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a b s t r a c t 

Many drinking water utilities drawing from waters susceptible to harmful algal blooms (HABs) are imple- 

menting monitoring tools that can alert them to the onset of blooms. Some have invested in fluorescence- 

based online monitoring probes to measure phycocyanin, a pigment found in cyanobacteria, but it is not 

clear how to best use the data generated. Previous studies have focused on correlating phycocyanin flu- 

orescence and cyanobacteria cell counts. However, not all utilities collect cell count data, making this 

method impossible to apply in some cases. Instead, this paper proposes a novel approach to determine 

when a utility needs to respond to a HAB based on machine learning by identifying anomalies in phyco- 

cyanin fluorescence data without the need for corresponding cell counts or biovolume. Four widespread 

and open source algorithms are evaluated on data collected at four buoys in Lake Erie from 2014 to 2019: 

local outlier factor (LOF), One-Class Support Vector Machine (SVM), elliptic envelope, and Isolation Forest 

(iForest). When trained on standardized historical data from 2014 to 2018 and tested on labelled 2019 

data collected at each buoy, the One-Class SVM and elliptic envelope models both achieve a maximum 

average F1 score of 0.86 among the four datasets. Therefore, One-Class SVM and elliptic envelope are 

promising algorithms for detecting potential HABs using fluorescence data only. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Cyanobacteria are increasingly threatening drinking water sup- 

lies worldwide ( Fernández et al., 2015 ). There is a need for im-

roved monitoring to trigger responses by stakeholders. Tradi- 

ional monitoring relies on visual observation of the source water 

nd cell counting by microscopy ( Chorus and Bartram, 1999 ; EPA 

ffice of Water, 2015 ; Health Canada, 2016 ). However, visual mon- 

toring of the water surface does not necessarily capture the con- 

itions at the intake of a drinking water treatment plant, and mi- 

roscopy is a labor-intensive and slow technique. Consequently, ap- 

roaches including gene quantification by quantitative polymerase 

hain reaction (qPCR), remote sensing, cell imaging, and real-time 

uorescence monitoring have been developed ( Pacheco et al., 2016 ; 

rivastava et al., 2013 ). However, qPCR kits must be used by treat- 

ent plant staff at appropriate measurement frequencies; remote 

ensing is limited to capturing the conditions at or near the water 
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urface; and automated cell imaging and identification techniques 

re promising but are often highly dependent on the quality of the 

odel calibration ( Jin et al., 2018 ). Of these, only cell imaging and

uorescence monitoring can be implemented online at the drink- 

ng water intake. 

Fluorescence monitoring probes measure the fluorescence of 

he cyanobacteria-specific photosynthetic pigment phycocyanin 

nd chlorophyll a, present in all photosynthetic organisms. There 

s a need to find a better way for utilities to use fluorescence data 

o trigger a response to mitigate the effects of a developing al- 

al bloom. In their response, a utility can also determine whether 

he bloom is a HAB that poses a potential toxin or taste and odor 

isk. The primary approach to interpreting phycocyanin fluores- 

ence data in the literature is to correlate it to cell counts or bio- 

olume determined by microscopy ( Bertone et al., 2018 ). The re- 

ulting coefficients of determination in field samples have ranged 

rom R 

2 = 0.41 to 0.87, indicating that a linear correlation gen- 

rally exists between phycocyanin fluorescence and cell counts or 

iovolume ( Almuhtaram et al., 2018 ). Threshold values for early 

arnings for cyanobacteria blooms can be set based on guide- 

ine values for cell counts or biovolumes given by various juris- 
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ictions including the World Health Organization (WHO). How- 

ver, the correlations can be site-specific and, if the composition 

f the cyanobacteria community changes, season-specific, requir- 

ng periodic validation of their accuracy by additional cell counting 

n field samples or raw water samples spiked with cyanobacteria 

ell cultures ( Chang et al., 2012 ; Loisa et al., 2015 ; Symes and van

gtrop, 2016 ). Consequently, using monitoring probes in this way 

ay require considerable continued effort to ensure the threshold 

alues remain relevant given changing local conditions ( Symes and 

an Ogtrop, 2016 ). 

Moreover, in practice, utilities do not regularly enumerate 

yanobacteria by microscopy. Consequently, monitoring data are 

ften used without quantitative correlations to cell counts by in- 

erpreting the fluorescence pattern in a qualitative way, to trig- 

er a response. For example, ( Zamyadi et al., 2016b ) set an arbi-

rary fluorescence threshold of 10% above the baseline phycocyanin 

eadings to trigger permanganate dosing in a full-scale trial to ox- 

dize cyanobacteria cells and microcystins. However, this approach 

s subjective and may be prone to bias and inefficiency. Therefore, 

here is a need to interpret real-time monitoring data such that 

 utility would be able to determine when to initiate their HAB 

esponse strategy without relying on slow and laborious manual 

ethods. 

