiration by
terrestrial (allochthonous) DOC loading results in increased
pCO2 in lakes, leading to higher CO2 flux to the atmosphere
(Ask et al. 2012; Lapierre et al. 2013). These patterns demon-
strate that in-lake metabolic (i.e., algal and bacterial) processes
can regulate surface CO2 emissions. A study of 20 northern
temperate oligotrophic lakes similarly concluded that ecosys-
tem oxygen metabolism determined the directionality of lake
CO2 fluxes with the atmosphere (del Giorgio et al. 1999). The
net heterotrophy (P:R < 1) of these lakes was attributed to ter-
restrial OC inputs, establishing a link between heterotrophy,
CO2 emissions, and the uptake of terrestrial OC by aquatic
food webs (del Giorgio et al. 1999). These and other studies
have led to the transformational understanding that terrestrial
OC causes many lakes to be net emitters of CO2 to the atmo-
sphere (e.g., Cole et al. 2006). Here, we review the recent liter-
ature linking carbon cycling dynamics and P:R ratios in lakes.
Specifically, we examine (1) whether a terrestrial supply of OC
is necessary to support net heterotrophy (P:R < 1), (2) the
importance of watershed CO2 delivery and in-lake non-
metabolic CO2 production in driving CO2 emissions to the

atmosphere, and (3) the implications of P:R ratios for carbon
storage and burial in lakes.

P:R ratios below one indicate a state of net heterotrophy,
for which a terrestrial supply of OC would seem necessary.
However, net autotrophic zones adjacent to the off-shore
water column (either littoral-benthic and/or littoral-
planktonic habitats) produce OC that may end up in the off-
shore water column. Floating-leaved or emergent macrophytes
can dominate OC loading in lakes (Junk 1997; Melack
et al. 2009; Brothers et al. 2013a), and their physical place-
ment in lakes sometimes leads to their classification as autoch-
thonous primary producers (e.g., Waichman 1996;
Scharnweber et al. 2014a). However, their predominant oxy-
gen exchange is with the atmosphere, and so their production
is not captured by aquatic metabolism measurements. Littoral-
benthic autochthonous OC (submerged macrophytes and
periphyton) may also fuel an apparent state of heterotrophy
as measured with diel O2 curves in the open water (Coveney
and Wetzel 1995). In addition to the effect of the physical dis-
tance between the site of production and the placement of
the oxygen probe, the metabolic exchange of oxygen and car-
bon by periphyton communities on sediments may be with
groundwater instead of the overlying water column
(Vadeboncoeur and Lodge 1998; Périllon and Hilt 2016),
meaning that even probes placed in the littoral water column
may not fully capture periphyton metabolism rates. Their net
effect on lake P:R ratios may thus be negative if they are con-
sumed and respired by the aquatic food web. Net heterotro-
phy can also be a legacy effect from lakes that experienced
eutrophication in the past, whereby a surplus of autochtho-
nous OC has accumulated in the sediments and is being
slowly respired (Staehr et al. 2010b; Finlay et al. 2019). It is
thus possible for past autochthonous OC to fuel current het-
erotrophy. This effect has produced unexpected relationships
between nutrients, DOC, and P:R ratios in studies that incor-
porate multiple lake habitats. For instance, nutrient-poor
DOC-rich lakes are commonly assumed to be net heterotro-
phic with food webs dominated by allochthonous OC
(e.g., Blomqvist et al. 2001), but may instead be net autotro-
phic due to high rates of benthic primary production
(Andersson and Brunberg 2006; Vesterinen et al. 2016). Simi-
larly, a lake might be categorized as autotrophic based on epi-
limnetic measurements, but be net heterotrophic upon the
inclusion of deep-water benthic respiration rates. The compli-
cated role of benthic production, potentially taking up CO2

from both the water column and groundwater (e.g., Périllon
and Hilt 2016), must therefore be assessed before making
broad conclusions regarding the implications of water column
P:R ratios on lake carbon cycling.

