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10 Abstract

11 A large fraction of major waterways have dams influencing streamflow, which must be 
12 accounted for in large-scale hydrologic modeling. However, daily streamflow prediction for 
13 basins with dams is challenging for various modeling approaches, especially at large scales. 
14 Here we examined which types of dammed basins could be well represented by long short-
15 term memory (LSTM) models using readily-available information, and delineated the 
16 remaining challenges. We analyzed data from 3557 basins (83% dammed) over the 
17 contiguous United States and noted strong impacts of reservoir purposes, degree of regulation 
18 (dor), and diversion on streamflow modeling. While a model trained on a widely-used 
19 reference-basin dataset performed poorly for non-reference basins, the model trained on the 
20 whole dataset presented a median Nash-Sutcliffe efficiency coefficient (NSE) of 0.74. The 
21 zero-dor, small-dor (with storage of approximately a month of average streamflow or less), 
22 and large-dor basins were found to have distinct behaviors, so migrating models between 
23 categories yielded catastrophic results, which means we must not treat small-dor basins as 
24 reference ones. However, training with pooled data from different sets yielded optimal median 
25 NSEs of 0.72, 0.79, and 0.64 for these respective groups, noticeably stronger than existing 
26 models. These results support a coherent modeling strategy where smaller dams (storing 
27 about a month of average streamflow or less) are modeled implicitly as part of basin rainfall-
28 runoff processes; then, large-dor reservoirs of certain types can be represented explicitly. 
29 However, dammed basins must be present in the training dataset. Future work should 
30 examine separate modeling of large reservoirs for fire protection and irrigation, hydroelectric 
31 power generation, and flood control. 
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34 1. Introduction.

35

36 Two-thirds of the longest rivers in the world are not flowing freely (Grill et al., 2019): 

37 more than 800,000 dammed reservoirs impede the world’s rivers, including 90,000 in the 

38 United States (International Rivers, 2007). Dams exert significant control on streamflows by 

39 changing the magnitude and timing of the discharges (Gutenson et al., 2020). The ability to 

40 anticipate upstream reservoir operations at a daily scale has significant operational value for 

41 optimal water resources management. 

42 For large-scale hydrologic modeling at the daily scale, we need accurate and tractable 

43 methods to account for the influence of small and large reservoirs on streamflow. One may 

44 use a reservoir-centric modeling approach, in which each reservoir needs to be represented 

45 explicitly with its own characteristics, operational rules, storage, inflow, and outflow. This 

46 approach may not scale well to large scales, however, as there may be dozens or even 

47 hundreds of reservoirs upstream of the outlet of a large basin. A different approach would be 

48 basin-centric (or grid-centric, also called lumped), in which all the reservoirs in a subbasin (or 

49 a computational gridcell) are grouped together into one unit in the river routing module. 

50 Apparently, the basin-centric (or lumped) paradigm can vastly reduce modeling complexity 

51 (Ehsani et al., 2016; Payan et al., 2008). Alternatively, a mixed approach can be taken where 

52 some reservoirs are lumped while some others are explicitly represented. Current large-scale 

53 hydrologic models such as the National Water Model (NWM) (Gochis et al., 2018), or land 

54 surface hydrologic models with routing schemes, e.g. the Community Land Model (Lawrence 

55 et al., 2019) simulate some major reservoirs and make the habitual assumption of ignoring the 

56 smaller reservoirs. The questions are then: (i) What kinds of reservoirs can be modeled in a 

57 lumped fashion and what kind cannot? (ii) Can we ignore the impacts of small reservoirs and 

58 assume they are behaviorally similar to undammed basins?

59 It has been difficult to reliably obtain strong model performance for dammed basins 

60 using a rule-based system at large scales. From a literature survey (see more details in 

61 Appendix Table S1), it seems difficult to obtain Nash-Sutcliffe model efficiency coefficient 
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62 (NSE) values that are higher than 0.65 by assuming generic reservoir operational schemes 

63 (Biemans et al., 2011; Hanasaki et al., 2006; Shin et al., 2019; Voisin et al., 2013). Hanasaki 

64 et al. (2006) derived a demand-driven approach for global reservoir routing and laid the 

65 foundation for subsequent developments, showing error reduction compared to no-reservoir 

66 simulations, but no NSE was reported. Voison et al. (2013) improved upon the formulation 

67 from Hanasaki et al. (2006) to the heavily dammed Columbia River Basin and reported decent 

68 correlation but mostly negative NSEs, indicating substantial biases. Unlike generic release 

69 schemes, empirically derived target storage-release functions can be parameterized for 

70 individual reservoirs with sufficiently long observational records of releases, inflows, and 

71 storage levels, and can reproduce observed flows more accurately (Kim et al., 2020; Turner 

72 et al., 2020; Wu and Chen, 2012; Yassin et al., 2019; Zajac et al., 2017; Zhao et al., 2016). 

73 Yassin et al. (2019) used piecewise-linear relationships between reservoir storage, inflow, and 

74 release to describe reservoir policies and obtained a median NSE of ~0.5 for 37 reservoirs 

75 across the globe. Zajac et al. (2017) reported a maximum NSE of 0.61 for 390 stations around 

76 the world. Although these results represent significant progress in research, further research 

77 was still needed to inform whether these improvements were robust when simulated inflows 

78 from the hydrologic models, rather than observed inflows, were used as the input to reservoir 

79 modules at large scales (Turner et al., 2020). In addition, one can certainly argue the current 

80 performance levels left room for improvement, which can provide better utility for practical 

81 applications.

82 Artificial neural networks (ANNs) and other machine learning models have been 

83 applied to establish data-driven rules that relate reservoir storage, inflow, and release data. 

84 Ehsani et al. (2016) used ANNs to predict daily release using previous days’ reservoir storage 

85 volume along with inflow and release measurements, and reported an NSE of 0.86. Yang et 

86 al. (2019) similarly applied recurrent neural networks, using inflow and water storage as inputs, 

87 to simulate the daily operation of three multi-purpose reservoirs located in one basin, and 

88 reported an NSE value over 0.85. However, the use of recent storage and inflow data is akin 

89 to a form of data assimilation and is known to greatly improve simulations for short-term 
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90 forecast (Feng et al., 2020a), but we do not use recent observations here as our objective is 

91 long-term projection. In addition, the existing generally-available reservoir databases (Lehner 

92 et al., 2011; Mulligan et al., 2020; Patterson and Doyle, 2018) mainly provide information on 

93 dam design specifications or operational details for some of the most significant reservoirs, 

94 which is not available for large-scale modeling in dammed basins. 

95 Recently, the long short-term memory (LSTM) network (Hochreiter and Schmidhuber, 

96 1997), a deep learning (DL) algorithm, has been applied to explore the ability to predict 

97 streamflow in basins across the CONUS. It is relatively inexpensive (in terms of time) to apply 

98 at large spatial scales, and has grown to be a well-established hydrologic modeling tool (Shen, 

99 2018). LSTM-based models can effectively learn streamflow dynamics, and have shown 

100 superior performance compared to other hydrological benchmark models (Ayzel et al., 2020; 

101 Feng et al., 2020a; Kratzert et al., 2019b). For example, Kratzert et al. (2019b) reported that 

102 the median NSE value in the evaluation period could reach 0.74 for a 531-basin subset of the 

103 671-basin Catchment Attributes and Meteorology for Large-Sample Studies (CAMELS) 

104 dataset using the forcing data from North American Land Data Assimilation (NLDAS) system. 

105 More recently, Feng et al. (2020a) improved the forecast NSE median to 0.86 with the addition 

106 of a data integration kernel which incorporated recent discharge observations. However, the 

107 CAMELS dataset, which all these studies were based on, is composed of basins that are 

108 considered to be “reference” or undisturbed basins, which have minimal anthropogenic 

109 impacts (i.e., minimal land use changes, minimal human water withdrawals) (Addor et al., 2017; 

110 Newman et al., 2015). To our knowledge, there is no systematic knowledge regarding how 

111 LSTM performs in basins with significant human modifications such as reservoirs or water 

112 diversion, especially at large scales. 

113 Here we followed a divide-and-conquer approach to tackle the difficult problem of long-

114 term daily streamflow prediction from dammed basins, and to delineate where challenges 

115 reside. We addressed the following questions: (1) Given only generally-available reservoir 

116 information, how well can LSTM networks make long-term daily streamflow predictions for 

117 basins with reservoirs across the entire CONUS? (2) How differently do basins with or without 
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118 reservoirs of different sizes function in streamflow --- how much error are we making if we 

119 simply ignore small reservoirs and treat those basins with small reservoirs as reference basins? 

120 (3) What kinds of reservoirs (purpose, size, diversion) can be well modeled in a lumped fashion 

121 and what kinds cannot? These questions have not been answered in the literature and the 

122 answers will help the community to devise an informed and coherent modeling strategy. We 

123 further provide experiences to the community on how to best form an appropriate training 

124 dataset, e.g., whether we should include basins with or without reservoirs and whether we 

125 should stratify basins into different categories based on reservoir characteristics, or simply 

126 group them together.

127

128 2. Methods

129

130 As an overview, LSTM-based models were trained to predict long-term daily 

131 streamflow from basins with or without reservoirs. The inputs include atmospheric forcing time 

132 series data and static basin attributes (physiographic attributes and anthropogenic influences). 

133 We trained the models using various subsets from a newly compiled 3557-basin dataset 

134 across the CONUS as well as the CAMELS dataset. Basins with complete streamflow records 

135 from 1 January 1990 through 31 December 2009 were selected from the Geospatial Attributes 

136 of Gages for Evaluating Streamflow II (GAGES-II) dataset (Falcone, 2011). Below we provide 

137 the details of the procedures.