The potential to use machine learning for anomaly detection 

o interpret phycocyanin fluorescence data has not yet been in- 

estigated despite successful applications for other types of wa- 

er quality data ( Hou et al., 2013 ; Jin et al., 2019 ; Liu et al., 2020 ;

hi et al., 2018 . Anomalies in fluorescence data inform utilities of 

hen to investigate possible cyanobacteria blooms. An anomalous 

ata point could be due to either a change in the actual cyanobac- 

eria concentration where the monitoring probe is installed, or due 

o interference from chlorophyll a, turbidity, or temperature, which 

an be significant ( Chang et al., 2012 ; Choo et al., 2018 , 2019 ;

amyadi et al., 2016a ). Therefore, utilities need to determine the 

ause of the anomaly by analyzing samples, such as for cell counts 

r toxin or taste and odor compound concentrations. 

In machine learning applications, it is recommended to evalu- 

te multiple algorithms and compare their performance since each 

as its own assumptions about the underlying structure of the data 

 Wolpert, 1996 ). Anomaly detection algorithms can be categorized 

ased on their mechanisms of operation, which include classifica- 

ion, clustering, density, distance, isolation, and prediction, among 

thers ( Celebi and Aydin, 2016 ; Hodge and Austin, 2004 ; Liu et al.,

020 ; Mehrotra et al., 2017 ). Previous studies have successfully im- 

lemented various types of algorithms to identify outliers in en- 

ironmental data including dissolved oxygen ( Samuelsson et al., 

019 ), groundwater levels ( Azimi et al., 2018 ; Jeong et al., 2017 ),

indspeed ( Hill and Minsker, 2010 ), and surface water quality 

 Jin et al., 2019 ). However, none have applied machine learning 

o detect anomalous fluorescence signals that might correspond 

o an increase in cyanobacteria activity. There are several promis- 

ng types of algorithms that might be applicable for such data 

ased on previous studies. Deep learning algorithms are promising 

or detecting anomalies in water quality data ( Dogo et al., 2019 ), 

ut they require hundreds of thousands or millions of data points 

 Namuduri et al., 2020 ). Moreover, they are not necessarily better 

han traditional machine learning algorithms for detecting anoma- 

ies in univariate time-series data ( Braei and Wagner, 2020 ). There- 

ore, this study focuses on traditional machine learning algorithms 

hat have been used successfully in related applications. 

Specifically, local outlier factor (LOF), a density-based algorithm, 

as been used to identify outliers in water quality sensor data col- 

ected online in an aquaculture application ( Gao et al., 2019 ). Iso- 

ation Forest (iForest), an isolation-based algorithm, was used by 

iu et al., (2020) to detect anomalies in surface water quality pa- 

ameters collected using handheld sensors. A classifier-based algo- 
2 
ithm, One-Class Support Vector Machine (SVM), has been used to 

dentify anomalies in wastewater treatment plant influent quality 

 Cheng et al., 2019 ) and operating conditions ( Harrou et al., 2018 ).

n studies evaluating multiple algorithms, One-Class SVM has been 

sed alongside iForest and elliptic envelope to detect outliers in 

roundwater and water tank levels with either iForest or One-Class 

VM resulting in the best performance, depending on the test con- 

itions ( Azimi et al., 2018 ; Tan et al., 2020 ). Nonetheless, elliptic

nvelope, a distance-based algorithm, has been successfully used 

o identify outliers in multivariate lake water quality data collected 

ver several years ( Alameddine et al., 2010 ). Thus, the success of 

hese algorithms in previous studies warrants an investigation into 

hether they might be useful for detecting anomalies in cyanobac- 

eria fluorescence data. 

Therefore, the objective of this study is to illustrate a proof-of- 

oncept for LOF, One-Class SVM, elliptic envelope, and iForest to 

dentify potential HABs from monitoring data without the need 

or corresponding cell count data. The algorithms are evaluated 

n data collected in Lake Erie from 2014 to 2019, and the mod- 

ls with the best average performance are identified as potential 

ools for future use. To the best of these authors’ knowledge, this 

tudy is the first to implement unsupervised machine learning on 

hycocyanin fluorescence data to identify cyanobacteria activity. 

his approach may benefit many drinking water utilities that em- 

loy online probes to monitor phycocyanin but lack corresponding 

yanobacteria cell count data with which a correlation could be es- 

ablished. 

