
Water Research 201 (2021) 117309

Available online 29 May 2021
0043-1354/© 2021 Elsevier Ltd. All rights reserved.

Characterizing the river water quality in China: Recent progress and 
on-going challenges 

Jiacong Huang a,*, Yinjun Zhang b, Haijian Bing c, Jian Peng d,e, Feifei Dong f, Junfeng Gao a, 
George B. Arhonditsis g,* 

a Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 
210008, China 
b China National Environmental Monitoring Centre, 8(B) Dayangfang Beiyuan Road, Chaoyang District, Beijing, 100012, China 
c Key Laboratory of Mountain Surface Process and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, 9, Block 4, 
Renminnanlu Road, Chengdu, 610041, China 
d Department of Remote Sensing, Helmholtz Centre for Environmental Research− UFZ, Permoserstrasse 15, 04318, Leipzig, Germany 
e Remote Sensing Centre for Earth System Research, Leipzig University, 04103, Leipzig, Germany 
f Institute of Groundwater and Earth Sciences, Jinan University, 601 Huangpu Avenue, Guangzhou, 510630, China 
g Ecological Modelling Laboratory, Department of Physical & Environmental Sciences, University of Toronto, Toronto, ON, M1C 1A4, Canada   

A R T I C L E  I N F O   

Keywords: 
River water quality 
Urbanization 
Watershed management 
Eutrophication 
Bayesian modelling 

A B S T R A C T   

Food production systems, urbanization, and other anthropogenic activities dramatically alter natural hydro-
logical and nutrient cycles, and are primarily responsible for water quality impairments in China’s rivers. This 
study compiled a 16-year (2003–2018) dataset of river water quality (161,337 records from 2424 sites), 
watershed/landscape features, and meteorological conditions to investigate the spatial water quality patterns 
and underlying drivers of river impairment (defined as water quality worse than Class V according to China’s 
Environmental Quality Standards for Surface Waters, GB3838-2002) at a national scale. Our analysis provided 
evidence of a distinct water quality improvement with a gradual decrease in the frequency of prevalence of 
anoxic conditions, an alleviation of the severity of heavy metal pollution, whereas the cultural eutrophication has 
only been moderately mitigated between 2003 and 2018. We also identified significant spatial variation with 
relatively poorer water quality in eastern China, where 17.2% of the sampling sites registered poor water quality 
conditions, compared with only 4.6% in western China. Total phosphorus (TP) and ammonia-nitrogen (NH3-N) 
are collectively responsible for >85% of the identified incidences of impaired conditions. Bayesian modelling 
was used to delineate the most significant covariates of TP/NH3-N riverine levels in six large river basins (Liao, 
Hai, Yellow, Yangtze, Huai, and Pearl). Water quality impairments are predominantly shaped by anthropogenic 
drivers (82.5% for TP, 79.5% for NH3-N), whereas natural factors appear to play a secondary role (20.5% for TP, 
17.5% for NH3-N). Two indicator variables of urbanization (urban areal extent and nighttime light intensity) and 
farmland areal extent were the strongest predictors of riverine TP/NH3-N levels and collectively accounted for 
most of the ambient nutrient variability. We concluded that there is still a long way to go in order to eradicate 
eutrophication and realize acceptable ecological conditions. The design of the remedial measures must be 
tailored to the site-specific landscape characteristics, meteorological conditions, and should also consider the 
increasing importance of non-point source pollution and internal nutrient loading.   

1. Introduction 

Global river network with an estimated length of 7562 × 103 km 
(Lehner et al., 2011), together with 1.42 million lakes (Messager et al., 
2016), plays an important role in water supply worldwide (Oki and 

Kanae, 2006). Rivers represent the pathways for mass transport from 
land to lakes and oceans, and are largely responsible for meeting the 
societal needs for drinking water, irrigation, and hydropower (Grill 
et al., 2019; Lehner et al., 2011; Palmer and Ruhi, 2019). However, river 
ecosystems are globally experiencing considerable degradation due to a 
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multitude of stressors, including damming and water pollution (Leb-
reton et al., 2017; Maavara et al., 2020; Singh et al., 2019). Dam con-
struction has resulted in 2.8 million dams worldwide that have 
substantially altered river connectivity and biogeochemical cycling 
(Lehner et al., 2011; Maavara et al., 2020, 2015). A global investigation 
on 12 million kilometers of rivers revealed that only 37% of rivers longer 
than 1000 km remain free flowing over their entire length owing to the 
increasing number of dams (Grill et al., 2019). Another threat to the 
integrity of river ecosystems is water pollution due to excessive nutrient 
loading (Chen et al., 2019; Jarvie et al., 2018), plastic debris (Lebreton 
et al., 2017), antibiotics (Li et al., 2018; Singh et al., 2019; Zhang et al., 
2015) and other pollutants. As a consequence, nearly 80% of the world’s 
population is potentially faced with elevated water security risks 
(Vörösmarty et al., 2010), and one in three people worldwide do not 
have access to safe drinking water, as reported by the Sustainable 
Development Goal (SDG) of the United Nations (United Nations, 2020). 

China’s rivers have been subjected to profound water quality im-
pairments induced by the rapid and energy-intensive economic devel-
opment over the past several decades (Chen et al., 2019). This water 
quality impairment is particularly disconcerting due to its potentially 
deleterious impacts on ~1.4 billion population. Estimates of pollutant 
inputs into China’s rivers vary considerably and may be up to 2.8 × 107 

tonnes of dissolved nitrogen, 3 × 106 tonnes of dissolved phosphorus 
(Chen et al., 2019), and nearly 2.5 × 104 tonnes of antibiotics per year 
(Zhang et al., 2015). A nationwide survey of 1935 sampling sites at 
China’s rivers, lakes and reservoirs in 2018 revealed that 29% of them 
had poor water quality, i.e., worse than Class III according to China’s 
Environmental Quality Standards for Surface Waters (GB3838-2002), 
and 6.7% of them had extremely poor water quality, i.e., worse than 
Class V (The Ministry of Ecology and Environment, 2020a). According to 
a study published in 2014, China’s water pollution has been responsible 
for a shortage of 40 billion tonnes of water per year (Tao and Xin, 2014). 
Thus, addressing river water quality and freshwater security issues in 
China is widely recognized as one of the emerging imperatives during 
the 21st century. 