138

139 2.1. LSTM

140

141 Long Short-Term Memory (LSTM) networks are a special kind of recurrent neural 

142 network (RNN) which can both learn from sequential data and address the notorious exploding 

143 and/or vanishing gradient problem (Hochreiter, 1998). These networks are composed of 

144 memory cells, the keys to which are the “cell states” and “gates” that control information flow 

145 within the LSTM algorithm. Cell states allow information to be stored over long time periods, 
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146 which is important for modeling catchment processes like snow, subsurface flow, and reservoir 

147 storage. Based on the input of the current time step and the output from the previous one, a 

148 "forget gate" decides what information is going to be removed from the existing cell state. 

149 Next, a sigmoid layer and a tanh layer are applied as an "input gate" to update the cell state. 

150 Finally, the cell state is put through a tanh function and multiplied by the output of the sigmoid 

151 "output gate" to determine the final output.

152 There are different formulations of LSTM-based models. Kratzert et al. (2019b) used 

153 an N-to-1 model to predict streamflow, which means that the input was a multi-step time series 

154 and the output was a one-step variable. An N-to-M LSTM-based model, also called a 

155 sequence-to-sequence model, was employed to predict multi-time-step streamflows by Xiang 

156 et al. (2020). In the present study, following Feng et al. (2020a), we trained a CONUS-scale 

157 N-to-N model using meteorological forcings and static attributes of the basins to predict daily 

158 discharge. Here we did not use discharge from previous days as inputs. We trained the model 

159 on sequences of a fixed length (365 days), but for inference, we ran the model in a single 

160 forward pass through the full time period. This procedure means that during training, the LSTM 

161 has no context for the initial input steps of each sequence. However, in our preliminary anaysis, 

162 we added a warm-up period but found it to not have any noticeable impact. Thus we neglected 

163 the warm-up period for performance reasons. The N-to-N model had significant advantages 

164 in efficiency, and could reach convergence for the 671 basins in the CAMELS dataset with 10 

165 years of training data in 69 minutes on an NVIDIA 1080 Ti graphical processing unit (GPU). In 

166 this paper, the model was able to be trained on 10-year data for the entire 3557-basin dataset 

167 until convergence was achieved (300 epochs) in 427 minutes of computational time. In our 

168 code, we randomly sampled for sites and training periods to form mini-batches and we defined 

169 the total number of iterations in an epoch as corresponding to the probability that 99% of the 

170 time periods of all basins are picked in the epoch.

171 The forward propagation equations of the present LSTM-based model can be 

172 summarized as the following (see Figure S1 in Appendix for more details), based on the 

173 notations in Fang et al. (2020).
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174                                               (1)𝑥(𝑡) = 𝑅𝑒𝐿𝑈(𝑊𝑥𝑥𝑥(𝑡)
0 + 𝑏𝑥𝑥)

175                                   (2)𝑓(𝑡) = 𝜎(𝐷(𝑊𝑓𝑥𝑥(𝑡)) + 𝐷(𝑊𝑓ℎℎ(𝑡 ― 1)) + 𝑏𝑓)
176       (3)𝑖(𝑡) = 𝜎(𝐷(𝑊𝑖𝑥𝑥(𝑡)) + 𝐷(𝑊𝑖ℎℎ(𝑡 ― 1)) + 𝑏𝑖)
177         (4)𝑔(𝑡) = 𝑡𝑎𝑛ℎ(𝐷(𝑊𝑔𝑥𝑥(𝑡)) + 𝐷(𝑊𝑔ℎℎ(𝑡 ― 1)) + 𝑏𝑔)
178                              (5)𝑜(𝑡) = 𝜎(𝐷(𝑊𝑜𝑥𝑥(𝑡)) + 𝐷(𝑊𝑜ℎℎ(𝑡 ― 1)) + 𝑏𝑜)
179                                 (6)𝑠(𝑡) = 𝑓(𝑡) ⊙ 𝑠(𝑡 ― 1) + 𝑖(𝑡) ⊙ 𝑔(𝑡)

180                                                  (7)ℎ(𝑡) = 𝑡𝑎𝑛ℎ(𝑠(𝑡)) ⊙ 𝑜(𝑡)

181                                                       (8)𝑦(𝑡) = 𝑊ℎ𝑦ℎ(𝑡) + 𝑏𝑦

182 where  is the vector of raw inputs for the time step t,  is the input vector to the LSTM 𝑥(𝑡)
0 𝑥(𝑡)

183 cell,  is the rectified linear unit,  is the sigmoid activation function,  is the dropout 𝑅𝑒𝐿𝑈 𝜎 𝐷

184 operator,  denotes pointwise multiplication, ’s are network weights, ’s are bias ⊙ 𝑊 𝑏

185 parameters,  is the output of the input node, , , and  are respectively the forget, 𝑔(𝑡) 𝑓(𝑡) 𝑖(𝑡) 𝑜(𝑡)

186 input, and output gates,  represents the states of memory cells,  represents hidden 𝑠(𝑡) ℎ(𝑡)

187 states, and  is the predicted output which is compared to streamflow observations. 𝑦(𝑡)

188 The static catchment attributes were concatenated with the meteorological inputs at 

189 each time step to produce the input vector. To reduce overfitting, we employed dropout 

190 regularization, which stochastically sets some network connections to zero. Here, D applies 

191 dropout with constant dropout masks to recurrent connections, i.e., the connections that are 

192 set to zero stay the same throughout each training instance. This kind of dropout over recurrent 

193 connections allows the network to be treated as a Bayesian network (Gal and Ghahramani, 

194 2016). In addition, a nonlinear transformation with a linear function and rectified linear unit 

195 (ReLU) was added on the first input layer, following Fang et al. (2020). This was used because 

196 without the input transformation layer, some weights of inputs would be directly set to 0 after 

197 dropout and lead to information loss. The network outputs one scalar prediction value for each 

198 time step, and compares it to the observation for that time step by computing a loss function, 

199 which in this case was the root-mean-square error (RMSE) between the observed and 

200 predicted discharges. As in Feng et al. (2020a), the Adadelta algorithm, an adaptive learning 

201 rate scheme (Zeiler, 2012), was selected as the optimization method for performing stochastic 

202 gradient descent on the model parameters of the neural network.
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203 Normalization of inputs and outputs is a useful procedure to facilitate parameter 

204 updates by gradient descent. Normally, the loss function is defined over a mini-batch: the 

205 model is trained on many basins over the CONUS, and a random subset of hydrographs from 

206 some basins are put together to calculate the loss function. In this setup, however, wetter or 

207 larger basins contribute more to the loss function than the drier or smaller ones. To prevent 

208 this imbalance, we first normalized the daily streamflow by its area and mean annual 

209 precipitation to get a dimensionless streamflow, i.e., the runoff ratio, as the target variable. 

210 Next, the distributions of daily streamflow and precipitation were transformed to be as close to 

211 a Gaussian distribution as possible, using the equation

212                                                   (9)𝑣 ∗ = 𝑙𝑜𝑔10( 𝑣 + 0.1)

213 where  is the original value and  is the transformed value. Finally, a standard 𝑣 𝑣 ∗

214 transformation was applied to all the inputs by subtracting the CONUS-scale mean value and 

215 then dividing by the CONUS-scale standard deviation. The statistics used for normalization of 

216 the test period data were the same as those calculated for the training period data.

217 There were four hyperparameters: (i) the mini-batch size, which is the number of 

218 hydrographs that are put together to calculate the loss function before performing a weight 

219 update; (ii) the length of the hydrographs used for training; (iii) the number of hidden units, 

220 which is a direct representation of the learning capacity of the LSTM network; and (iv) the 

221 dropout probability, which is the probability that a weight is set to 0. As in Feng et al. (2020a), 

222 a mini-batch size of 100, an LSTM sequence length of 365, a hidden size of 256, and a dropout 

223 rate of 0.5 were selected to run the model. The network training is stochastic in nature. Also 

224 similar to the previous setup, all networks in this paper were trained with n = 6 different random 

225 seeds. Streamflow predictions resulting from the different random seeds were combined into 

226 an ensemble-average prediction. All evaluation metrics were reported for the ensemble-

227 average streamflow, except for the final model transferability experiment (For these 

228 experiments detailed in section 2.4.4, we could clearly reach the conclusion from one-random-

229 seed experiments, so there was no need for multiple random seeds). All experiments were 
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230 implemented using adaptations from the PyTorch library (Paszke et al., 2017), and were 

231 performed on an NVIDIA GeForce GTX 1080 Ti GPU. 

232

233 2.2. Basin Datasets

234

235 Until now, there had not been a large-scale streamflow benchmark dataset containing 

236 extensive basins with reservoirs; CAMELS only has a small fraction of basins with reservoirs. 