. Materials and methods 

.1. Site and data description 

Western Lake Erie is particularly susceptible to harmful al- 

al blooms due to nutrient delivery from its tributaries, espe- 

ially the Maumee River ( Harke et al., 2016 ). The National Oceanic 

nd Atmospheric Administration (NOAA) Great Lakes Environmen- 

al Research Laboratory (GLERL) therefore monitors water qual- 

ty in western Lake Erie using several buoys. Four of these buoys 

WE2, WE4, WE8, and WE13) are equipped for continuous mon- 

toring of phycocyanin and chlorophyll a fluorescence using YSI 

XO2 (YSI, Yellow Springs, OH, USA) multiparameter water qual- 

ty sondes equipped with Total Algae sensors ( Fig. 1 ). Hourly data 

ollected in 2014 at the WE2 and WE4 buoys and data collected 

very 15 min in 2015–2019 at all four buoys was obtained from 

he GLERL open source archives ( NOAA/GLERL, 2020 ). 

The parameter of interest in this application is phycocyanin flu- 

rescence, and it can be pre-processed to improve classification via 

tandardization. Standardization involves setting the mean of the 

ata to zero and the variance to one. An algorithm’s performance 

ay be more consistent when tested on standardized datasets be- 

ause the data among them will be made more similar than if they 

ere unmodified. Therefore, it is expected that the optimized algo- 

ithm models will be applicable to multiple datasets. Standardiza- 

ion was applied using the StandardScaler preprocessing tool avail- 

ble in Python . 

.2. Machine learning algorithms 

Four machine-learning algorithms for unsupervised anomaly 

etection were applied to the Lake Erie monitoring data: local 

utlier factor (LOF), One-Class Support Vector Machine (SVM), el- 

iptic envelope, and Isolation Forest (iForest) although the ap- 

roach described in this study is not limited to only these algo- 

ithms ( Chalapathy and Chawla, 2019 ; Goldstein and Uchida, 2016 ; 

odge and Austin, 2004 ; Mladenov et al., 2013 ). These algorithms 
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Fig. 1. Locations of the four NOAA buoys in Lake Erie that continuously monitor 

general air and water quality parameters including temperature, turbidity, chloro- 

phyll a, phycocyanin, nitrogen, phosphorus, dissolved oxygen, and pH. Weekly sam- 

ple collection for microcystins, extracted chlorophyll and phycocyanin, turbidity, and 

temperature also occurs at these and four other monitoring sites. The buoys are lo- 

cated near the mouth of the Maumee River (WE2), near the center of the Lake Erie 

western basin (WE4), near the edge of the western basin (WE8), and near the water 

intake for the City of Toledo, Ohio (WE13) ( Meyer et al., 2017 ). 
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re unsupervised because they use unlabelled data. That is, the al- 

orithms do not know whether any of the data points inputted to 

hem are normal or anomalous. All of the data analysis was con- 

ucted in the Python programming language (V. 3.7.3) using the 

cikit-learn machine-learning package (V. 0.20.3) ( Pedregosa et al., 

011 ). 

The LOF algorithm, first described by Breunig et al., (20 0 0) , 

omputes a score for every point in a dataset based on the dis- 

ance to its k nearest neighbors. The LOF score represents the de- 

ree to which a point is outlying. A point is identified as an outlier 

f its LOF score exceeds a threshold, which is determined based on 

 user-defined contamination rate. 

In contrast, the One-Class SVM algorithm estimates a function 

hat returns positive for normal (non-outlier) data points and neg- 

tive for outliers using a user-defined probability that any data 

oint is not an outlier (i.e., the contamination rate). This is ac- 

omplished by mapping the data points into a feature space cor- 

esponding to the radial basis function kernel (commonly used in 

VM algorithms) and separating them from the origin with a maxi- 

um margin hyperplane in a higher dimension feature space using 

 minimization formulation ( Schölkopf et al., 2001 ). 

Unlike the maximum margin method of the One-Class SVM, the 

lliptic envelope models the data to a Gaussian distribution and 

dentifies an ellipse that contains most of the data. A data point 

utside the ellipse is anomalous. The size and shape of the el- 

ipse are determined by the FAST-Minimum Covariance Determi- 

ant algorithm ( Rousseeuw and Driessen, 1999 ), which iteratively 

omputes the Mahalanobis distance (a measure of how many stan- 

ard deviations a data point is from the mean) of subsamples from 

he data until the determinant of the covariance matrix converges 

 Hoyle et al., 2015 ). A contamination rate is used to define the ap-

roximate proportion of data points that lie outside the ellipse. It 

as been reported that the contamination rate does not necessarily 

eed a high degree of accuracy, so it can be estimated initially and 

djusted in subsequent runs of the algorithm ( Hoyle et al., 2015 ). 

Lastly, a fourth and fundamentally different anomaly detection 

pproach, iForest, is used. The preceding three methods rely on 

uilding a profile of the data and identifying outliers by various 
3 
etrics. In iForest, anomalous points are explicitly isolated based 

n the fact that they are few and different, and no profile of the 

ormal data is constructed ( Liu et al., 2008 ). Instead, the algorithm 

alculates an anomaly score based on the path length required to 

solate a data point in binary trees containing all the data points. 

he points with the shortest path lengths that are below a thresh- 

ld determined by a user-defined contamination rate are identified 

s anomalies. Further details for all four algorithms are provided in 

I Text S1 and Figure S1. 