To shed light on the water quality patterns and underlying mecha-
nisms in China’s rivers, numerous modelling studies of high-frequency 
data (Yang et al., 2019), mass transport and biogeochemical cycling 
(Wang et al., 2016; Xia et al., 2018), driver characterization (Powers 
et al., 2016; Wang et al., 2016), and assessment of future water quality 
trends (Qu and Kroeze, 2010) have been carried out for a wide range of 
river ecosystems. Based on an overview of the impacts of watershed 
landscape on river water quality in China (Table S1), we found that 
riverine nutrient over-enrichment are of particular concern owing to its 
causal linkages with cultural eutrophication (Strokal et al., 2016), while 
other pollutants (e.g., antibiotics and polycyclic aromatic hydrocarbons) 
are gradually receiving more attention (Li et al., 2006; Singh et al., 
2019). Critical factors shaping river water quality are greatly diverse 
across geographical regions, including hydrological regimes mainly 
driven by precipitation (Strokal et al., 2016; Yi et al., 2017), watershed 
landscape features and anthropogenic activities, such as land use (Ding 
et al., 2016; Xiao et al., 2016) or wastewater treatment plants (WWTPs) 
(Singh et al., 2019). In the same context, the establishment of the re-
lationships between river water quality and covariates that reflect the 
intensity of anthropogenic activities and watershed natural character-
istics within a watershed context represents a critical next step in 
advancing our contemporary understanding of the large-scale water 
quality patterns and underlying drivers. This piece of information can 
help us to identify hot spots and hot moments of water quality impair-
ments, and to optimize the design of restoration practices at a national 
scale. 

To investigate the spatial water quality patterns and critical cova-
riates of river impairment, we compiled 16-year (2003–2018) datasets 
of river water quality, watershed/landscape features (elevation, slope, 
land uses, nighttime light intensity, spatial distribution and treatment 
capacity of wastewater plants), and meteorological conditions at a 

national scale. To the best of our knowledge, this is by far the most 
comprehensive dataset representing China’s river water quality at a 
national scale. Our study first evaluates the river water quality in China 
in terms of the severity of cultural eutrophication (i.e., nutrient con-
centrations, hypoxia severity) and heavy metal pollution. We then 
develop Bayesian models to delineate the most significant covariates of 
water quality in six large (Liao, Hai, Yellow, Yangtze, Huai, and Pearl) 
river basins. Drawing upon the wide variability contained into our na-
tional dataset, the delineation of the relationships between water quality 
and critical covariates can enhance our understanding of river response 
to anthropogenic stressors within a watershed context. 

2. Materials and methods 

2.1. Study area and data 

A recent study by Wang et al. (2019) estimated that there are more 
than 20,000 rivers with a catchment area larger than 100 km2 in China’s 
Ten River Basins (Fig. 1). To map water quality in China’s rivers, we 
compiled the following national datasets: 

2.1.1. River water quality 
To capture the dynamics of China’s river water quality, a monthly 

sampling program has been conducted at 2424 sampling sites (Fig. 1) by 
the Chinese National Environmental Monitoring Centre. The sampling 
program resulted in a large dataset of 161,337 monthly samples 
covering a 16-year (2003–2018) period. This dataset included twenty 
four (24) water quality variables listed as the environmental quality 
standards for surface water (GB 3838-2002), while our focus here was 
on dissolved oxygen (DO), chemical oxygen demand (COD), total 
phosphorus (TP), ammonia nitrogen (NH3-N), and eight heavy metals 
including copper (Cu), zinc (Zn), selenium (Se), arsenic (As), mercury 
(Hg), cadmium (Cd), chromium (Cr), and lead (Pb). 

2.1.2. Meteorological data 
To obtain the local meteorological conditions over the spatial 

domain covered by the national stream network, we used the Chinese 
Meteorological Forcing Dataset (CMFD) which has a fine spatio- 

Fig. 1. Spatial and temporal information of the nationwide monitoring network 
in China’s rivers during the 2003–2018 period. 
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temporal resolution with gridded near-surface meteorological data 
developed specifically for studies of land-surface processes across China 
(http://data.tpdc.ac.cn/zh-hans/data/8028b944-daaa-4511-8769-96 
5612652c49/). The dataset has a spatial resolution of 0.1◦, and includes 
information for seven variables: air temperature (T, ◦C), pressure (Pa), 
specific humidity (kg/kg), wind speed (m/s), downward shortwave ra-
diation (W/m2), downward longwave radiation (W/m2), and precipi-
tation (Pr, mm/d) (He et al., 2020). 

2.1.3. Watershed landscape data 
The dataset includes elevation, slope, land use, nighttime light im-

ages, spatial distribution and water treatment capacity of WWTPs 
(Figure S1). Elevation was obtained from Shuttle Radar Topography 
Mission (SRTM), an international research effort to obtain global digital 
elevation models (http://srtm.csi.cgiar.org/srtmdata/). Slopes were 
derived from the elevation data. Land use data were obtained from the 
Resource and Environment Data Cloud Platform, Chinese Academy of 
Sciences (http://www.resdc.cn/Default.aspx). Nighttime light images 
were obtained from the NPP-VIIRS (the Visible Infrared Imaging Radi-
ometer Suite (VIIRS) sensor on the Suomi National Polar-orbiting Part-
nership (NPP) Satellite) data by the National Oceanic and Atmospheric 
Administration (https://www.ngdc.noaa.gov/eog/download.html). 
The WWTP database across China were obtained from a previous study 
by Chen et al. (2019). 