237 To compile such a dataset, we collected attributes, forcings, and streamflow data for 3557 

238 basins from GAGES-II, which also encompasses most of the CAMELS dataset (see section 

239 2.4). We selected 30 static physical attributes which fit into six categories: (1) basic 

240 identification and topographic characteristics, (2) percentages of land cover in the watershed, 

241 (3) soil characteristics, (4) geological characteristics, (5) local and cumulative dam variables, 

242 and (6) other disturbance variables (see Table S2 in Appendix for more details). Figure 1 plots 

243 the location of all 3557 sites and shows five attributes of all basins including slope, forest 

244 fraction, soil permeability, normal storage of dams, and freshwater withdrawal. Basin mean 

245 forcing data for the period 01/01/1990–12/31/2009 was generated using the same method as 

246 for the CAMELS dataset, which was done by mapping a daily, gridded meteorological dataset, 

247 Daymet Version 3 (Thornton et al., 2016) to the chosen basin polygons. The Daymet dataset 

248 was acquired from the Google Earth Engine (GEE) data catalog (Gorelick et al., 2017) in the 

249 form of gridded estimates of daily weather variables for the United States from 01/01/1980 to 

250 the present. The basin mean daily time series forcing data were also obtained in GEE using 

251 the Map-Reduce functions. Pixels of the gridded data were determined to be in a region 

252 according to weighted reducers. Pixels were included if at least 0.5% of the pixel was in the 

253 region; their weight was the fraction of the pixel covered by the region. Daily average 

254 streamflow was the target variable, for which data for all gauges was downloaded from the 

255 USGS website (USGS, 2019). It should be noted that the Daymet data use UTC time 

256 (Spangler et al., 2019), while USGS daily values are based on local time (Sauer, 2002). It is 

257 difficult to correct this error as they were given in a daily format in the raw data. In this paper, 
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258 we directly use daily data from the Daymet dataset and the USGS to keep consistent with the 

259 CAMELS dataset, as many other studies did. Ideally, one would download sub-daily values 

260 from the USGS Instantaneous Values API and shift them to UTC before aggregating to days 

261 (or, vice versa, use an hourly forcing product and shift it to local time), as was done in some 

262 recent work (Gauch et al., 2020). While we do not think this error changes our conclusions, it 

263 calls attention to the need for revisions in datasets like CAMELS.

264 We also trained and tested models on the CAMELS dataset to allow for comparison to 

265 previous results. The CAMELS dataset (Addor et al., 2017; Newman et al., 2015) only included 

266 basins which experienced minimal human disturbance, noted as “reference” gages, and 

267 excluded basins where human activities including artificial diversions, reservoirs, and other 

268 activities in the basin or the channels significantly affected the natural flow of the watercourse 

269 (Falcone, 2011). 

270

271 (a) Sites                                                                    (b)  Slope

272     

273 (c) Forest fraction                                                   (d)  Soil permeability

274    

275 (e) Normal storage of dams                                     (f) Freshwater withdrawal

276   
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277 Figure 1. The location of all 3557 sites and characteristics of the corresponding basins. (a) 

278 Locations of all 3557 sites. Blue “x” markers are used to represent sites belonging to the 

279 CAMELS dataset, while red “o” points are the other, non-reference sites; (b) Slope: basin 

280 mean slope, as a percentage; (c) Forest fraction: percentage of basin with land cover "forest"; 

281 (d) Soil permeability: basin average permeability, inches/hour; (e) Normal storage of dams: 

282 total normal reservoir storage volume in a basin, megaliters of total storage per sq km; (f) 

283 Freshwater withdrawal, megaliters per year per sq km. We excluded some extremely large 

284 values of (e) and (f) by choosing values below the 95% percentile value, in order to more 

285 clearly show basin diversity.

286

287 2.3. Reservoir-related basin characteristics

288

289 Degree of regulation (dor) refers to the cumulative upstream reservoir storage as a 

290 percentage of the average streamflow, and is an important indicator of the impact of reservoirs 

291 on streamflow (Lehner et al., 2011). In the present study, it was calculated as the capacity-to-

292 runoff ratio of a basin, defined as follows: 

293                                                             (10)𝑑𝑜𝑟 =
𝑛𝑜𝑟

𝑞

294 where nor represents the sum of normal capacity of all reservoirs in a basin (m³ per km²), and 

295  is the estimated watershed mean annual runoff, or total volume of water annually leaving 𝑞

296 the basin via streamflow (m³ per km²), from GAGES-II. A dor value of 0.1 was set as the cut-

297 off limit between basins with relatively little human regulation (small-dor basins) and basins 

298 with relatively large human regulation (large-dor basins) based on our preliminary analysis of 

299 the distribution of whole-CONUS model’s performance across different basins as a function of 

300 dor. The dor is analogous to the commonly used metric of storage ratio (McMahon et al., 2007). 

301 A basin with dor=0.1 has the approximate storage of about a month of streamflow, which 

302 typically would be expected to have significant impact on daily streamflow yet is not enough 

303 to heavily modulate flow across seasons. On a side note, dor was not the threshold used by 
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304 CAMELS to select basins. CAMELS contains 344 small-dor basins and 32 large-dor basins, 

305 which represent a much smaller fraction of the CAMELS basins as compared to the overall 

306 CONUS.

307 We hypothesized that reservoir characteristics such as their purposes could be useful. 

308 To obtain these attributes, dams listed in the National Inventory of Dams (NID) database (US 

309 Army Corps of Engineers, 2018) were spatially joined with the boundary polygons of the basins. 

310 To minimize the influences of these differences on our results, we excluded any basins which 

311 did not have matching dams included in NID and GAGES-II. Next, for every basin, the sum of 

312 the reservoir's normal capacity associated with each dam purpose was calculated. The 

313 purpose with the largest associated capacity was considered to be the major purpose of the 

314 collective dams in the basin. If there were more than one purpose sharing the largest capacity, 

315 we calculated normal storages of these purposes in order of importance (indicated by the 

316 order of the letters symbolizing the dam’s purposes, e.g. “SC” indicates a primary purpose of 

317 water supply followed by flood control), and then chose the most important purpose with the 

318 largest capacity. If still more than one purpose was obtained, we treated them as being of 

319 equal importance, meaning that there were multiple main dam purposes listed for that basin. 

320 There were only a few basins with two categories of main dam purposes (only 1 basin had the 

321 main dam purpose of “Debris Control”, and only 7 basins had the main dam purpose of 

322 “Navigation”), which was not enough to determine statistical characteristics, so they were 

323 excluded from the statistical analysis. After all of these processing steps were complete, 656 

324 basins from the 3557-basin dataset were excluded from the statistical analysis in section 2.4.2: 

325 610 basins do not have dams, 38 basins do not have dams listed in either the GAGES-II 

326 dataset or NID database, and 8 basins have main dam purposes of “Debris Control” or 

327 “Navigation”. As a result, 2901 basins with 10 main dam purposes (Table 1) were available to 

328 analyze the influence of reservoir types (Table 2).

329 We added flags to describe the presence of water diversion, based on remarks and 

330 comments included in the GAGES-II dataset. “WR_REPORT_REMARKS” reported remarks 

331 pertinent to hydrologic modifications from the Annual Data Report (ADR) citation of the USGS, 
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332 and “SCREENING_COMMENTS” reported screening comments from National Water-Quality 

333 Assessment (NAWQA) personnel regarding evidence of human alteration of flow, based on 

334 visual (primarily Google Earth) screening. We manually read through the text in these columns, 

335 and if there was some description with "diversion" or "divert" for a basin, the presence of 

336 diversion for this basin was regarded as "True"; otherwise it was assumed “False”. 

337 Unfortunately, there was no available data regarding the volume of diversion, and hence 

338 diversion could only be used as a qualitative flag for our statistical analysis.

339

340 Table 1. Major reservoir purposes for basins in our dam characteristics dataset

341

Type Purpose Number of Basins

C Flood Control and Stormwater Management 313

F Fish and Wildlife Pond 94

H Hydroelectric 196

I Irrigation 328

O Other 163

P Fire Protection, Stock, or Small Farm Pond 66

R Recreation 1207

S Water Supply 426

T Tailings 52

X Unknown 66

342

343 2.4. Experiments

344
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345 2.4.1. Temporal generalization tests

346 As we first wanted to determine the level of performance that could be achieved using 

347 one model over all 3557 basins in the full dataset (Table 2), an LSTM-based model (LSTM-

348 CONUS) was trained and tested over all of these basins. For comparison to previous studies 

349 using the CAMELS dataset, we selected 523 basins (Table 2) from CAMELS (LSTM-CAMELS) 

350 to form a training set. The choice of 523 was made for multiple reasons. Firstly, the 3557-

351 basin dataset does not actually contain all of the CAMELS basins. In addition, the attribute 

352 data from the GAGES-II dataset and the forcing data used in this study, Daymet Version 3 in 

353 GEE (last access in this study: 18 January 2020), were not exactly the same as those used 

354 for CAMELS. Finally, by removing some basins with large basin areas, there is a 531-basin 

355 subset of CAMELS which has often been selected as the benchmark set for rainfall-runoff 

356 modeling in previous work (Feng et al., 2020a; Kratzert et al., 2019b). An intersection between 

357 the 3557 basins and this 531 benchmark CAMELS subset basins resulted in the 523-basin 

358 “baseline” CAMELS dataset we used here. All models were trained using data from 1 January 

359 1990 through 31 December 1999, and testing was done using data from 1 January 2000 

360 through 31 December 2009.