Each algorithm’s ability to classify data can be optimized by ad- 

usting its contamination rate. The LOF algorithm additionally re- 

uires the number of nearest neighbors to be inputted and op- 

imized. Contamination rate ranges from 0 to 0.5 for all the al- 

orithms except One-Class SVM, for which it ranges from 0 to 1, 

nd provides the algorithms with approximate starting points for 

he proportion of outliers in the data. Thus, contamination rates 

anging from 0.01 to 0.45 are evaluated for all the algorithms in 

his study in increments of 0.05, which is appropriate because 

he effect of small changes (e.g., 0.01) in contamination rate does 

ot significantly impact an algorithm’s performance, as reported in 

revious studies ( Hoyle et al., 2015 ; Tan et al., 2020 ). 

.3. Validation 

The four algorithms are used to detect outliers in fluorescence 

ata, but it is not known if the outliers identified correspond to 

eal harmful algal bloom (HAB) events. The detection of an outlier 

y the algorithm alone is not sufficient to initiate a management 

esponse if the outlier cannot be reliably interpreted as represent- 

ng a real HAB ( Rudin, 2019 ). Real HAB events in Lake Erie in 2019

ere identified using the satellite-based NOAA GLERL Experimen- 

al Lake Erie HAB Tracker and NOAA HAB Forecasts by overlaying 

he buoy positions onto the processed satellite images of Lake Erie. 

he HAB Tracker provides hourly satellite images of western Lake 

rie processed to show the concentration of cyanobacterial chloro- 

hyll a. The absence and presence of cyanobacterial activity at the 

uoy locations were used to label the 2019 fluorescence monitor- 

ng data as normal or anomalous, respectively. The HAB Tracker 

racks the movement of cyanobacterial blooms hourly whereas the 

onitoring probes take measurements every 15 min. Therefore, the 

ormal or anomalous condition of each hour in the satellite data 

as used to label the four corresponding data points measured 

y the monitoring probe for that hour (i.e., on the hour, 15 min 

ast, 30 min past, and 45 min past). Although these are two dif- 

erent types of data, both the monitoring probes and the satellite 

mages capture surface water conditions. Thus, if cyanobacterial 

ctivity occurs in the location of the buoy, it would be detected 

y both the satellite images and the probe sensors. Furthermore, 

he satellite data is used only to qualitatively label the monitoring 

ata as normal or anomalous and not to compare actual pigment 

oncentrations. The algorithm outputs are compared to the labels 

hen trained and tested only on the phycocyanin measurements 

f each of the four buoy probes ( NOAA/GLERL, 2020 ). Chlorophyll 

 is omitted from the training and testing data because it repre- 

ents not only cyanobacteria but also green algae, whereas the HAB 

racker is specifically designed to identify cyanobacteria blooms. 

onetheless, chlorophyll a can interfere with the measurement of 

hycocyanin fluorescence ( Zamyadi et al., 2016a ), so clorophyll a 

alues are considered to identify periods where interference may 

ave affected either the optical sensor or the HAB Tracker and HAB 

orecast. 

Numbers of true positives, false positives, and false negatives 

ere determined by comparing the algorithm outputs to the la- 

elled data. A true positive occurs when both the model output 

nd the remote sensing data indicate a bloom is present; a false 

ositive occurs when the model indicates a bloom is present but 
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Table 1 

Unmodified and standardized data used to train the unsupervised learning algorithms. Training was conducted using this data with contamination rates ranging from 0.01 

to 0.45. The mean and standard deviation of the standardized datasets are 0 and 1, respectively. 

Number of data points Unmodified rangerr (RFU) Standardized range rRaange (RFU) Unmodified mean (RFU) Unmodified standard deviation (RFU) 

WE2 61,456 -0.76 to 68.1 -1.1 to 58.0 0.61 1.2 

WE4 61,262 -0.75 to 49.9 -1.5 to 72.3 0.31 0.7 

WE8 51,873 -0.31 to 48.3 -0.72 to 34.0 0.70 1.4 

WE13 46,065 -0.04 to 18.1 -0.83 to 29.0 0.46 0.6 
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T

he remote sensing data does not; and a false negative occurs 

hen the model output indicates there is no cyanobacteria ac- 

ivity while the remote sensing data does. Two important metrics 

or comparing algorithm performance can be calculated from these 

alues: precision, the proportion of positive results that are actu- 

lly correct, and recall, the proportion of positive results that are 

orrectly identified, as follows ( Alla and Adari, 2019 ): 

 recision = 

T P 

T P + F P 
(1) 

ecall = 

T P 

T P + F N 

(2) 

here TP is the number of true positives, FP is the number of false

ositives, and FN is the number of false negatives. Finally, the har- 

onic mean of precision and recall, the F1 score, is used to com- 

are the classification accuracy of the models, as follows ( Abou- 

oustafa and Schuurmans, 2015 ): 