2.2. Characterization of river water quality and Bayesian modelling 
framework 

We adopted a two-pronged approach to characterize the river water 
quality and potential drivers of impairment in China. First, based on the 
national river water quality dataset, we evaluated water quality status 
and identified the critical variables causing water quality deterioration 
using the Water Quality Index (WQI-DET) presented by Huang et al. 
(2019). Given the extensive water quality impairment attributed to TP 
and NH3-N (Section 3.2), Bayesian models were subsequently developed 
to examine the strength of the relationships between river TP/NH3-N 
and watershed landscape features or surrogate variables of anthropo-
genic activities. Based on these Bayesian models, we used the posterior 
parameter patterns to characterize the critical covariates of river water 

quality impairment in China (Fig. 2). 
WQI-DET is an adaptation of the traditional WQI to the five water 

quality classes of China’s “Environmental Quality Standards for Surface 
Water” (GB3838-2002): I (excellent), II (good), III (moderate), IV (poor) 
and V (bad) (Huang et al., 2019). The index can numerically represent a 
broader range from − ∞ (extremely poor water quality) to 100 (excellent 
water quality) in order to differentiate between bad and extremely bad 
water quality conditions. WQI-DET (WQIj

DET) for a water sample j can be 
calculated as: 

WQIj
DET = min

(
WQIj

DET 1, …, WQIj
DET i, …, WQIj

DET n
)

WQIj
DET i = 100 − max

(

0,
Cij − CI

i

CV
i − CI

i
× 100

)

where Cij is the concentration of the environmental variable i of the 
water sample j; CI

i and CV
i are the values (concentrations) of the variable i 

at class I and V, respectively. Twelve (12) water quality variables were 
used to calculate WQI-DET, i.e., n = 12, and their concentrations were 
evaluated against the corresponding water quality classes (Table S2). 
We calculated a WQI-DET value for each of the 161,337 monthly water 
samples in the dataset. 

We selected a total of 350 water quality sampling sites within six 
large river basins (Liao, Hai, Yellow, Yangtze, Huai, and Pearl) to 
elucidate the relative importance of watershed landscape characteristics 
and proxy variables of human-related activities on river water quality. 
The corresponding surrounding catchments were derived by the water 
flow directions computed by the D8 model in ArcGIS (Figure S2), and 
had a surface area ranging from 436 to 143,539 km2. These sub- 
watersheds were selected based on water flow pathways within the 
broader river basins, and were characterized by different meteorolog-
ical/hydrological conditions, and socio-economic values. Sub- 
watersheds in lowland areas were not selected due to their recipro-
cating water flow paths which rendered unclear watershed boundaries. 
Based on the delineated sub-watershed boundaries, the data for the 
meteorological conditions, watershed landscape and anthropogenic ac-
tivities for each sub-watershed were obtained to provide the predictor 
variables for our Bayesian modelling. 

The first step of our water quality evaluation with WQI-DET revealed 
that water quality impairments was mainly caused by excessively high 

Fig. 2. Schematic illustration of our water quality evaluation framework and characterization of the dominant drivers of river water quality impairment in China 
using Bayesian modelling. 
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TP and NH3-N concentrations (Section 3.2). The relationship between 
the two response variables (TP/NH3-N) and natural or anthropogenic 
predictors was established through Bayesian modelling (Fig. 2). We 
developed a total of fourteen (14) Bayesian models including two na-
tional models for TP and NH3-N collectively based on the water quality 
data at 350 sub-watersheds across six major river basins in China, and 
twelve models to reproduce TP and NH3-N concentrations with suitable 
natural/anthropogenic predictors within each of six selected river basins 
independently. The governing equations of our Bayesian modelling 
framework can be summarized as follows: 

Ck ∼ N
(

Ĉk, σ2
)

Ĉk = θ0 +
∑N

i=1
(θi × Xik)

θ ∼ MN(μθ,Σθ); σ− 2 ∼ G(0.001, 0.001)

μθi ∼ N(0, 10000); Σθ ∼ IW(Ω,ω)

k = 1,…,K; i = 1,…,N  

where Ck denotes the measured TP or NH3-N in site k within any of the 
modelled river basins (or the entire studied spatial domain), Ĉk denotes 
the mean predicted TP or NH3-N in site k, σ2 denotes the model error 
variance with an associated precision (1/variance) term drawn from a 
Gamma (G) distribution defined by shape and scale parameters equal to 
0.001; Xik represents the predictor variables i in site k; θ = [θ0, θ1,…,θi]

T 

is the vector of the regression coefficients drawn from a multivariate 
normal (MN) distribution with mean μθ = [μθ0, μθ1,…,μθi]

T and covari-
ance matrix Σθ, which in turn is assigned an inverse-Wishart prior dis-
tribution with scale matrix Ω, representing an assessment of the 
magnitude order of the covariance matrix among the regression model 
parameters (Bouriga and Féron, 2013), ω(=8) corresponds to the de-
grees of freedom for this distribution and was set equal to the rank of the 
Σθ matrix (or no prior knowledge on the parameter covariance); K 
(=350) and N (=8) are the number of sites and predictor variables, 
respectively. Natural logarithm and arcsine square root transformations 
were used for both response and predictor variables to ensure that the 
assumption of normality for model residuals is met. The relative 
contribution Wi of each covariate Xi to TP and NH3-N variability was 
calculated as follows: 

θi =

⃒
⃒
⃒θ̂i

⃒
⃒
⃒
/

θisd; Wi = θi
/∑N

i=1
θi  

where θi, θ̂ i, and θisd are the posterior standardized, mean, and standard 
deviation for the i regression coefficient, respectively. 