P:R ratios below one are frequently assumed to be associ-
ated with a supersaturation of CO2 relative to the atmosphere
(Duarte and Agustí 1998; Laas et al. 2012). By failing to
account for imported and/or nonmetabolic sources of dis-
solved inorganic carbon (DIC), this perspective implies that

Brothers and Vadeboncoeur Production to respiration ratios in lakes

8



CO2 saturation, and thus CO2 fluxes, are controlled by in-lake
metabolic processes, as has been concluded by many studies
(Cole et al. 2000; Duarte and Prairie 2005; Trolle et al. 2012;
Pacheco et al. 2014). However, landscape-scale patterns in lake
CO2 saturation often reflect the loading of DIC from the
watershed, rather than (Borges et al. 2014; Marcé et al. 2015;
Weyhenmeyer et al. 2015; Martinsen et al. 2020) or in addi-
tion to (Vachon et al. 2017) CO2 production within the lake
itself. Even hypereutrophic lakes can be net CO2 sources to
the atmosphere (Xiao et al. 2020). This effect should not be
surprising, as terrestrial soils are important sites of CO2 pro-
duction (Raich et al. 2002; Jassal et al. 2005; Kellman
et al. 2015), and groundwater CO2 concentrations are typically
highly saturated (Macpherson 2009). The role of catchment
DIC loading (rather than aquatic metabolism) on surface CO2

emissions has been described in rivers (Johnson et al. 2008;
Hotchkiss et al. 2015; Rocher-Ros et al. 2019), and riverine
fluxes may likewise play a strong role in river-fed lakes
(Chmiel et al. 2019). Terrestrial catchment productivity can be
a better predictor of CO2 concentrations in lakes than in-lake
OC mineralization rates (Maberly et al. 2013). As a result of
such catchment dynamics, lakes can be both metabolically
autotrophic (P:R ratio > 1) and net CO2 emitters to the atmo-
sphere (Carignan et al. 2000; Stets et al. 2009; Christensen
et al. 2013; Borges et al. 2014). To summarize, it is not suffi-
cient to equate net CO2 emission with lake metabolic hetero-
trophy in the absence of data on imported or nonmetabolic
CO2 sources.

In addition to considering watershed sources of CO2 in lake
water, we need to account for nonmetabolic transformations of
organic carbon in lakes. Abiotic photomineralization of DOC
by ultraviolet (UV) radiation (Graneli et al. 1996; Koehler
et al. 2014; Ward and Cory 2016) is rarely accounted for in
whole-lake estimates of CO2 flux. UV radiation can also trans-
form DOC into more (Biddanda and Cotner 2003) or less
(Benner and Biddanda 1998) labile organic forms. The effect of
photodegradation on DOC lability is accounted for in diel O2

curves via altered respiration rates. However, abiotic CO2 pro-
duction by photomineralization suppresses daytime NEP rates
via the abiotic consumption of dissolved oxygen (Amon and
Benner 1996), but does not affect the nighttime calculated R
used to calculate daytime GPP. This results in underestimates of
GPP, and thus lower P:R ratios. Although some studies have
compared photomineralization and respiration in lakes (Cory
et al. 2014; Vachon et al. 2016), photomineralization is fre-
quently overlooked in direct measurements of R, which are typ-
ically carried out in the dark to eliminate primary production.
By overlooking abiotic light-mediated CO2 production dynam-
ics, it is possible to misclassify lakes as net heterotrophic
(Brothers and Sibley 2018). Precise photomineralization rates
are labor-intensive to quantify and complicated by estimations
of DOC exposure and reaction times to UV radiation, but
should be considered at minimum as a potential source of error
when assessing in-lake drivers of P:R ratios.

The link between P:R ratios and carbon storage (the carbon
pool contained within a lake) and burial (the sedimented car-
bon which is not returned to the water column) may seem
intuitively clear, but seasonality, lake heterogeneity, and non-
metabolic factors complicate this relationship. Fundamentally,
carbon burial in lakes is controlled by watershed loading of
nutrients and organic carbon (increasing or decreasing P:R
ratios), as well as oxygen dynamics (Sobek et al. 2009; Carey
et al. 2018). Regional assessments have identified a strong pos-
itive effect of agriculture and eutrophication on carbon burial
in lakes (Kastowski et al. 2011; Heathcote and Downing 2012;
Dietz et al. 2015). As eutrophication is commonly assumed to
be linked to net autotrophy (Schindler et al. 1997), this may
be taken as indicating that net autotrophy should enhance
carbon storage and burial in lakes (Fig. 2a). However, as
described previously, the relationship between P:R ratios and
eutrophication is not straightforward. Year-round monitoring
of low-latitude eutrophic lakes has yielded net heterotrophic
(P:R < 1) conditions, whereas spring-to-fall measurements
alone implied autotrophy (Alfonso et al. 2018). High respira-
tion rates in a warm, low-latitude tropical reservoir likewise
resulted in net heterotrophy and a high efflux of CO2 and
methane (CH4) even though the lake was eutrophic
and highly productive (Almeida et al. 2016). Presumed
declines in carbon storage (associated with P:R < 1), for
instance a drawdown in the standing DOC pool in the water
column, may occur seasonally (Biddanda and Cotner 2002).
DOC drawdown may also result from interannual changes in
light regime, for instance due to declines in ice cover (Brothers
and Sibley 2018). Variation in DOC pool carbon storage may
potentially follow long-term (decades to centuries) cycles
whose links with measured P:R ratios at a given time may not
be straightforward (del Giorgio and Duarte 2002; Cotner
et al. 2004). Finally, P:R ratios and carbon fate (whether
maintained in the standing carbon pool, stored in the sedi-
ments, or exported to the atmosphere) fundamentally reflect
the efficiency with which autochthonous OC is integrated
into (and respired by) a given lake’s metazoan food web
(as discussed previously), with lower metazoan consumption
and respiration rates producing higher P:R ratios, all else being
equal (Schindler et al. 1997). While increases in measured P:R
ratios in lakes may intuitively indicate increasing carbon stor-
age and/or burial in lakes, multiple factors must be indepen-
dently accounted for before establishing this conclusion.