361

362 2.4.2. Exploring the impacts of reservoir attributes on model performance

363 There are many reservoir attributes that could potentially inform improvements in 

364 streamflow modeling, such as dam storage or distance from gage location to dam. As the first 

365 paper (to the best of our knowledge) to study continental-scale streamflow prediction in 

366 dammed basins in a deep learning context, we explored the impacts of multiple reservoir 

367 attributes and anthropogenic factors (details in Appendix Figure S2). Then, within the scope 

368 of this paper and partially consistent with McManamay (2014), we examined three major 

369 factors having significant influence on our model performance: capacity-to-runoff ratio (degree 

370 of regulation, dor), main dam purpose, and presence of diversion. As the models utilized in 

371 this study were basin-centric, these factors needed to be aggregated to each basin, which was 

372 done following the procedures discussed in Section 2.3. 
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373

374 Table 2. Datasets used in the this study

375

Name Number of basins Explanation

full dataset 3557 Basins with complete streamflow records during 
1990/01/01-2009/12/31, selected from GAGES-II 
(section 2.4.1)

523-CAMELS 
dataset

523 Basins contained both in full dataset and 
CAMELS (section 2.4.1)

dam 
characteristics 
dataset

2901 Subset of full dataset, containing basins used to 
explore the impacts of the three factors: capacity-
to-runoff ratio (dor), dam purpose, and diversion 
(section 2.4.2)

zero-dor dataset 610 Subset of full dataset, containing basins without 
dams (section 2.4.3, 2.4.4)

small-dor dataset 1762 Subset of full dataset, containing basins with 0 < 
dor < 0.1 (section 2.4.3, 2.4.4)

large-dor dataset 1185 Subset of full dataset, containing basins with dor 
≥ 0.1 (section 2.4.3, 2.4.4)

376

377 2.4.3. Stratification by reservoir regime vs. pooling data together

378 For DL models in general, providing more data often leads to model improvements. 

379 From the perspective of machine learning, then, lumping all data together would thus seem to 

380 be the obvious procedure to follow, given the likely beneficial impacts on modeling 

381 performance as well as simple implementation. However, it remains possible that stratification 

382 by reservoir attributes might result in clear separation basins with different latent (unknown) 

383 attributes. Hence, our research question 2 raised in the Introduction became two sub-

384 questions: (2A) Should we group all basins together, or classify basins into certain types and 

385 train models for each class separately to achieve the best performance? (2B) Do basins with 

386 varied reservoir regimes (no reservoir, small reservoir, or large reservoirs) function 

387 fundamentally differently? This could be proven true if basins trained in one regime cannot 

388 apply to basins in another regime.
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389 To answer question 2A, all basins in the full dataset were divided into three groups 

390 (Table 2): zero-dor basins (dor=0), small-dor basins (0<dor<0.1) and large-dor basins 

391 (dor≥0.1). We trained models on these different groups individually, as well as together in 

392 various combinations. First, we trained and tested three LSTM-based models, called LSTM-

393 Z, LSTM-S, and LSTM-L (we used “LSTM-x” to represent the LSTM-based models, which was 

394 different from the naming method for the datasets), on zero-dor, small-dor and large-dor 

395 basins, respectively. Second, basins from two of the three groups were combined into training 

396 sets for three additional LSTM-based models: LSTM-ZS (trained on zero-dor and small-dor 

397 datasets), LSTM-ZL (trained on zero-dor and large-dor datasets), and LSTM-SL (trained on 

398 small-dor and large-dor datasets), but these three models were tested on basins from each of 

399 zero-dor, small-dor, and large-dor datasets. Finally, the testing results of basins in these three 

400 groups were compared to results for the same basins from the LSTM-CONUS (trained on full 

401 dataset) model.

402

403 2.4.4. Model transferability experiments

404 To answer question (2B) raised in 2.4.3, we ran a set of predictions in ungauged basins 

405 (PUB) experiments, in which models trained in one set were tested in other sets. Further, when 

406 a model is trained in some basins and tested in others, the performance will naturally degrade. 

407 Therefore, we added control experiments where models were trained and tested on the same 

408 categories of basins, which helped to disentangle the effects of reservoir regime and spatial 

409 extrapolation. 

410 For example, zero-dor basins were divided into two batches (Train-z and PUB-z) with 

411 a ratio of 1:1 for training and test, respectively. We ensured that each of these cases was 

412 representative of the full group by including basins from every LEVEL-II ecoregion (Omernik 

413 and Griffith, 2014). The model trained on the Train-z set is then tested on Train-z itself, PUB-

414 z and a subset (PUB-s) of the small-dor basins. These three test sets represent temporal 

415 generalization alone, spatial extrapolation and “spatial extrapolation+difference in reservoir 
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416 regime”, respectively. Similarly, we separated the small-dor dataset into Train-s and PUB-s, 

417 and the large-dor dataset into Train-l and PUB-l. We also ran experiments with a mixed training 

418 set, e.g., Train-z and Train-s were merged to form one training dataset called Train-zs. Once 

419 trained on Train-zs, the LSTM-based model was tested individually on PUB-z and PUB-s. Two 

420 more training sets, combining zero-dor basins with large-dor ones (Train-zl), and pairing small-

421 dor basins with large-dor ones were set up in the same way (Train-sl). It was not practical to 

422 attempt all possible combinations, but the combinations used sufficiently answered the 

423 question (2B). 

424 Finally, a fourth sub-experiment was added for comparison, to test the transferability 

425 of the LSTM-based model trained on the 523-CAMELS dataset. The basins of the 523-

426 CAMELS dataset were also divided into the training (Train-c) and test (PUB-c). Then, the 

427 models trained on Train-c were tested on itself and other subsets (PUB-c/PUB-z /PUB-s/PUB-

428 l). The details of all four of these sub-experiments are listed in Table 3. 

429

430 Table 3. A summary of the training and testing datasets for sub-experiments exploring PUB 

431 with dams. All models were trained from January 1990 through December 1999, and tested 

432 from January 2000 through December 2009. Multiple basin counts are given for each case of 

433 the first three sub-experiments, as we ran two tests (and therefore performed the basin 

434 groupings twice) for each case. For example, in the first sub-experiment, Train-z had 299 

435 basins for the first run, and 309 basins for the second run. We list the Train-z and PUB-z 

436 datasets twice in the first and second sub-experiments, because they belong to two 

437 independent sub-experiments.

438

sub-experiment ID training dataset (explanations) test dataset (explanations)

Train-z (same as the training set)1 Train-z 
(299/309 randomly selected 
zero-dor basins) PUB-z 

(309/209 zero-dor basins that are 
different from those in Train-z)
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PUB-s
(300/292 randomly selected 
small-dor basins)

PUB-z (280/272 zero-dor basins 
that are different from those in 
Train-zs)

Train-zs
(A mixture of 544/560 zero-dor or 
small-dor basins)

PUB-s (280/272 small-dor basins 
that are different from those in 
Train-zs)

Train-z (same as the training set)

PUB-z (305/295 zero-dor basins 
that are different from those in 
Train-z)

Train-z
(295/305 randomly selected 
zero-dor basins)

PUB-l (297/289 randomly 
selected large-dor basins)

PUB-z (264/256 zero-dor basins 
that are different from those in 
Train-zl)

2

Train-zl
(A mixture of 512/528 zero-dor or 
large-dor basins)

PUB-l (264/256 large-dor basins 
that are different from those in 
Train-zl)

Train-s (same as the training set)

PUB-s (879/871 small-dor basins 
that are different from those in 
Train-s)

Train-s
(871/879 randomly selected 
small-dor basins)

PUB-l (639/634 randomly 
selected large-dor basins)

PUB-s (444/438 small-dor basins 
that are different from those in 
Train-sl)

3

Train-sl
(A mixture of 876/888 small-dor 
or large-dor basins)

PUB-l (444/438 large-dor basins 
that are different from those in 
Train-sl)

Train-c (same as the training set)4 Train-c 
(257/264 basins in the 523-
CAMELS dataset) PUB-c (264/257 basins that are 

different from the Train-c dataset, 
but still in the 523-CAMELS 
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dataset)

PUB-z (383 zero-dor basins that 
are different from the 523-
CAMELS dataset)

PUB-s (1482 small-dor basins 
that are different from the 523-
CAMELS dataset)

PUB-l (1169 large-dor basins that 
are different from the 523-
CAMELS dataset)

439

440 2.5. Metrics

441 In this study, the metrics used to mathematically quantify the accuracy of the models 

442 included bias, Pearson’s correlation (Corr), the Nash-Sutcliffe model efficiency coefficient 

443 (NSE) (Nash and Sutcliffe, 1970) and Kling-Gupta efficiency (KGE) (Gupta et al., 2009). Bias 

444 is the mean difference between modeled and observed values. Corr is the linear correlation 

445 coefficient between modeled and observed values, and is not influenced by bias. NSE is a 

446 normalized statistic that determines the relative magnitude of the residual variance compared 

447 to the measured data variance. KGE is a nonlinear combination of correlation, flow variability 

448 measure, and bias; it is another common metric to evaluate how well the models perform. We 

449 also reported the percent bias of the top 2% high flow volume range (FHV) and the percent 

450 bias of the bottom 30% low flow volume range (FLV) (Yilmaz et al., 2008). FHV and FLV 

451 highlight the performance of the model for peak flows and baseflow, respectively. Metrics for 

452 all experiments in this study are reported for the test period (01/01/2000-12/31/2009). 

453

454 3. Results and Discussion

455 3.1. CONUS-scale model with reservoirs

456

457 For the 3557 basins in the full dataset, the ensemble median NSE of the CONUS-scale 

458 model reached 0.74 (Figure 2c, details of ensemble experiments recorded in Appendix Table 
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459 S3). This value is at the same level as the previous benchmarks with the CAMELS reference-

460 basin dataset (Feng et al., 2020a; Kratzert et al., 2020), despite that 83% of the 3557 basins 

461 have dams present in GAGES-II. When the models trained on CAMELS (LSTM-CAMELS) 

462 and CONUS (LSTM-CONUS) were tested on the 523-CAMELS baseline reference dataset, 

463 both achieved a median NSE values of 0.75 (Figure 2c, more details in Appendix Table S3). 