The suite of predictor variables used to characterize river nutrient 
variations are classified into natural and anthropogenic variables. The 
natural predictors were elevation (m) and slope (o) to represent the nat-
ural conditions (e.g., transportation rates) with potential impacts on in- 
stream attenuation, annual precipitation (mm/yr) and daily-average air 
temperature (◦C) to represent the potential impact of weather conditions 
on flow rates and biogeochemical processes. Our anthropogenic pre-
dictor variables were area percentage of farmland and urban (%) as a 
proxy of non-point source pollution, water treatment capacity of WWTPs 
(t/d/km2) to represent China’s efforts to mitigate point-source pollu-
tion, nighttime light intensity to quantify the magnitude of human foot-
print. Compared with other proxy variables representing human 
footprint (e.g., population density), the nighttime light intensity had a 
finer spatio-temporal granularity and was thus deemed more suitable for 
our modelling analysis. We used the Mallows’ Cp criterion to identify the 
most parsimonious regression models for each river basin and thus our 
analysis is based on statistical constructs that effectively balance be-
tween complexity and performance (Mallows, 2000). Moreover, as an 
additional security measure to control the collinearity problem, we 
ensured that the final models included predictor variables with 

tolerance values greater than 0.5. Tolerance is defined as 1 minus the 
squared multiple correlation of this variable with all other independent 
variables in the regression equation. Therefore, the smaller the tolerance 
of a variable, the more redundant is its contribution to the regression (i. 
e., it is redundant with the contribution of other independent variables). 
If the tolerance of any of the variables in the regression equation is equal 
to zero (or very close to zero), then the regression equation cannot be 
evaluated (the matrix is ill-conditioned and cannot be inverted). 
Bayesian modelling was implemented based on the Python library of 
PyMC3 specifically developed for Bayesian statistical modelling and 
probabilistic machine learning (https://docs.pymc.io/). We also esti-
mated the effective sampling size of the Markov chain Monte Carlo 
(MCMC) chains to assess the quality of the representation of the poste-
rior distribution (higher values reflect better the posterior distribution of 
the parameters). We estimated the Gelman-Rubin index and the effec-
tive sampling size using the package coda in R (Plummer et al., 2006; 
Vehtari et al., 2020). The models performed adequately, showing 
convergence (all parameters with Gelman-Rubin estimate < 1.05) and 
low correlation in the MCMC chains samples (i.e., most parameters had 
an effective sample size > 1000). 

3. Results 

3.1. Characterization of river water quality impairment trends in China 

Our results showed that China’s river water quality displayed sig-
nificant spatial variation with poorer water quality in eastern China 
(Fig. 3). Using the Hu Huanyong Line (Hu Line) to distinguish between 
western and eastern China, the frequency of poor water quality samples 
(WQI-DET<40) was consistently higher in eastern China throughout our 
survey period (2003–2005, 2006–2010, 2011–2015, and 2016–2018). 
For example, 17.2% of the sampling sites showed poor water quality in 
eastern China, compared with only 4.6% in the western part of the 
country during the 2016–2018 period. Overall, our results are on par 
with the national evaluation by the Chinese Ministry of Ecology and 
Environment during the same period, which found that only 8.1% of 
sampling sites had extremely bad water quality, i.e., worse than Class V 
according to China’s Environmental Quality Standards for Surface Wa-
ters (GB3838-2002) (The Ministry of Ecology and Environment, 2020a). 

Among China’s Ten River Basins, Hai and Huai River Basins had the 
poorest water quality with a similar median WQI-DET value of 61.8 in 
2016–2018 (Fig. 3d), while the rest of the basins had WQI-DET values 
higher than 70. Water quality in Hai and Huai River Basins has signifi-
cantly improved in recent years (2016–2018). Namely, the median WQI- 
DET value in Hai River Basin increased from − 64.9 to 61.8 between 
2003-2005 and 2016–2018. Likewise, Huai River Basin had a median 
WQI-DET value that increased from 46.1 to 61.8 in 2016–2018. Poor 
water quality mainly occurred in downstream areas, especially in 
coastal areas. In 2016–2018, we found 24.4% (30) of the 123 sampling 
sites in coastal areas (20 km buffer zone from the coastline) showed poor 
water quality. This proportion (24.4%) is significantly higher than that 
registered in western China (4.6%). 

Six river basins (Songhua, Hai, Liao, Huai, Yellow, and Yangtze) 
showed a positive slope (k) (p<0.01) for the trend line of the median 
WQI-DET values (Fig. 4), suggestive of a general water quality 
improvement during the 2003–2018 period. The general water quality 
improvement in China’s rivers was also reinforced by another parallel 
comparison of sites that have been consistently sampled throughout the 
2003–2018 study period (see Section 1 in Supporting Information). Hai 
River Basin was most severely polluted at the beginning of our study 
period with the lowest intercept (− 70.7) for the trend line, but also 
showed significant water quality improvement with the highest slope (k 
= 9.52) or a 9.52 WQI-DET increase per year. Pearl River Basin showed a 
slightly decreasing trend (k=− 0.64) of the median WQI-DET, but 
showed an increasing trend of the mean WQI-DET during 2003–2018. 
This implied that the overall water quality has not improved in Pearl 
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River Basin, but the frequency of extremely poor water quality 
(extremely low WQI-DET) samples is decreasing. For visualization pur-
poses, the extremely WQI-DET values (<− 1000) were omitted from the 
corresponding panel in Fig. 4, but their influence is manifested with the 
significant discrepancy between average and median values. Three river 
basins (Southwest, Southeast, and Continental) did not show a clear 
changing pattern (p>0.05), but their water quality is relatively 
satisfactory. 