 1 score = 

2 × P recision × Recall 

P rec ision + Recall 
(3) 

The F1 score ranges from 0 to 1. An F1 score of 1 indicates per-

ect precision and recall (best performance) while a score of 0 in- 

icates that either precision or recall are 0 (worst performance). 

herefore, the optimal conditions are those that result in the high- 

st F1 score. For example, Tan et al., (2020) found that a remark- 

ble F1 score of 0.99 could be achieved for anomaly detection in 

ater level data using the One-Class SVM algorithm with a con- 

amination rate of 0.3. However, the F1 score decreases to 0.69 if 

he contamination rate is set to 0.1 due to a drop in recall from 

.99 to 0.52 despite precision remaining at 0.99 ( Tan et al., 2020 ).

hus, the F1 score is the most representative metric of a model’s 

erformance because it penalizes losses in either precision or re- 

all, or both ( Muharemi et al., 2019 ). 

.4. Training data 

Unsupervised algorithms have no knowledge of the correct 

lasses for each data point, but they derive internally generated 

rror measures to classify data based solely on the statistics of 

he training data ( Kyan et al., 2014 ). Therefore, a training dataset 

hould be abundant and diverse ( Gong et al., 2019 ). As such, it is

ommon practice to use the bulk of an available dataset for train- 

ng, leaving a smaller portion behind for testing. The algorithms 

ere trained using different hyperparameter values (contamination 

ates and k nearest neighbors) on four datasets: 2014 – 2018 WE2 

nd WE4 data and 2015 – 2018 WE8 and WE13 data, described in 

able 1 , and tested on each buoy’s 2019 data. The selection of the 

yperparameter values is as important as the training data itself, 

nd although their use is specific to each algorithm, the general 

oncept is that they provide an approximate starting point for the 

lassifier. 

The same process was repeated for the standardized datasets, 

escribed in Table 1 . Reducing the means from 0.31 – 0.70 to 0 ef-

ectively makes the algorithms more sensitive. Thus, the sensitivity 

f the algorithms trained on standardized data will begin to in- 

rease at lower contamination rates. More importantly, by making 
4 
he four datasets more similar in terms of mean and standard de- 

iation, the performance of each algorithm is expected to be more 

onsistent at each contamination rate for all the datasets compared 

o without standardization. If so, then the models with the best 

erformance identified in this study should be applicable to stan- 

ardized data collected at other sites, that is, the models are ex- 

ected to be generalizable. 

The optimal hyperparameter selection varies for every dataset. 

n this study, the optimal contamination rates and k nearest neigh- 

ors (k-NN) were determined by identifying the conditions that 

esult in the highest F1 score when tested on the labelled 2019 

atasets and trained on the unmodified or standardized training 

ata, as described by Xu et al., (2019) . 

. Results 

.1. Local outlier factor 

The optimal k-NN for LOF varied depending on the dataset be- 

ng trained and on whether the data were standardized. K-NN val- 

es ranging from 1 to 30 were evaluated at the previously selected 

ontamination rates for each of the unmodified and standardized 

atasets. Figure S2 shows the results of the k-NN optimization for 

he standardized WE2 dataset, and Table S1 summarizes the results 

f all the k-NN optimizations. For the standardized WE2 dataset, 

he optimum k-NN values are 1, 5, 10, and 19 for contamination 

ates of 0.01, 0.05, 0.1, and 0.15, respectively. A low k-NN value 

mphasizes the detection of outliers located within smaller clus- 

ers of data compared to high k-NN values. Therefore, more out- 

iers are detected when the k-NN is small so the k-NN value tends 

o increase (i.e., detect fewer outliers) as the contamination rate 

ncreases to offset the increase in sensitivity by the higher con- 

amination rate to ensure the F1 score is as high as possible. How- 

ver, increasing k-NN with contamination rate did not always im- 

rove the F1 score, and in all cases the optimal k-NN remained 

nchanged beyond a contamination rate of 0.2. This indicates that 

-NN has a greater influence on the algorithm output than con- 

amination rate, so it is more important for k-NN to be optimized. 

Despite optimizing both hyperparameters, the performance of 

he LOF algorithm was adequate at best, reaching a maximum F1 

core of 0.81 when trained on the unmodified 2014 – 2018 WE4 

ata and tested on the 2019 WE4 umodified data ( Fig. 2 ). For all

he datasets, the F1 score plateaued beyond a contamination rate 

f 0.05. The algorithm performs significantly better using the un- 

odified training data, with an F1 score improvement of up to 0.36 

WE4 raw vs. WE4 std for contamination rates > 0.1). The aver- 

ge F1 score among the unmodified results is only 0.69. Therefore, 

ven when optimized in terms of the training data, k-NN, and con- 

amination rate, this algorithm is not suitable for anomaly detec- 

ion in phycocyanin fluorescence signals. 