464

465                    (a)                       (b)

466  

467       (c)                                                                             (d)

468  

469  (e)                                           (f)
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470  

471 Figure 2. Comparison of the empirical cumulative distribution functions (CDF) for the 523 

472 basins tested in LSTM-CONUS and LSTM-CAMELS, and the 3557 basins in LSTM-CONUS. 

473 The CDF of FLV does not reach 1.0 because the 30% low flow interval for some basins is 

474 completely composed of zero-flow observations. Therefore, for these basins, the percent bias 

475 is infinite, and thus the x-axis cannot include them.

476

477 The high NSE for the entire set was somewhat unexpected, because we had earlier 

478 thought that reservoirs would create challenges for LSTM and there may not be reliable 

479 mapping relationships that could be learned on a large scale. Comparing our results to those 

480 reported in the literature, a NSE of 0.74 certainly represents a state-of-the-art prediction for 

481 basins with reservoirs, and a much more operationally-reliable model. Besides the values 

482 reported in literature summarized in the Introduction and Table S1, many of which reported 

483 negative NSEs for this challenging problem, the closest value we can find in the literature was 

484 Payan et al. (2008), who added reservoirs into a simple lumped hydrologic model, tested this 

485 model in 46 basins (mostly in France), and reported a mean NSE of 0.68. We would also like 

486 to note that the meteorological data for CONUS seems to have larger error than the European 

487 counterpart, which could lead to our model presenting an even higher NSE with European 

488 basins if we were to train our models there. In line with this hypothesis, some of our previous 

489 work showed that we could obtain a NSE of 0.84 for CAMELS-GB (Coxon et al., 2020), which 
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490 has 670 basins from United Kingdom (Ma et al., 2021), while the same model with the same 

491 training procedure could only achieve a NSE of 0.74 for CAMELS over CONUS.

492

493 When tested on the 523-CAMELS dataset, the expanded dataset led to slightly 

494 improved overall bias with almost the same correlation but slightly decreased KGE (noticeable 

495 by comparing red and blue lines in Figure 2a-b,d). Since KGE is a composite metric of 

496 correlation, flow variability, and bias, we suspect that additional samples in the larger dataset 

497 enlarged the flow variability, which makes it a little more difficult for LSTM-CONUS to capture 

498 the flow variability for the 523 basins. This hypothesis can be further validated by looking at 

499 the values for FHV and FLV. The median FHV values when tested on the 523 CAMELS basins 

500 were -10% for LSTM-CONUS and -4% for LSTM-CAMELS, showing a minor increase in high-

501 flow bias for the expanded dataset (Figure 2e). In contrast, for the same test set, the low-flow 

502 simulations were improved by the use of a bigger training dataset, as the median FLV values 

503 were 28% for LSTM-CONUS, and 33% for LSTM-CAMELS (Figure 2f). Compared to CAMELS, 

504 we suspect the expanded set may contain a higher fraction of basins with large reservoirs 

505 which attenuate the peak flow, and hence the LSTM-CONUS model tended to predict lower 

506 peaks.

507

508 (a) NSE map of LSTM-CONUS                             (b) NSE map of LSTM-CAMELS

509  

510 Figure 3. NSE spatial patterns of the ensemble results of (a) LSTM-CONUS and (b) LSTM-

511 CAMELS.

512
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513 LSTM-CONUS and LSTM-CAMELS both showed good performance in the 

514 northwestern CONUS and most parts of the eastern CONUS, but had relatively poor 

515 performance on the Great Plains, Texas, Oklahoma, Kansas, and parts of California (Figure 

516 3). The regional distribution of NSEs is largely in line with earlier work (Feng et al., 2020a), 

517 where basins on the Great Plains and the extremely-dry southwestern border performed 

518 poorly with LSTM-based modeling. Evidently these basins in the central CONUS continue to 

519 pose challenges for LSTM despite the larger dataset, perhaps because they are still large 

520 basins where the homogeneous assumption of the LSTM-based models breaks down. 

521

522 3.2. Analysis of the impacts of reservoir-related factors

523

524 Using the results from the CONUS-scale simulation (LSTM-CONUS), we explored the 

525 uncertainty of the current LSTM-based model guided by three attributes: the capacity-to-runoff 

526 ratio (degree of regulation, dor), the purpose of the dam and its associated reservoir, and the 

527 presence of diversion (Figure 4a). There was a clear pattern regarding dor: regardless of the 

528 purpose, the overall model performance, as quantified by the median NSE, was always better 

529 for small-dor basins than for larger-dor ones (see Figure 4d). This observation differs from 

530 previously-reported results obtained with a process-based model (Shin et al., 2019), which 

531 had more difficulty predicting the streamflow of basins with small-capacity reservoirs 

532 (corresponding to small dor). The management policies of reservoirs could change over time 

533 and we think that is potentially the reason why the model did not perform as well for large-dor 

534 basins. However, for small-dor reservoirs, the model still delivered excellent performance so 

535 such changes in policies may not have resulted in dramatic impacts for these small reservoirs. 

536 A first-order visualization of the impacts of other control variables are given in Appendix Figure 

537 S2.

538

539 Exploring model uncertainty based on dam purpose not only showcased the 

540 uncertainty of the LSTM-based models, but also clearly indicated that different types of 
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541 reservoirs exert varied influences on streamflow. Among all the various dam purposes, basins 

542 with reservoirs mainly for recreation (R) or water supply (S) were easier to model. It may be 

543 inferred that the water storages of these reservoirs changed relatively little on a daily scale to 

544 achieve their purposes and therefore had less impact on the streamflow than other reservoirs 

545 (Ryan et al., 2020). Three types of reservoir purposes stood out as being more challenging to 

546 predict (Figure 4b): fire protection or farm ponds (P), irrigation (I), and hydroelectric (H). Basins 

547 with "P" reservoirs, for any dor value range regardless of the presence of diversion, were 

548 difficult to predict and had the worst performance of all those in the small-dor category. This 

549 indicates that LSTM had trouble finding a universal relationship to model processes for a chain 

550 of many small, individually-regulated ponds. Difficulty in modeling irrigation reservoirs was not 

551 unexpected, as it has been shown that irrigation water usage has specific seasonal variations, 

552 and is related to the crop type, field, and other site-specific information (Shin et al., 2019). 

553 Critical information that would help with modeling for these basins, such as water use and 

554 timing, is not generically available. Likewise, the operational policies of hydroelectric (H) dams 

555 seek to optimize electricity production, and are therefore influenced by the prices on the local 

556 electricity grid (Giuliani et al., 2014), which were not included in this dataset.

557 The presence of diversion substantially decreased NSE values (Figure 4a). For 

558 instance, it is visibly apparent that there are smaller NSE values for dam purposes "I", "O'', 

559 "P", and "R" in the basins with diversion. This was also expected: diversion influences the 

560 water balance, but because no information about the quantity of diverted water was available 

561 to the LSTM-based model, the model couldn’t understand the imbalance, leading to reduced 

562 prediction performance. A clearer separation is seen in the results of four specific cases, which 

563 differ by combinations of only two categorical variables -- the dor value range, and the 

564 presence of diversion (Figure 4c). The median NSEs for small-dor basins without diversion, 

565 small-dor basins with diversion, large-dor basins without diversion and large-dor basins with 

566 diversion were 0.78, 0.76, 0.65, and 0.62, respectively. It was evident that LSTM could reach 

567 the best performance in small-dor basins without diversion, while the worst performance 
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568 occurred in large-dor basins with diversion, and thus the effects of the two factors seem to be 

569 additive.

570

571

572 (a)

573

574  (b)                       (c)

575  

576 (d)
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577

578 Figure 4. (a) NSE distributions with three categorical variables: dor value range (“small-dor” 

579 basins have 0<dor< 0.1 and “large-dor” basins have dor ≥ 0.1), main purposes of reservoirs 

580 in a basin, and presence of diversion. Dam purposes are C: Flood Control and Stormwater 

581 Management; F: Fish and Wildlife Pond; H: Hydroelectric; I: Irrigation; O: Other; P: Fire 

582 Protection, Stock, or Small Farm Pond; R: Recreation; S: Water Supply; T: Tailings; and X: 

583 Unknown. (b) NSE distribution for basins with different main dam purposes. (c) NSE empirical 

584 cumulative distribution function curves from LSTM-CONUS and four cases resulting from 

585 combinations of two categorical variables: dor range and presence of diversion. The blue and 

586 green lines respectively represent the NSE distributions of small-dor basins with and without 

587 diversion, which were picked out from the ensemble result of LSTM-CONUS. The red and 

588 orange lines respectively indicate the NSE distributions of large-dor basins with and without 

589 diversion. The grey dashed line represents the empirical CDF of LSTM-CONUS. (d) NSE as 

590 a function of dor values all 3557 basins; the ranges of dor values: 0, (0, 0.02], (0.02, 0.05], 

591 (0.05, 0.1], (0.1, 0.2], (0.2, 0.4], (0.4, 0.8], >0.8, where “(]” means a left side half open interval; 

592 the correspond numbers of basins in each range: 610, 1076, 377, 309, 311, 277, 247, 350; 

593 other plots in this figure are for dam characteristics dataset shown in table 2.

594
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595 The main challenges for LSTM-based modeling of reservoirs are clearly delineated 

596 (Figure 4a): LSTM had difficulty predicting streamflow for large-dor basins with dams for fish 

597 and wildlife, flood control, hydroelectric power generation, irrigation, and fire protection, with 

598 difficulty increasing in this order. Diversion further added to the challenge. To our knowledge, 

599 such identification of specific challenges has not been previously reported. Additionally, it was 

600 not previously clear that these challenges mainly exist only for large-dor basins. Small-dor 

601 basins, even those with reservoirs for irrigation and hydroelectric purposes, can be reasonably 

602 captured by LSTM, presumably because they have limited adaptive capacity. LSTM can 

603 approximate an optimal information extractor, which suggests that we did not supply sufficient 

604 information needed to model the more challenging cases and provides a targeted direction for 

605 future work. 