A clear pattern of decreasing WQI-DET trend (p<0.01) from up-
stream to downstream sites was also found in Yellow and Yangtze 

Rivers. In particular, water quality in Yangtze River displayed a 
discernible decline between the middle and downstream areas (Yichang- 
Shanghai) (Fig. 5). Liao, Hai, and Huai Rivers did not show a clear 
changing pattern (p>0.05) probably due to their high population den-
sity throughout the corresponding catchments areas. Interestingly, Pearl 
River showed relatively poor water quality at the upstream sites, fol-
lowed by a gradual water quality improvement downstream. However, 
three sites near the city of Wuzhou displayed low WQI-DET values due to 
excessively high Hg concentrations in April of 2018 (Fig. 5), but the 
signature of this elevated Hg incident dissipated downstream of the 

Fig. 3. Spatial patterns of water quality in China’s rivers during the periods of 2003–2005, 2006–2010, 2011–2015, 2016–2018. Box-plots represent the WQI-DET 
distribution within China’s Ten River Basins. 1–10 in X axes represent Songhua, Liao, Continental, Hai, Yellow, Yangtze, Huai, Southeast, Southwest, Pearl Rivers. 
WQI-DET represents a modification of the Water Quality Index (Huang et al., 2019). n is the number of data records. 
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Fig. 4. Inter- and intra-annual variability of the WQI-DET values for China’s Ten River Basins during the 2003–2018 period. n is the total sample size, p and k slope values for the trend lines are also provided.  
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Fig. 5. Water quality along the Liao (a), Hai (b), Yellow (c), Yangtze (d), Huai (e) and Pearl (f) rivers during the 2016–2018 period. Several large cities along the rivers are labelled in the X axes. A scatter plot with a 
trend line (red colour) represents the WQI-DET trend from upstream to downstream. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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three sites. 
The absolute number of water samples indicative of impaired con-

ditions (WQI-DET<0) showed a slightly decreasing trend from 2003 to 
2015, but had an abrupt increase from 2016 and thereafter, mainly 
stemming from the increased number of samples collected (Fig. 6a). 

Evidence of impaired water quality conditions was found in 30.6% 
(741/2424) of all the sampling sites across China’s rivers. In a similar 
manner, we used the relative frequency that each variable resulted in 
negative WQI-DET values to identify the most sensitive indicators of 
water quality impairment in China’s rivers during the 2003–2018 

Fig. 6. Critical variables associated with water quality impairment in China’s rivers: (a) Time-series contribution during 2003–2018 and (b) spatial distribution 
during 2016–2018. The contribution value for each variable was calculated by ni

DET/
∑m

i=1ni
DET , where ni

DET is the number of samples with a WQI-DET value lower 
than 0 for the i variable, and m (=12) is the total number of water quality variables considered. 
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period. Our results revealed a decreasing contribution of variables 
reflecting either the bioavailable oxygen (DO) or the amount that can be 
consumed by reactions (COD), a fairly constant relative frequency of 
elevated NH3-N, an increasing TP contribution to water quality 
impairment, and a very small proportion of HM pollution (Fig. 6a). The 
decreasing proportion from 17.9% (DO) and 22.2% (COD) in 2003 to 
4.8% (DO) and 5.3% (COD) in 2018 collectively offers a more optimistic 
perspective regarding the habitat suitability for a diverse range of biotic 

communities. In fact, only 20 sampling sites registered samples that 
reflected impaired water quality conditions due to DO, all located near 
large cities. Moreover, there was a very low percentage (<0.3%) of se-
vere HM (Hg, As, Cd, Pb and Se) pollution recorded in 14 sampling sites 
during the end of our study period. 

In stark contrast, water quality impairment is primarily associated 
with elevated TP and NH3-N concentrations (Fig. 6b). Among the 741 
sampling sites with impaired conditions, 648 sites registered excessively 

Fig. 7. Evaluation of the effects and per-
centage contribution of natural and anthro-
pogenic drivers to the TP and NH3-N 
variability at six major rivers (Liao, Hai, 
Yellow, Yangtze, Huai, and Pearl) in China 
(a). For every predictor and river in (b), each 
circle represents the trend, mean, and 
probability of the slope being greater than 
zero, as derived from the posterior distribu-
tion of the slopes. The edge colour of each 
circle represents the trend of the mean value 
(positive or negative). The colour indicates 
the mean of the posterior distribution. 
Larger circles indicate that the probability of 
the slopes being positive is very high (slope 
is likely positive) or very low (slope is likely 
negative). (For interpretation of the refer-
ences to colour in this figure legend, the 
reader is referred to the web version of this 
article.)   
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high TP/NH3-N levels. TP showed an increasing proportion from 9.86% 
in 2003 to 35.4% in 2018. In terms of the actual TP concentrations, our 
analysis did not reveal distinctly declining trends, except from the Liao 
and Yangtze River Basins (Figure S3). In fact, the vast majority of the 
Ten River Basins frequently displayed high TP concentrations (>0.1 mg/ 
L) during the 2016–2018 period. Evidence of statistically significant 
reduction in NH3-N levels was found in Songhua, Hai, Huai, Yellow, and 
Yangtze River Basins, but high concentrations (>0.5 mg NH3-N/L) 
continue to register with high frequency across all the major river basins 
(Figure S4). Overall, our attempt to characterize the river water quality 
in China provided evidence that TP and NH3-N are collectively 
responsible for >85% of the identified incidences of impaired water 
quality in recent years (2016–2018). 

3.2. Covariates of nutrient variability in China’s rivers 

Comparison between measured and predicted values along the six 
large rivers (Liao, Hai, Yellow, Yangtze, Huai, and Pearl) showed that 
our Bayesian models were generally able to recreate both TP and NH3-N 
concentrations with p<0.01 and low predictive bias (Figures S5 and S6). 
Among the covariates considered, the anthropogenic predictors had a 
larger contribution (82.5% for TP, and 79.5% for NH3-N) compared with 
natural drivers (20.5% for TP and 17.5% for NH3-N) when pooling the 
data from all six river basins together (Fig. 7a). Moreover, the posterior 
regression coefficients related to anthropogenic drivers had distinctly 
lower coefficients of variation compared with those for the natural 
drivers, which is suggestive of a higher degree of identification (low 
uncertainty) of the corresponding relationships with TP/NH3-N con-
centrations (Table S3). Among the four selected natural drivers, eleva-
tion displayed a discernible contribution to nutrient variability, ranging 
anywhere from 6% to 42%, with only exception being the Huai River. In 
the latter basin, slope appeared to be the strongest covariate of riverine 
TP and NH3-N levels. By contrast, precipitation and (less so) air tem-
perature were weak predictors for both TP and NH3-N concentrations 
across the six studied basins. 