.2. One-class SVM 

The One-Class SVM algorithm performed significantly better 

han the LOF algorithm when the training data was standardized. 

he maximum average F1 score for the four datasets increases 
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Fig. 2. F1 scores obtained using the LOF algorithm using the optimized k-NN 

value for each contamination rate in the (a) unmodified data and (b) standardized 

data. Raw means the training data is unmodified and std means it is standardized 

(mean = 0, standard deviation = 1). Little to no variation in the F1 score is observed 

for contamination rates of 0.05 and above, indicating that the optimized k-NN value 

has a stronger effect on the algorithm’s performance. 
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Fig. 3. Performance of the One-Class SVM algorithm on the (a) unmodified and (b) 

standardized phycocyanin fluorescence data collected at the four buoys. The peak 

average F1 score for the unmodified data is 0.72 and occurs at a contamination rate 

of 0.45 while the peak average score for the standardized data is 0.86 and occurs 

at contamination rates of 0.3 and 0.35. 

Fig. 4. Performance of the elliptic envelope algorithm on the (a) unmodified and (b) 

standardized phycocyanin fluorescence data collected at the four buoys. The peak 

average F1 score for the unmodified data is 0.84 and occurs at a contamination rate 

of 0.25 while the peak average score for the standardized data is 0.86 and occurs 

at a contamination rate of 0.15. 
rom 0.72 at a contamination rate of 0.45 in unmodified data to 

.86 at contamination rates of 0.3 and 0.35 in standardized data 

 Fig. 3 ). Fig. 3 a shows that the F1 score increases gradually with

ontamination rate for the WE2, WE8, and WE13 datasets but that 

he performance for the WE13 data is significantly worse. With- 

ut standardization, the peak performance for the WE2, WE4 and 

E8 datasets is similar, although they occur at much lower con- 

amination rates for the standardized data. However, the algorithm 

chieves a maximum F1 score in the range of 0.62 to 0.67 for 

he standardized WE13 data compared to a maximum of only 0.35 

or the unmodified data. Therefore, standardization is an important 

re-processing step for One-Class SVM. 

.3. Elliptic envelope 

Like the One-Class SVM algorithm, the elliptic envelope algo- 

ithm’s peak average performance occurred at a lower contam- 

nation rate for the standardized data that the unmodified data 

 Fig. 4 ). However, for both types of data the performance de- 

reases sharply as contamination rate increases. This suggests that 

his algorithm is more sensitive to changes in contamination rate 

han the One-Class SVM algorithm, making it less forgiving from a 

ser’s perspective when a labelled dataset is not available for op- 

imization. When the data are unmodified, the peak performance 

s acceptable at 0.84 and occurs at a contamination rate of 0.25 

 Fig. 4 a). For the standardized data, the maximum average F1 score 

s equal to that of the One-Class SVM algorithm, 0.86, and it occurs 

t a contamination rate of 0.15 ( Fig. 4 b). 

.4. Isolation forest 

The change in performance with contamination rate of the iFor- 

st algorithm closely resembles that of the elliptic envelope algo- 

ithm. The peak average F1 score in the unmodified data occurs 
5 
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Table 2 

Maximum and average peak F1 scores achieved for each algorithm using their optimum 

contamination rates. The maximum scores for the LOF algorithm were achieved in the un- 

modified datasets while the other three algorithms performed best in the standardized 

data. Maximum F1 scores for the WE13 data are significantly lower than for the other 

datasets. 

WE2 WE4 WE8 WE13 Average Standard deviation 

LOF 0.76 0.81 0.73 0.48 0.69 0.13 

One-Class SVM 0.92 0.93 0.94 0.67 0.86 0.11 

Elliptic Envelope 0.92 0.93 0.94 0.66 0.86 0.12 

iForest 0.92 0.91 0.92 0.64 0.84 0.12 

Fig. 5. Performance of the iForest algorithm on the (a) unmodified and (b) stan- 

dardized phycocyanin fluorescence data collected at the four buoys. The peak av- 

erage F1 score for the unmodified data is 0.77 and occurs at contamination rates 

of 0.25 and 0.3 while the peak average score for the standardized data is 0.84 and 

occurs at a contamination rate of 0.15. 
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t contamination rates of 0.25 and 0.3, and it occurs at 0.15 in 

he standardized data ( Fig. 5 ). However, the actual peak scores are 

ower, at 0.77 and 0.84, respectively, than for the elliptic envelope 

ethod. Therefore, to achieve an F1 score above 0.8, standardiza- 

ion of the training data is required. 