Conclusion
We argue that the tools and approaches that have often

been used to quantify P:R ratios in lakes, such as the use of
near-surface lake-center diel O2 curves, have a high likelihood
of bias. Even with accurate data, the links between P:R ratios
and ecosystem function need shoring up by the inclusion of
littoral-benthic habitats and watershed dynamics. Recent stud-
ies have recognized and attempted to mitigate the potential
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flaws associated with this approach, and are increasingly
showing that the foundational groundwork laid by P:R studies
on broad limnological themes including trophic status, allo-
chthony, and carbon cycling in lakes, is incomplete and
biased by a legacy of a planktonic-centric measurements. In
particular, links between P:R ratios and trophic status predom-
inantly describe phytoplankton dynamics, links between P:R
ratios and the utilization of terrestrial OC by aquatic organ-
isms cannot be reliably used to identify which resources are
most important in sustaining metazoan food webs, and P:R
ratios do not provide a complete picture of how lakes interact
with terrestrial and atmospheric carbon pools with respect to
carbon cycling. While the work in aquatic metabolism using
P:R ratios has advanced our understanding of the importance
of terrestrial OC to lake food webs, biogeochemical and eco-
logical linkages with watershed groundwater dynamics and
the littoral-benthic zone were often excluded from the
picture.

Aquatic metabolism studies using P:R ratios have seen
major advancements in recent years, and are a powerful tool
in helping us understand lakes. New studies continue to dem-
onstrate a more complex reality for lake functioning, where
biogeochemical and ecological processes connect off-shore,
nearshore, airshed, and above- and below-ground watershed
processes. However, new studies may potentially be hampered
in their design or interpretation of data if using earlier
assumptions of lake functioning in the development of their
hypotheses and discussions. We present this synthesis of the
evolution and potential shortcomings of prior planktonic-
focused P:R studies to demonstrate how new studies may
inform and improve these foundational assumptions. We
believe that aquatic metabolism studies are on a positive tra-
jectory, providing methodological and conceptual guidance
for future research.

P:R ratios can provide valuable information for lake man-
agers, highlighting the effects of changing hydrological inputs
on lake metabolism (Idrizaj et al. 2016; Alfonso et al. 2018).
Temporal trends in measured P:R ratios may signal browning
events such as those caused by storms and high runoff (Sadro
and Melack 2012). Measured P:R ratios above one (indicating
net autotrophy) should not be used alone as evidence of a
lake’s CO2 saturation. However, if coupled with directly mea-
sured supersaturation of CO2, such data might signify that
groundwater DIC dynamics are important in that lake. We rec-
ommend that P:R ratios be used explicitly to assess water-col-
umn, rather than whole-lake integrated metabolism. Apparent
patterns in measured P:R linking to trophic status, food web
support, or carbon cycling, should be analyzed in a way that
explicitly considers littoral-benthic processes, in-lake mixing
dynamics, and watershed inorganic carbon loading, rather
than only considering phytoplankton PP and terrestrial
OC. Ultimately, it is important to understand that lakes are
not microcosms (as described by Forbes 1887), or passive pipe-
lines for organic matter, but instead that they are intricately

connected with the terrestrial and atmospheric environments
around them (Cole et al. 2007). However, as our understand-
ing of the numerous and heterogeneous processes driving lake
metabolism and carbon cycling improves, it is equally impor-
tant that future research fully accounts for this complexity in
their nature.
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