Regarding the selected anthropogenic drivers, our analysis showed 
that the percentage of farmland and urban area, and nighttime light 
intensity were critical covariates for TP and NH3-N riverine levels 
(Fig. 7b; Table S3). The urban areal extent within any given watershed 
showed a consistently positive relationship with the two nutrient con-
centrations. The same pattern held true for the farmland area, except 
from the Huai River, where this relationship displayed a counterintui-
tive negative sign. Water treatment capacity had the lowest contribution 
(average value < 10%) to both TP and NH3-N variability, except from 
the Yangtze River Basin, where a somewhat higher contribution (>15%) 
was registered (Fig. 7a). Interestingly, the nighttime light intensity had a 
distinct signature (>35%) on the two nutrient levels in Yellow and Pearl 
River Basins, as well as in all 350 sub-watersheds (72.9% and 61.6% for 
TP and NH3-N) when pooled together (Fig. 7a). The latter result is 
reinforced by the spatial variability of the water quality impairments, 
where several “hot spots” of poor water quality were registered in four 
highly urbanized areas; namely, Beijing-Tianjin, Nanjing-Shanghai, 
Kunming, Shenyang (yellow and red colors in Fig. 8a). By contrast, 
sampling sites close to cities in central or western China (e.g., Lanzhou) 
with lower population density did not register severe water quality 
impairments. The spatial pattern of water quality bears a great deal of 
resemblance to that of average nighttime light intensity during 
2016–2018, with high values of the latter predictor variable represent-
ing higher population size and density (Fig. 8b). 

4. Discussion 

Food security, urbanization, environmental degradation, and climate 
change are major challenges facing China in the 21st century. Being the 
largest developing country, China has experienced fast transition from 
centrally planned to market-orientated economy during the past three 

decades, which was accompanied by rapid urbanization and major land- 
use conversion (Liu et al., 2014). Striving to achieve a food-production 
increase by 30–50% to meet projected demands, agriculture is increas-
ingly intensified which has caused adverse environmental impacts and 
widespread degradation of surface waters (Cui et al., 2018; Liu and Li, 
2017). To alleviate the pressure exerted from point- and non-point 
sources, China has taken remedial measures to restore its precious 
freshwater sources. Consequently, the construction of wastewater 
treatment plants has grown rapidly resulting in an increase from 40% to 
90% of municipal wastewater being treated on the national scale within 
a time span of just over a decade (Tong et al., 2020; Zhou et al., 2018). 
On the other hand, tackling the problem of excess non-point nutrient 
sources by reducing fertilizer application rates and implementing 
watershed beneficial management practices has had less clear results 
(Liu et al., 2016). Even more so, little work has been done to evaluate the 
impact of all these remedial measures on the water quality of rivers at a 
national scale. In this context, the present study compiled a 16-year 
dataset of river water quality, meteorological conditions, and variables 
related to anthropogenic activities/landscape features to evaluate the 
degree of success brought about by all the recent efforts to combat water 
pollution. 

4.1. How do anthropogenic factors and natural characteristics covary 
with China’s river water quality? 

Our attempt to characterize the signature of anthropogenic activities 
required to parse out the role of natural factors, such as meteorological 
conditions and landscape characteristics, in shaping riverine water 
quality. When considering all 350 sub-watersheds across China, our 
analysis was able to discern a weakly negative relationship between 
elevation and/or slope and TP/NH3-N concentrations (Figure S7), sug-
gesting that sites in higher elevations and/or steeper slopes registered 
lower nutrient levels. The slope of the catchment determines the water 
velocity and erosion severity, whereby mountainous rivers with higher 
slopes are expected to be subjected to faster flow velocities and more 
severe erosion, and thus shorter water retention times compared with 
lowland rivers (Palmer and Ruhi, 2019). However, our analysis did not 
render universal support to the latter hypothesis, partly due to the 
confounding effects of anthropogenic drivers that tend to negatively 
covary with the catchment elevation or slope (Figures S7-S8). Namely, 
lowland (low-slope) catchment areas are generally more urbanized with 
higher nutrient export (Figure S8). It is important to note though that the 
impacts of slope on water quality can also be influenced by the 
increasing number of dams in China, due to their considerable capability 
to modulate nutrient retention (Maavara et al., 2015). 