.5. Algorithm optimization and validation 

Table 2 summarizes the peak F1 scores for each algorithm and 

ataset when the optimal hyperparameters and preprocessing con- 

itions are used. Standardization of the training data resulted in 

he highest maximum F1 scores for all the algorithms except LOF. 

or LOF, the F1 score was affected primarily by the k-NN value, 

hich was optimized for every test condition (Table S1). Maximum 

1 scores greater than 0.9 were achieved by the One-Class SVM, 

lliptic envelope, and iForest algorithms for the standardized WE2, 

E4, and WE8 datasets. Fig. 6 shows the anomaly detection results 

or the optimized One-Class SVM, elliptic envelope, and iForest al- 

orithms on the standardized WE4 dataset, as an example (Fig- 

res S3 and S4 show the results for the WE2 and WE8 datasets). 

hese three algorithms were able to correctly detect the two major 
6 
yanobacterial blooms that occurred in the WE4 buoy location in 

019, shaded in yellow, with F1 scores above 0.9. 

Chlorophyll a interference was significant for the WE13 dataset, 

ausing all the F1 scores to be below 0.7. Fig. 7 shows the pre-

iction results for the One-Class SVM, elliptic envelope, and iFor- 

st algorithms on the WE13 dataset. For all three, it is clear that 

alse positives occurred primarily from September 3 to 11, 2019. 

hese dates coincide with a rise in chlorophyll a fluorescence from 

bout 2 to 6 RFU. It is possible that the elevated chlorophyll a 

n the water column interfered with the probe’s measurement of 

hycocyanin despite no cyanobacteria being detected by the HAB 

racker ( Zamyadi et al., 2016a ). Conversely, it is also possible that 

yanobacterial activity did occur during those dates but was not 

etected by the HAB Tracker due to being masked by green algae 

r other reasons such as cloud cover ( Erickson et al., 2012 ). 

. Discussion 

The findings of this study demonstrate for the first time that 

nomaly detection using unsupervised machine learning can be 

sed to detect cyanobacteria activity from phycocyanin fluores- 

ence data. Cyanobacteria activity was detected accurately in four 

ake Erie datasets using three of the four algorithms evaluated. 

cross the datasets, the optimized One-Class SVM (contamina- 

ion rate = 0.3 or 0.35) and elliptic envelope (contamination 

ate = 0.15) algorithms exhibited the best performance, each with 

n average F1 score of 0.86. The optimized iForest algorithm fol- 

owed closely with an average F1 score of 0.84, although this 

ifference is not statistically significant. LOF achieved an average 

core of only 0.69. This was likely due to the gradual separa- 

ion of outliers from normal data whereas the LOF algorithm’s 

trength is in identifying local clusters of outliers ( Goldstein and 

chida, 2016 ). 

An advantage to using these models is that they may allow util- 

ties to interpret phycocyanin fluorescence without the need for 

icroscopy data. Additionally, online monitoring data can be added 

o the training datasets to ensure the models make predictions 

ased on the most recent information. For example, Gao et al., 

2019) developed and implemented an aquaculture water qual- 

ty monitoring model that identifies anomalies and predicts wa- 

er quality in real time. Another advantage is that these algorithms 

an be applied to any source water provided that historical data 

s available and that it is distributed like the datasets shown in 

able 1 . This is supported by the finding that the three models are 

eneralizable for all four datasets, that is, they were trained and 

ested on four different datasets and still achieved high average 

1 scores. Similar results were reported by Tan et al., (2020) who 

ound that their dual-stage One-Class SVM algorithm is applicable 

o different scenarios having achieved an F1 score of 0.99 for wa- 

er level data using a contamination rate of 0.3. A potential way to 

mplement this approach in practice is to include the algorithms 

n probe monitoring software to detect anomalies in real time data 

e.g., every 15 min as a new data point is logged), triggering a re- 

ponse. Liu et al., (2020) similarly recommend that decision mak- 
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Fig. 6. Anomaly detection results for the WE4 dataset using the One-Class SVM, elliptic envelope, and iForest algorithms with contamination rates of 0.3, 0.15, and 0.1, 

respectively. Their corresponding F1 scores are 0.93, 0.93, and 0.91, indicating that these optimized models correctly predicted cyanobacterial activity with a high degree of 

accuracy. The yellow shaded regions indicate periods where cyanobacterial activity was detected by the HAB Tracker. A few apparent false positives were identified, but it is 

possible that they were due to chlorophyll a interference. The performance of the algorithms on the WE2 and WE8 datasets is similar. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 
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rs carry out emergency responses when anomalies in river water 

uality are detected by their machine learning framework. 