606

607 dor is apparently a major control on LSTM model performance (Figure 4d). 

608 Interestingly, small-dor basins, instead of zero-dor basins, have the highest performance. The 

609 median NSE in the 0.05-0.1 dor bin is almost 0.8, a very high number (we offer explanations 

610 later). Below dor<0.1 human decisions cannot shift water availability across seasons. As 

611 discussed earlier, basins with dor=0.1 have the reservoir storage equivalent to approximately 

612 one month of average streamflow. As dor gets bigger than this amount, they have more 

613 capability to regulate flow on a seasonable scale, and the impact of human choice becomes 

614 more prominent. We also found the basin with more reservoirs could have equivalent or higher 

615 performance (Figure S2l), which suggests the difficulty may have mainly come from one or 

616 few largest dams. Due to sometimes unpredictable human decisions influenced and also the 

617 nonstationarity in such decisions, e.g., shift in reservoir management policies, the dor>0.1 

618 becomes increasingly difficult to simulate. This figure is also the basis for us to choose dor=0.1 

619 as the threshold. Despite the challenges for large-dor basins, we nonetheless note that even 

620 for these basins, LSTM obtained a median NSE of 0.65 for basins without diversion, which is 

621 higher than many literature values reported in Table S1. To put things even further into context, 

622 a recent study for a basin with a major dam (USGS 11462500, Russian River near Hopland, 
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623 California, dor = 0.17) reported oftentimes negative daily NSE values and correlation between 

624 0.5 to 0.8 for different months of the year (Kim et al., 2020). In contrast, the CONUS-scale 

625 model developed in this study reported a very high NSE value of 0.88 and correlation of 0.94 

626 for this specific station. For a different comparison, the National Water Model reported an NSE 

627 of 0.62 for reference basins in CAMELS (Kratzert et al., 2019a).

628

629 3.3. Impacts of training dataset

630

631 Our experimental results suggest that datasets with different dor value ranges can be 

632 trained together to enhance overall performance, and at the very least, grouped training should 

633 not exert a significant detrimental impact on the model (Figure 5a, see more details in Tables 

634 S3 and S4, Appendix). With the inclusion of small-dor basins in the training set (LSTM-ZS), 

635 there was a small improvement in predictions for undammed basins (Wilcoxon signed-rank 

636 test: p=4.9ｘ10-6). For small-dor basins, there were no clear differences in test performance 

637 when training with zero-dor basins together. In the large-dor basins, as compared to the result 

638 of LSTM-L (training with only large-dor basins), all other cases reported slightly increased NSE 

639 values and fewer “catastrophic failures” (cases with NSE close to or smaller than 0), 

640 suggesting that new information was brought in by pooling information together. It is possible 

641 that the inclusion of zero-dor or small-dor basins allowed the model to better understand 

642 natural flows and enabled better modeling of the large-dor basins. Such a pattern fits with our 

643 general observations obtained from training DL models. 

644

645 We did see a slight exception to this pattern, however, when adding large-dor basins 

646 to the training set. When large-dor basins were added to the training set, a minute deterioration 

647 in NSE was observed when this model was tested on zero-dor and small-dor basins: the 

648 median NSE decreased from 0.72 to 0.71 for LSTM-ZL (left panel of Figure 5a, Wilcoxon 

649 signed-rank test: p=1.3ｘ10-4), and there was a declination from 0.79 to 0.78 shown for LSTM-
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650 SL (center panel of Figure 5a, Wilcoxon signed-rank test: p=1.2ｘ10-32). We hypothesize that 

651 operations of large reservoirs are characteristically different from those of smaller reservoirs, 

652 and therefore the inclusion of large reservoirs introduced some noise to the data and made it 

653 more difficult for LSTM to grasp a universal pattern. Nevertheless, the adverse impact was 

654 quite minor. This result, along with our other observations of LSTM-CONUS (Section 3.1), also 

655 imply that it should be possible to fine-tune the LSTM-CONUS model for a local region to 

656 obtain refined simulations.

657 We were surprised to see that small-dor basins had notably higher NSE values 

658 (median NSE ~0.79) than zero-dor basins (median NSE ~0.72) (Figure 5a). Two hypotheses 

659 could potentially explain this phenomenon: first, that the small-dor basins may be concentrated 

660 in certain areas, e.g., mountainous areas, where NSEs tend to be higher; second, that a small-

661 dor reservoir may serve as a buffer to boost the storage of the system, thereby reducing the 

662 impacts of flash precipitation peaks which are challenging to model (Feng et al., 2020a). 

663 Looking at the basins on a map and in the parameter space (Figure 5b), however, while 

664 mountainous basins do have higher NSEs, the zero-dor and small-dor basins are mixed in 

665 space and there is no spatial aggregation of one or the other. Therefore, we reject the first 

666 hypothesis (concentration) and lean toward the second one (buffer).

667

668 (a)
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669

670 (b)

671

672 Figure 5. (a) Boxplots of NSE values for zero-dor basins (Z, dor=0), small-dor basins (S, 

673 0<dor<0.1) and large-dor basins (L, dor≥0.1). Green, blue, and red boxes show the results 

674 from models respectively tested on zero-dor, small-dor, and large-dor basins, while the training 

675 sets are noted on the x-axis labels. For each color, the lightest-colored box was trained solely 

676 with the same subset of basins on which it was tested, while the others had additional subsets 

677 included in the training sets. Basins in the test sets were always subsets of the training sets, 
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678 and the models were trained in 1990-1999 and tested in 2000-2009. (b) The left part is a NSE 

679 map of the western CONUS where small-dor and zero-dor basins coexisted. There are 303 

680 zero-dor basins and 310 small-dor basins shown here. The right is a scatter plot of the 

681 relationship between NSE and SLOPE_PCT (mean watershed slope, as a percent). The NSE 

682 values are part of the results for LSTM-CONUS (section 3.1). Red circular markers represent 

683 the zero-dor sites, and blue x-shaped markers represent the small-dor sites. For the map only, 

684 sites with lighter colors have lower NSE values. 

685

686 Additionally, we were also surprised to see that LSTM showed reasonably good 

687 performance on even large-dor basins, with median NSE values of ~0.64 in the overall 

688 CONUS training sets (the rightmost boxplot in Figure 4a), respectively, which were still 

689 comparable to SAC-SMA’s median NSE of 0.65 (Feng et al., 2020a) for reference basins. This 

690 result suggests a large advantage of LSTM for modeling reservoirs as compared to earlier 

691 methods.

692

693 3.4. The PUB experiments and model transferability

694

695 As we asked in question 2 in the introduction, were the NSE values for dammed basins 

696 similar to previous results with CAMELS because these basins in fact behave similarly? If this 

697 was not the case, how different are these basins? Our stratified PUB experiments showed that 

698 there were substantial differences between zero-dor, small-dor, and large-dor basins such that 

699 applying models trained only on one type of basin to other basin types caused significant 

700 performance drop that could not be explained solely by spatial extrapolation (Figure 6). For 

701 example, the median NSE values for “Train-z”, “PUB-z”, and “PUB-s” were 0.65, 0.51, and -

702 0.06, respectively (Figure 6a). The scenario Train-z was a temporal test only, so this NSE 

703 value of 0.65 represents model performance without spatial extrapolation (this value was lower 

704 than LSTM-Z shown in Figure 5a because the training sample size was smaller: the zero-dor 

705 basins were randomly split for this experiment, as explained in section 2.4.4). The decline from 



32

706 0.65 to 0.51 for PUB-z was then due to spatial extrapolation in the same zero-dor group. The 

707 more dramatic decline from 0.51 for PUB-z to -0.06 for PUB-s can be entirely attributed to the 

708 behavioral difference between zero-dor and small-dor basins. We also note larger declination 

709 for large-dor basins (Figure 6b-c), with median NSE values of -0.19 and 0.18 for the PUB-l 

710 cases.

711 Including diverse basins in the training dataset substantially elevated overall PUB 

712 performance. The mixed training sets (Train-zs, Train-zl, and Train-sl, the boxes on the right 

713 side of each panel in Figure 6a-c) had greatly improved median NSE values, as well as greatly 

714 reduced incidences of catastrophic failures (cases with NSE close to 0). 

715 It is noteworthy to mention that when we trained a model solely on basins subset from 

716 the 523-CAMELS dataset and then tested it on the other basins of 523-CAMELS as well as 

717 zero-, small-, and large-dor basins, the model gave outright disastrous results for PUB-z, PUB-

718 s, and PUB-l (Figure 6d). This means that CAMELS basins, as they are reference basins, 

719 differ fundamentally from the others, even from the zero-dor basins. This result distinctively 

720 highlights the danger of using CAMELS basins as the whole training set for continental-scale 

721 modeling, and also suggests we cannot simply ignore small reservoirs or simply treat them as 

722 being equivalent to reference basins.