Precipitation can determine the amount of inflowing water via sur-
face and subsurface processes from urban areas or farmlands, and may 
thus significantly modulate the degree of nutrient loading from non- 
point sources (Stockwell et al., 2020). Recent research has shown that 
both particulate and bioavailable phosphorus loads can vary by orders of 
magnitude between wet and dry conditions (Long et al., 2014, 2015). 
Emerging evidence also suggests that a significant fraction of the annual 
phosphorus loads can be generated during a small number of brief but 
intense precipitation events. While the association of phosphorus with 
stormwater is plausible, the flow-concentration relationship can be 
profoundly modulated by factors such as watershed physiography, land 
use patterns, and antecedent conditions (Green et al., 2007). An over-
arching precipitation-concentration paradigm for nitrogen species is 
even less clear relative to that for phosphorus, given that a greater 
proportion of total nitrogen is found in the dissolved phase due to 
relatively high solubility of nitrogen species, such as nitrite and nitrate, 
and can be transported by subsurface and groundwater flow pathways 
(Long et al., 2014). Our expectation of a positive association between 
TP/NH3-N and precipitation manifested itself only in Liao River 
(Table S3). This is because precipitation is highly correlated to elevation 
with a correlation coefficient of − 0.99 (Figure S8). Therefore, elevation 
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Fig. 8. Spatial variability of water quality impairment caused by TP and NH3-N in China’s rivers (a), and nighttime light intensity (b) during 2016–2018. The left panel visualizes the density (/104 km2) of the sampling 
sites with registered water quality impairment. A value of 1 reflects that there is one site with water quality impairment over an area of 104 km2. 
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was selected as a covariate for the riverine nutrient levels, instead of 
precipitation. Similarly, air temperature can directly influence riverine 
thermal regimes and biogeochemical processes, such as nitrification, 
denitrification, ammonification, and sediment diagenesis rates (van 
Vliet et al., 2013; Xia et al., 2018; Yang et al., 2020). Although existing 
evidence suggests warmer temperatures result in higher recycling rates, 
and consequently higher nutrient retention in rivers (Xia et al., 2018), 
our analysis was not able to fully disentangle the temperature control on 
the ambient TP/NH3-N levels, given its covariance with other natural or 
anthropogenic predictor variables (Figures S7-S8). 

Counter to the relatively minor role of the natural factors considered 
in our analysis, the nighttime light intensity and the percentage of the 
urban area were the strongest predictors of riverine TP/NH3-N levels 
and collectively accounted for most of the nutrient variability registered 
in the study sites. These distinctly positive relationships across all the 
major subwatersheds could reflect the influence of a suite of factors 
associated with the urban environment, such as inefficient stormwater 
management, suboptimal operating WWTP performance, underdevel-
oped sewers and sludge disposal facilities (Jiang et al., 2018; Qu et al., 
2019). In particular, sustainable urban stormwater management is one 
of China’s emerging challenges, where the infrastructural investments 
have not been on par with the continuous population growth, rapid 
urbanization, and socio-economic development. Taken together with 
the changing weather patterns and climate, the urban pluvial flooding 
gradually becomes a regular hydrometeorological phenomenon that has 
repeatedly affected many megacities in China (Du et al., 2015a, 2015b; 
Liu and Wang, 2016). To address the broader impact of the on-going 
urbanization and development process, the Chinese government has 
established a national initiative termed sponge cities as a holistic strategy 
that combines innovative technologies, effective governance, and 
broader community engagement to bring sustainable stormwater man-
agement into fruition (Jiang et al., 2018). 

Water treatment capacity of WWTPs was another predictor consid-
ered to reproduce of the riverine nutrient variability. The rationale 
behind the selection of this covariate reflected China’s efforts in building 
municipal WWTPs (>5000), and enforce more stringent effluent 
discharge standards during the past decades (Huang et al., 2019; The 
Ministry of Ecology and Environment, 2020b). China may have now the 
world’s largest municipal wastewater infrastructure with a daily treat-
ment capacity of nearly 200 million m3/d and a wastewater treatment 
ratio of over 90% (Qu et al., 2019). However, our analysis suggests a 
positive covariance between TP/NH3-N and WWTP treatment capacity 
(Table S3). While this finding simply suggests the WWTP treatment 
capacity may not be the most sensitive variable to recreate the recent 
riverine nutrient trends, it could also reflect the fact that there are still 
considerable gaps in the design principles and operation performances 
of the treatment facilities, lagged development of sewer systems, 
disparity between the effluent discharge standards and the local con-
ditions and environmental protection demands, and lack of appropriate 
sludge disposal (Qu et al., 2019). Viewed from this perspective, the 
water treatment capacity of WWTPs alone is not sufficient to predict the 
response of riverine ecosystems, and thus other surrogate variables of 
the urban environment (percentage urban area, nighttime light in-
tensity) displayed stronger covariance with the water quality. 

Non-point source pollution from agriculture has been widely recog-
nized as a critically important source of nutrients into surface waters due 
to intensive fertilization. China’s crop production maintained an 
average P fertilization rate of 80 kg/ha in 2012, which was twice as high 
as what crops can assimilate (Liu et al., 2016). Recognizing the chal-
lenges to accurately estimate the magnitude of non-point source pollu-
tion (Ongley et al., 2010; Shen et al., 2012), we postulated that the area 
percentage of farmland could display a discernible positive covariance 
with riverine TP/NH3-N concentrations. Although our proxy of 
non-point source pollution from agriculture did not consistently register 
a distinct signature across the six river basins studied, it does support our 
hypothesis when pooling all the watersheds together (Fig. 7b). Even 

though significant progress has been made in terms of the N and P 
loading export from agriculture (farming, aquaculture, livestock and 
poultry) between 2007 (1.598 × 109 kg TN and 1.087 × 108 kg TP) and 
2017 (7.195 × 108 kg TN and 7.62 × 107 kg TP) (The Ministry of 
Ecology and Environment, 2020b), there is still a lot of grounds to cover 
in order to effectively mitigate non-point source pollution. To further 
address this issue, there are recommendations for a more efficient 
paradigm with P fertilizer management to address the dual challenge of 
P resource conservation and eutrophication mitigation, which will sus-
tain future food production and maintain the integrity of freshwater 
ecosystems (Liu et al., 2016). In particular, it has been argued that China 
could delay exhausting its P reserves by over 20 years by improving its 
agronomic P use efficiency (defined as the ratio of the useful P output in 
products to the total P inputs in an ecosystem) to the average level of 
80% in developed countries without any major implications for the 
targeted crop yields (Withers et al., 2014). 