However, there are important limitations to this approach 

hat must be considered before it is adopted. First, it does not 

orecast how a HAB will develop or what the future implica- 

ions are for the most recent predictions. In particular, anoma- 

ies in phycocyanin fluorescence data cannot identify successional 

hanges to the species composition of the cyanobacteria commu- 

ity ( Chorus, 2012 ). So, without additional data the potential for 

oxin or taste and odor compound production cannot be deter- 

ined by this approach alone ( Bastien et al., 2011 ; Bertone et al.,

018 ), although some studies have reported correlations between 

hycocyanin and microcystins production ( Aragão et al., 2020 ; 

rancy et al., 2016 ; Izydorczyk et al., 2009 ). 

Hence, this has the potential to more accurately identify when 

 utility should respond to a cyanobacteria bloom (e.g., by collect- 

ng samples or reactively dosing oxidants) compared to the con- 

entional practice of correlating phycocyanin fluorescence with cell 

ounts. For example, a recent study determined a phycocyanin flu- 

rescence threshold value of 3.6 RFU using the same model of 

robe as this study, corresponding to the World Health Organiza- 

ion Alert Level 1 (0.2 mm 

3 /L), for Great Lakes region plants in- 
7 
luding a plant whose source water is Lake Erie ( Almuhtaram et al., 

018 ; Chorus and Welker, 2021 ). Although Alert Level 1 is based on 

he potential for cyanobacteria to produce 1 μg/L microcystins, it 

as been used as an early warning threshold by some researchers 

 Brient et al., 2008 ; Izydorczyk et al., 2009 ; Macário et al., 2015 ;

amyadi et al., 2012 ). If that threshold value were to be applied to 

he four datasets used in this study, it would achieve an average F1 

core of only 0.05, although in practice a threshold determined this 

ay can continue to be adjusted based on knowledge of the sys- 

em. This simple example demonstrates that the machine learning 

pproach may be more sensitive than the conventional approach 

or setting an early warning threshold and can be an important 

art of a drinking water utility’s HAB monitoring system. 

From a utility perspective, it may be relevant to use the algo- 

ithms to detect both phycocyanin and chlorophyll a anomalies as 

reen algae can also be problematic from a treatment perspective 

 Kommineni et al., 2009 ; Zamyadi et al., 2013 ). This was not at-

empted in this study due to the lack of a labelled dataset that can 

e used to validate the anomalies detected with real green algae 

looms. Nonetheless, the algorithms used in this study are capable 

f handling multiple input variables, so this could be theoretically 

mplemented in the future. Alternatively, because chlorophyll a in- 
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Fig. 7. The One-Class SVM, elliptic envelope, and iForest algorithms achieved maximum F1 scores of only 0.67, 0.66, and 0.64, respectively, for the WE13 dataset. Even when 

optimized, a significant number of anomalies continued to be identified following the second major cyanobacterial bloom that ended on September 3, 2019. The yellow 

shaded regions indicate periods where cyanobacterial activity was detected by the HAB Tracker. It is likely that the elevated chlorophyll a fluorescence interfered with the 

phycocyanin sensor and caused elevated phycocyanin to be measured and anomalies to be identified despite no cyanobacterial activity detected by remote sensing. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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erference is systematic for the YSI EXO2 probe, correction factors 

an effectively eliminate the bias from non-cyanobacterial green 

lgae ( Choo et al., 2019 ). A similar effect may be achieved us-

ng supervised machine learning such that the effects of certain 

ariables on the model output are learned ( Gomez-Alvarez and 

evetta, 2020 ). Future work should explore these possibilities as 

ell as other algorithms with deep learning and data streaming ca- 

abilities for assessing multivariate data spanning many years and 

or detecting anomalies in real time, respectively. 

. Conclusions 

The conclusions drawn from this study are: 

• Elevated cyanobacterial activity can be reliably detected from 

phycocyanin fluorescence data using unsupervised machine 

learning algorithms. 
• Standardization of the training data is an important preprocess- 

ing step for this approach, especially where multiple datasets 

are used, because it improves the consistency of an algorithm’s 

performance across datasets. 
• Several promising algorithms are identified that may be read- 

ily implemented by drinking water utilities or adopted by fluo- 

rometer manufacturers in their monitoring software: One-Class 

SVM with a contamination rate of 0.3 or 035 and elliptic en- 

velope with a contamination rate of 0.15. Similar performance 

was also achieved by the iForest algorithm with a contamina- 

tion rate of 0.15. 
8 
• Training and testing the algorithms on only phycocyanin fluo- 

rescence was sufficient to accurately identify anomalies except 

in one dataset where interference from chlorophyll a affected 

the sensor. Nonetheless, it may be important for some utilities 

to identify periods of elevated chlorophyll a, and this should be 

considered in future studies. 

Therefore, these and other unsupervised machine learning mod- 

ls have the potential to be applied to phycocyanin fluorescence 

ata to identify anomalies indicating cyanobacterial activity and 

ay eventually be included in monitoring software to be contin- 

ally optimized to trigger alarms in real time. 
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