723
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724

725 Figure 6. Boxplots from PUB sub-experiments where training and testing basins were from 

726 different combinations of basin types: c indicates 523-CAMELS, z indicates zero-dor basins, 

727 s indicates small-dor basins, and l indicates large-dor basins. Combinations of letters indicate 

728 that a combination of the indicated basin types were used (refer to Table 3 for details). The 

729 drop in performance from training basin-located test results to PUB-basin-located test results 

730 of the same type (e.g. Train-z vs PUB-z) represents the effect of spatial extrapolation, while 

731 the drop across different basin type combinations (e.g. PUB-z vs PUB-s) represents the effect 
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732 of migrating models across reservoir regimes. A side note: the PUB-c in (d), with a median of 

733 0.60, is not comparable to other PUB tests in the literature. Here we only used ~260 CAMELS 

734 basins as training data and did not employ an ensemble for different random seeds (so as to 

735 be inline with other experiments in this figure). This test is solely shown to highlight the 

736 difference between the CAMELS basins and the others. 

737

738 3.5. Further Discussion

739

740 In future work, we could allow LSTM to estimate model uncertainty based on input 

741 attributes, as shown in the modeling of soil moisture (Fang et al., 2020) and rainfall-runoff 

742 (Klotz et al., 2020). To further improve modeling capabilities for the more challenging cases, 

743 it could be useful to incorporate more information regarding water use, electricity price patterns, 

744 and estimated diversion rates from sources like water management models (Yates et al., 2005) 

745 into the context of optimization processes (Giuliani et al., 2016). Fine-tuning may be another 

746 approach to improve predictions in more challenging basins (Sampson et al., 2020). For 

747 example, Ma et al. (2021) transferred their model trained on the CAMELS basins over to a few 

748 basins in Sichuan province in China and obtained better results than the model trained with 

749 all local basins. Other reservoir-related information such as distribution of the storage capacity 

750 among the basin’s reservoirs, surface water area, or storage change in a basin may also be 

751 used as inputs through an encoder unit (Feng et al., 2020b). Moreover, physics-guided 

752 machine learning (Read et al., 2019) could be employed to provide more stability where 

753 monitoring data is scarce. In addition, a distributed version of the deep learning models could 

754 represent the spatial heterogeneity of a basin and may perform better than the lumped ones 

755 for large basins. In the future, machine-learning-based routing schemes (Bindas et al., 2020) 

756 can be added to support flood modeling in major rivers.

757 As a rule of thumb for DL models, pooling data together almost always helped improve 

758 modeling, which was confirmed by the zero-dor and small-dor cases shown in this study. 

759 However, here the large-dor basins could slightly pull down the metrics for other cases, which 
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760 deviated, albeit in a minor way, from this rule. We think that this was due to a combination of 

761 the rainfall-runoff processes from different basins having very dissimilar patterns, and the 

762 information from the inputs not being enough to discern differences between reservoir regimes, 

763 causing the LSTM-based model to struggle in fitting all of this information into one universal 

764 model. We suspect that the large-dor basins represent an extreme case of the problem of 

765 unmodelable dissimilarity in geoscience. The cut-off dor of 0.1 in this paper is an operational 

766 threshold, but may not be the only choice. Other dor cut-off values may also be applicable, 

767 but this was not the focus of this paper. Future work should concentrate on how to incorporate 

768 more information and tune the model structure to train a universal model for all non-

769 regulated/regulated basins.

770

771 4. Conclusion

772

773 Prior work has documented the success of modeling rainfall-runoff processes with 

774 LSTM in reference basins with minimal anthropogenic impacts. However, to our knowledge, 

775 no previous deep-learning based study focused on basins significantly impacted by reservoir 

776 operations at a continental scale, or the modeling implications of reservoir attributes. For this 

777 work, we created a new dataset consisting of 3557 basins over the CONUS, and trained an 

778 LSTM-based model which achieved an ensemble test median Nash Sutcliffe model efficiency 

779 coefficient (NSE) of 0.74. This performance was at the same record level as reported for 

780 previous LSTM-based modeling benchmarks, which showed for the first time that many 

781 reservoirs can be modeled as part of the standard basin rainfall-runoff and storage processes. 

782 In fact, these results provide the first benchmarks for basins with and without reservoirs: zero-

783 dor, small-dor, and large-dor basin subsets had median NSE values of 0.72, 0.79, and 0.60, 

784 respectively. Furthermore, the NSE value for even the most challenging large-dor basins in 

785 the model over the CONUS (0.64) was still comparable to that of the current operational 

786 hydrologic model, SAC-SMA, trained and tested only with reference basins (0.65) (Feng et al., 
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787 2020a), which further highlights the effectiveness of LSTM as a competitive option for 

788 emulating basins with reservoirs for large-scale hydrologic modeling. 

789 Our results provided us with a coherent modeling strategy and some useful lessons. 

790 We showed that zero-dor and small-dor basins behave characteristically differently (and are 

791 also different from CAMELS reference basins), which strongly suggests that we cannot simply 

792 ignore smaller reservoirs out of convenience and treat them as natural flow, the standard 

793 practice in some process-based models. If using a data-driven model, the most beneficial 

794 strategy we determined for small reservoirs was to include their reservoir attributes and train 

795 a lumped, uniform model that simulated them as part of the basin rainfall-runoff processes. 

796 We showed that basins with different dor values can be trained together over a large dataset 

797 to obtain record-level modeling performance, a strategy which could greatly simplify the 

798 modeling process. If using a process-based model, the corresponding approach may be to 

799 modify parameters in the model, e.g., linear reservoir parameters, to represent the impacts of 

800 smaller reservoirs. The LSTM-based model obtained the best performance in small-dor basins 

801 without diversion, especially for those with reservoirs for water supply and recreation. For the 

802 large-dor reservoirs of certain types, i.e., fire protection or farm ponds, hydroelectric, and 

803 irrigation dams which are most difficult to model, we may adopt a mixed approach to represent 

804 them separately. Considering LSTM is already very strong with respect to feature extraction, 

805 it is likely that more relevant information, e.g., electricity prices or irrigation water demand, will 

806 be needed to improve their simulation. This paper is the first time such a systematic analysis 

807 has been provided from a data-driven perspective. 

808 Our PUB tests advised us of the most important factor in LSTM-based modeling of 

809 dammed basins: there must be sufficient representation of small-dor and large-dor basins in 

810 the training set. Dammed and undammed basins behave characteristically differently, and 

811 migrating models between them can be dangerous: when a model trained only on CAMELS 

812 reference basins or zero-dor basins was tested on basins with dams present, we encountered 

813 catastrophic failures. We showed that pooling all data together for model training tended to 

814 improve results, and even when it did not (likely due to insufficient input information and very 
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815 heterogeneous training data bringing in noise), the inclusion of training data from other 

816 scenarios still did not significantly jeopardize the results. 

817
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841

842 Figure S1. The illustration of the LSTM-based model structure and its unit. is the vector of 𝑥(𝑡)
0  

843 raw inputs for the time step t,  is the length of time sequence of LSTM in the training period. 𝜌

844 ReLU(linear) is the rectified linear unit,  is the input vector to the LSTM cell,  is the output 𝑥(𝑡) 𝑔(𝑡)

845 of the input node, , ,  are the forget, input and output gates, respectively,  𝑓(𝑡) 𝑖(𝑡) 𝑜(𝑡) 𝑠(𝑡)

846 represents the states of memory cells,  represents hidden states, and   is the predicted ℎ(𝑡) 𝑦(𝑡)

847 output which is compared to streamflow observations.

848

849

850 (a) NDAMS                                             (b) STOR_NOR                    (c) RAW_DIS_NEAREST_MAJ_DAM
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851   

852 (d) RAW_AVG_DIS_ALLDAMS              (e) FRESHW_WITHDRAWAL                       (f) PCT_IRRIG_AG

853   

854              (g) POWER_SUM_MW                                  (h) PDEN_BLOCK                            (i) ROADS_KM_SQ_KM

855   

856 (j) DAM_GAGE_DIS_VAR                      (k) DAM_STORAGE_STD                      (l) DAM_NUM_RANGE

857   

858 Figure S2. Scatter plots (subfigure a-k) and a boxplot (subfigure l) for relationships between 

859 NSE values (≥0) from the LSTM-CONUS model and some reservoir-related attributes. There 

860 are many attributes potentially impacting the performance of the LSTM-based model. We 

861 analyzed the information about dams and other anthropogenic hydrologic modifications in 
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862 the basin in the GAGES-II dataset. (a) NDAMS: number of dams in a basin; (b) STOR_NOR: 

863 dam normal storage in a basin, megaliters total storage per sq km; (c) 

864 RAW_DIS_NEAREST_MAJ_DAM: raw straight line distance of gage location to nearest 

865 major dam in watershed, km. Major dams are defined as being >= 50 feet in height (15m) or 

866 having storage >= 5,000 acre feet in GAGES-II; (d) RAW_AVG_DIS_ALLDAMS: raw 

867 average straight line distance of gage location to all dams in watershed, km; (e) 

868 FRESHW_WITHDRAWAL: freshwater withdrawal, megaliters (1000 cubic meters) per year 

869 per sq km; (f) PCT_IRRIG_AG: percent of watershed in irrigated agriculture; (g) 

870 POWER_SUM_MW: sum of MW operating capability of electric generation power plants in 

871 watershed of type "coal", "gas", "nuclear", "petro", or "water"; (h) PDEN_BLOCK: population 

872 density in the watershed, persons per sq km; (i) ROADS_KM_SQ_KM: road density, km of 

873 roads per watershed sq km; (j) DAM_GAGE_DIS_VAR: the coefficient of variation of the 

874 distances from each dam to the gage location in a basin; (k) DAM_STORAGE_STD: the 

875 standard deviation (std) of the normal storages (stor) of reservoirs in a basin; we set 

876 std(log(stor+1)) as the x-axis variable; “log” means the natural logarithm; (l) 

877 DAM_NUM_RANGE: the ranges of dam numbers -- 0, 1, (1, 3], (3, 5], (5, 10], (10, 20], (20, 

878 50], >50, where “(]” means a left side half open interval; the correspond numbers of basins in 

879 each range: 610, 362, 428, 284, 375, 442, 437, 619.