4.2. Challenges and on-going research questions with the river water 
quality management in China 

Our study provided evidence of a distinct water quality improvement 
in China’s major rivers with a gradual decrease in the frequency of 
prevalence of anoxic conditions, an alleviation of the severity of heavy 
metal pollution, and moderate success with the mitigation of cultural 
eutrophication during the 2003–2018 period. We also identified sig-
nificant spatial variation with relatively poorer water quality in eastern 
China, nearby the major metropolitan areas of Beijing-Tianjin, Nanjing- 
Shanghai, Kunming, and Shenyang. The fact that more than 85% of the 
identified incidences of impaired conditions are associated with high 
nutrient concentrations suggests that our efforts to control point- and 
non-point source pollution should be further intensified. Notwith-
standing the significant progress of China’s wastewater treatment plant 
sector, the ubiquitous problems of the existing infrastructure (under-
developed sewers and sludge disposal facilities, low sustainability of the 
treatment processes, mismatch between effluent discharge standards 
and environmental protection demands) represent one of the next 
management priorities. With the increasing prevalence of agricultural 
non-point source pollution, Best Management Practices (BMPs) are an 
emerging imperative in our efforts to prevent or reduce water pollution. 
Founded upon the pollution control theory of “source reduc-
tion–interception–repair”, BMPs are increasingly applied in China’s 
agricultural lands to mitigate non-point source pollution and restore 
aquatic ecosystems with variant results. Nonetheless, the design of BMPs 
should accommodate recent conceptual and technical advancements 
regarding the life-cycle non-stationarity, the variability in their starting 
operational efficiency, differential response to storm events or season-
ality, dependence of operational performance on watershed geological 
conditions, and expected decline in performance over time owing to 
different maintenance practices increase the uncertainty of BMP effi-
ciency (Arhonditsis et al., 2019b, c; Liu et al., 2018). 

Except from the mitigation of external loading, the complex inter-
play among instream physical (e.g., flow regimes, water temperature), 
chemical (e.g., adsorption/desorption), and biological (e.g., microbial 
decomposition) processes can profoundly modulate the ambient 
nutrient levels. In particular, sediment-water interfaces have been the 
research focus of the nutrient cycling in rivers, but recent evidence 
suggests that suspended particle water interfaces in the water column 
could also be hotspot of nutrient transformations (Xia et al., 2018). 
Suspended particles are key determinants in the transport, reactivity, 
and biological impacts of chemicals (Lin et al., 2021). For example, 
adsorption of dissolved phosphate onto inorganic particles, particularly 
amorphous iron oxyhydroxides, is considered a critical process to con-
trol bioavailable phosphate to relatively low levels (Pan et al., 2013). 
Depending on the reactivity of particles, there are critical thresholds of 
suspended matter concentrations below which water quality problems 
could become more severe, even if the exogenous nutrient loading 
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control is successful. Another interesting perspective of the tight 
coupling external loading-instream processes was recently offered by 
Tong et al. (2020), who argued that the growing imbalance between the 
rates of reduction of TN and TP external loading could lead to distinct 
differences in the nutrient stoichiometry (e.g., TN/TP ratios) of the 
receiving waterbodies and ultimately impact the risks of harmful algal 
blooms and broader ecosystem integrity. 

A final note of consideration involves the granularity of the assess-
ment of the progress of China’s river water quality as we move forward. 
We advocate the assessment of the prevailing conditions using individ-
ual water quality snapshots based on samples collected regularly from 
different sites throughout the year, rather than any type of data aggre-
gation in time and or space. The latter strategy may not be reflective of 
the wide range of spatiotemporal dynamics typically experienced in any 
riverine ecosystem nor does it allow us to evaluate our progress with 
ecosystem services at the degree of granularity required to assess the 
public sentiment. It would seem paradoxical to expect a single-valued 
average, reflective of the central tendency of multiple samples, to cap-
ture the degree of public satisfaction, which is often determined by the 
occurrence of water quality extremes (e.g., hypoxia leading to fish 
deaths, harmful algal blooms). Notably, while our delineation of the 
general trends based on yearly averages (or medians) painted a 
favourable picture regarding the riverine water quality in China, the 
reality is that excessively high pollutant concentrations are even 
frequently experienced, even in rivers that have demonstrably shown 
significant improvement (Figures S3 and S4). For example, more than 
30% and 50% of the samples collected from all the sites across the 
Yellow River in 2018 registered NH3-N and PO4 concentrations greater 
than 0.5 mg/L and 0.1 mg/L, respectively. Similar or even higher ex-
ceedance frequencies are still experienced in other rivers (Huai, Yang-
tze) with significant progress during our study period, which reinforces 
the point that China needs to intensify its nutrient management policies 
(Qin et al., 2020). The proposed assessment of the water quality status 
that revolves around extreme (or maximum allowable) pollutant levels 
has the conceptual advantage that not only tracks directly the actual 
incidences of water quality impairment, but is also closely connected 
with the targeted ecosystem services offered from riverine ecosystems 
(Arhonditsis et al., 2019a). 

5. Conclusions 

China’s river water quality patterns and underlying covariates were 
characterized at a national scale to evaluate the recent progress and on- 
going challenges in river management. Our analysis revealed a distinct 
water quality improvement with a gradual decrease in the frequency of 
prevalence of anoxic conditions, an alleviation of the severity of heavy 
metal pollution, and moderate success with the mitigation of cultural 
eutrophication during 2003–2018. River water quality is poorer in 
eastern China compared with that in western China. TP and NH3-N are 
collectively responsible for >85% of the identified incidences of 
impaired conditions. Our Bayesian modelling results revealed that the 
frequency of water quality impairments predominantly displays stron-
ger relationships with anthropogenic covariates (82.5% for TP, 79.5% 
for NH3-N) compared with natural factors (20.5% for TP, 17.5% for 
NH3-N). Although considerable success was achieved in water quality 
restoration in China’s rivers, it is still challenging to eradicate eutro-
phication and realize acceptable ecological conditions. The design of the 
remedial measures must be tailored to the site-specific landscape char-
acteristics, meteorological conditions, and should also consider the 
increasing importance of non-point source pollution and internal 
nutrient loading. 
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