880

881

882

883 Table S1. Reservoir simulation results in the literature that do not use recent observations (i.e. 

884 data assimilation or data integration). For comparison, our median NSE values reported here 

885 were 0.74 for the whole set and 0.78 for basins with small reservoirs. For comparability, we 

886 did not include papers that used continual inputs of recent observations of inflow, outflow, or 

887 storage.

888
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Reference Metric Description

Shin et al. 

(2019)

No NSE reported. 
Correlations of monthly 
outflow for the new scheme 
(Rnew) ranged from -0.07 to 
0.63 with a median of 0.25, 
which were higher than 
Hanasaki et al. (2006) and 
Biemans et al. (2011) 
schemes.

high-resolution continental-scale reservoir 

scheme (grid-centric) which improved the 

simulations of reservoirs greatly over the 

contiguous United States. Tested over six 

reservoirs in the Missouri, Sacramento, 

Columbia, San Joaquin, and Colorado River 

Basins

Voison et al. 

(2013)

Best monthly NSE of 
regulated flow is 0.62. 
Negative NSEs for two 
other locations

An improved grid-centric reservoir formulation to 

the heavily dammed Columbia River Basin. 

Authors showed performance metrics for 

monthly regulated flow at three locations.

Wu and Chen 

(2012)

NSE of outflow ≈ 0.36 A reservoir operation scheme to decide outflow 

and its distribution on hydropower, water supply 

and impoundment purposes according to the 

inflow and storage. Authors calibrated the 

coefficients of equations in the new scheme 

during 1965-1984 and validated the scheme in 

the period 1987-1988 for the Xinfengjiang 

reservoir

Kim et al., 

(2020)

Positive monthly NSEs of 
daily runoff discharges for 
real scheduled release; 
most simulated releases 
brought negative NSEs 
(reading off Figure 7)

A grid-centric scheme inside the NWM. Tested 

on four locations and 21 hydrographs. An NSE 

of 0.78 was reported for a short period (~11 

days) of hourly simulation at one of the locations, 

but Figure 7 showed mostly negative NSEs.
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Zajac et al. 

(2017)

Best NSE of streamflow is 
0.61 (reading off Figure 6)

Global daily streamflow simulations of a spatially 

distributed LISFLOOD hydrological model in 390 

stations during 1980-2013

Zhao et al. 

(2016)

NSE of 0.74 and 0.51 for 

outflow of two reservoirs, 

respectively.

A multi-purpose reservoir module with 

predefined complex operational rules was 

integrated into the Distributed Hydrology Soil 

Vegetation Model (DHSVM). The performance of 

the model was tested over the upper Brazos 

River Basin in Texas, where two reservoirs, Lake 

Whitney and Aquilla Lake, are located

Payan et al. 

(2008)

Mean NSE = 0.68 46 basins (mostly in France). 

The quality of the meteorologic dataset in the 

US, used in this dataset, is potentially lower than 

the European counterpart. Our work showed that 

we could obtain NSE=0.84 for CAMELS-GB 

(Coxon et al., 2020), which has 670 basins from 

United Kingdom (Ma et al., 2021), while the 

same model with the same training procedure 

can achieve only 0.74 for CAMELS over 

CONUS, consistent with other studies. Beck et 

al., (2020) also showed that NSE for US basins 

are not higher than global basins.

Dang et al. 

(2020)

A NSE range of 0.68-0.79 
for the calibration period, 
but no value was reported 
for the validation period

A novel variant of VIC’s routing model to simulate 

the storage dynamics of water reservoirs for the 

Upper Mekong. However, this study focused on 
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the effect of parameter compensation during 

calibrating the model or without the reservoir 

module. Hence, the author did not report on the 

test period.

889

890

891

892 Table S2. Summary of the forcing and attribute variables used as inputs to the LSTM-based 

893 model

894

Variable Type Variable Name Description Unit

dayl Day length s

prcp Precipitation mm/day

srad Solar radiation W/m2

swe Snow water equivalent mm

tmax Maximum temperature ℃

tmin Minimum temperature ℃

Forcing

vp Vapor pressure Pa

DRAIN_SQKM Watershed drainage area km2

ELEV_MEAN_M_
BASIN

Mean watershed elevation m

SLOPE_PCT Mean watershed slope %

Attributes Basic 
identification 
and 
topographic 
characteristic
s

STREAMS_KM_S
Q_KM

Stream density km of 
streams 
per 
watershe
d km2
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Percentages 
of land cover 
in the 
watershed

DEVNLCD06 Watershed percent 
"developed" (urban)

-

FORESTNLCD06 Watershed percent "forest" -

PLANTNLCD06 Watershed percent 
"planted/cultivated" 
(agriculture)

-

WATERNLCD06 Watershed percent Open 
Water 

-

SNOWICENLCD0
6

Watershed percent Perennial 
Ice/Snow

-

BARRENNLCD06 Watershed percent Natural 
Barren

-

SHRUBNLCD06 Watershed percent 
Shrubland

-

GRASSNLCD06 Watershed percent 
Herbaceous (grassland)

-

WOODYWETNLC
D06

Watershed percent Woody 
Wetlands

-

EMERGWETNLC
D06

Watershed percent Emergent 
Herbaceous Wetlands

-

Soil 
characteristic
s

AWCAVE Average value for the range 
of available water capacity for 
the soil layer or horizon

inches of 
water per 
inches of 
soil 
depth

PERMAVE Average permeability inches/h

BDAVE Average value of bulk density g/cm3

ROCKDEPAVE Average value of total soil 
thickness examined

inches

Geological 
characteristic
s

GEOL_REEDBU
SH_DOM

Dominant (highest percent of 
area) geology

-

GEOL_REEDBU
SH_DOM_PCT

Percentage of the watershed 
covered by the dominant 
geology type

-
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Local and 
cumulative 
dam variables

NDAMS_2009 Number of dams in 
watershed

-

STOR_NOR_200
9

Dam storage in watershed 
("NORMAL_STORAGE")

megaliter
s/km2

RAW_DIS_NEAR
EST_MAJ_DAM

Raw straightline distance of 
gage location to nearest 
major dam in watershed.

km

Other 
disturbance 
variables

CANALS_PCT Percent of stream kilometers 
coded as "Canal", "Ditch", or 
"Pipeline"

-

RAW_DIS_NEAR
EST_CANAL

Raw straightline distance of 
gage location to nearest 
canal/ditch/pipeline in 
watershed

km

FRESHW_WITH
DRAWAL

Freshwater withdrawal 
megaliters per year per sqkm

1000 m3

POWER_SUM_M
W

Sum of operating capability of 
electric generation power 
plants in watershed of type 
"coal", "gas", "nuclear", 
"petro", or "water"

MW

PDEN_2000_BLO
CK

Population density in the 
watershed

persons/
km2

ROADS_KM_SQ
_KM

Road density km of 
roads 
per 
watershe
d km2

IMPNLCD06 Watershed percent 
impervious surfaces

%

895

896

897

898 Table S3. Detailed ensemble results of LSTM-based models in this study

899

Model Section in the 
“Experiments”

Random seed NSE median Ensemble NSE 
median
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123 0.71

1234 0.71

12345 0.72

111 0.69

1111 0.72

LSTM-CONUS 2.4.1

11111 0.71

0.74

123 0.73

1234 0.74

12345 0.74

111 0.74

1111 0.68

LSTM-CAMELS 2.4.1

11111 0.73

0.75

123 0.69

1234 0.65

12345 0.71

111 0.69

1111 0.70

LSTM-Z 2.4.3

11111 0.68

0.72

123 0.77

1234 0.77

12345 0.78

111 0.78

1111 0.76

LSTM-S 2.4.3

11111 0.76

0.79
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123 0.52

1234 0.58

12345 0.57

111 0.54

1111 0.59

LSTM-L 2.4.3

11111 0.59

0.60

123 0.76

1234 0.74

12345 0.75

111 0.76

1111 0.77

LSTM-ZS 2.4.3

11111 0.76

0.77

123 0.64

1234 0.63

12345 0.64

111 0.63

1111 0.64

LSTM-ZL 2.4.3

11111 0.63

0.66

123 0.72

1234 0.73

LSTM-SL 2.4.3

12345 0.72

0.75
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111 0.72

1111 0.72

11111 0.72

900

901

902

903 Table S4. Ensemble testing results of basins with different dor ranges in different models 

904 (Section 3.3)

905

sub-experiment ID Test basins
(number of basins)

Training models median NSE

LSTM-Z 0.72

LSTM-ZS 0.72

LSTM-ZL 0.71

1 zero-dor basins
(610)

LSTM-CONUS 0.72

LSTM-S 0.79

LSTM-ZS 0.79

LSTM-SL 0.78

2 small-dor basins
(1762)

LSTM-CONUS 0.77

LSTM-L 0.60

LSTM-ZL 0.63

LSTM-SL 0.64

3 large-dor basins
(1185)

LSTM-CONUS 0.64

906
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1133 Highlights

1134 1. LSTM achieved state-of-the-art performance for modeling basins with reservoirs.
1135 2. Reservoir types, capacity-to-runoff ratio (dor) and diversion control streamflow.
1136 3. LSTM performed well for basins with reservoirs that store about a month of flow.
1137 4. It is crucial to include basins with reservoirs in the training set.
1138 5. Large-dor basins with certain types of dams are more difficult for LSTM.
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