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Abstract
1.	 Algal blooms can have profound effects on the structure and function of aquatic 

ecosystems and have the potential to interrupt valuable ecosystem services. 
Despite the potential ecological and economic consequences of algal blooms, the 
spatial dynamics of bloom development in spatially complex ecosystems such as 
shallow lakes remain poorly characterised. Our goal was to evaluate the magni-
tude and drivers of spatial variability of algal biomass, dissolved oxygen, and pH 
over the course of a season, in a shallow lake in order to better understand the 
spatial dynamics of algal blooms in these ecosystems.

2.	 We sampled 98 locations in a small eutrophic lake on a 65-m grid for several pa-
rameters (chlorophyll a, phycocyanin, dissolved oxygen, pH, and temperature), 
weekly over 122 days. This was done to estimate the dynamics of variability and 
spatial autocorrelation during the course of multiple bloom events. We also com-
pared the spatial measurements to a high frequency sensor deployed at a fixed 
station and estimated the optimal spatial sampling resolution by performing a rar-
efaction analysis.

3.	 Spatial heterogeneity of algal pigments was high, particularly during bloom events, 
and this pattern and the overall severity of the bloom were not well captured with 
the fixed station monitoring. The pattern of algal pigments and other limnologi-
cally important variables (dissolved oxygen and pH) was related to the direction 
of prevailing winds 24 hr prior to sampling, the shallow northern basin where the 
main surface inlet is located, and heavy precipitation. Additionally, a dense bed of 
floating-leaf macrophytes contributed to local patchiness in all variables. Finally, 
from the rarefaction analysis we found that minimal information about the mean 
state of the ecosystem was gained after c. 30 locations had been sampled.

4.	 This study revealed how spatially heterogeneous shallow lakes are over the course 
of a single season, and that the magnitude of variability was highest during biologi-
cally intensive periods such as algal blooms. As such, continued research is needed 
across a range of trophic conditions to better understand the structure of hori-
zontal variability in lakes. Overall, these data demonstrate the need for spatially 
explicit monitoring to better understand the dynamics and drivers of algal blooms 
in shallow lakes and to better manage ecosystem services.
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1  | INTRODUC TION

Lakes are highly dynamic ecosystems that can undergo rapid physi-
cal and chemical changes at an individual location, throughout their 
water column, and across the entire lake surface at the scale of 
hours, days, seasons, and years (Laas et al., 2012; Read et al., 2011; 
Wynne & Stumpf, 2015). Quantifying heterogeneity in aquatic eco-
system structure and function not only improves our understanding 
of lake ecology and the underlying mechanisms that drive spatial 
and temporal heterogeneity, but also provides insights that improve 
management of these ecosystems and the services they provide. 
With the development of sophisticated sensor technology, high 
frequency measurements of variables such as dissolved oxygen and 
temperature have helped limnologists grasp the scale of temporal 
heterogeneity in lakes (Carpenter et al., 2020; Chaffin et al., 2020; 
Cotterill et al., 2019). Detailed temporal monitoring has led to ad-
vances in understanding several lake mechanisms such as diel cy-
cles in primary production (Solomon et al., 2013; Staehr et al., 2012), 
temperature effects on biogeochemical processes (Medeiros 
et al., 2012), and early warnings of the transition to alternative stable 
states (Carpenter et al., 2011; Wilkinson et al., 2018). Additionally, 
high frequency measurements have been used to better understand 
heterogeneity over depth (vertical spatial heterogeneity) for import-
ant processes such as stratification (Boehrer & Schultze, 2008; Read 
et al., 2011). Despite these advances in understanding temporal and 
vertical heterogeneity, less is known about the dynamics of horizon-
tal spatial heterogeneity in the surface waters of lakes.

The vast majority of our understanding of lentic ecosystem struc-
ture and function comes from single station sampling, with measure-
ments taken through time over the deepest point in the lake (Stanley 
et al., 2019). This location is usually selected to be representative of 
conditions in the lake; however, the representativeness of a single 
location is likely to vary with regards to the variable being measured 
and with time due to interacting forces such as wind, hydrology, ba-
thymetry, and biology (Chaffin et al., 2020; Schilder et al., 2013; Wu 
et al., 2010; Zhou et al., 2013). For example, ecosystem metabolism 
measured at dozens of locations for 10 days in two north temper-
ate lakes varied by 1–2 orders of magnitude, with more than three-
quarters of the variability attributable to the measurement location 
within the lake (Van de Bogert et al., 2012). Transect-based studies 
of reservoirs have revealed gradients in algae pigments, pH, and nu-
trients with differences varying between 25% and 180% within a 
waterbody (Moreno-Ostos et al., 2009; Rychtecky & Znachor, 2011; 
Smith,  2018). Recently, satellite-based studies have demonstrated 
the ability to detect spatial patterns at a high resolution for optical 
variables in large lakes (Lekki et al., 2019). Despite these advances, 
relatively few studies have quantified horizontal spatial variabil-
ity over time in lakes (Butitta et al., 2017; Loken et al., 2019; Vilas 
et  al.,  2017), hampering our understanding of the magnitude of 

heterogeneity in variables important for managing water quality and 
ecosystem services.

The development of algal blooms is expected to be a spatially 
heterogeneous phenomenon (Buelo et al., 2018; Butitta et al., 2017; 
Serizawa et  al.,  2008) due to both local heterogeneity in nutrient 
limitation, zooplankton grazing, and temperature (Davis et al., 2009; 
Hansen et al., 1997) and population scale heterogeneity due to wind 
(George & Heaney, 1978). Algal blooms can have a negative effect on 
ecosystem services, and therefore are often a target for ecosystem 
monitoring and management. Some bloom-forming taxa, particularly 
freshwater cyanobacteria, can produce toxins that rise to dangerous 
concentrations for humans, pets, and livestock (Codd et al., 2005; 
Corbel et  al.,  2014). Additionally, the mineralisation of settling 
phytoplankton contributes to anoxic bottom waters, while intense 
periods of primary production cause large variation in dissolved 
oxygen and pH (in poorly buffered ecosystems) over the course 
of the day, which is stressful for aquatic organisms (Gilbert, 2017; 
Landsberg, 2002). Furthermore, the perceived recreational value of 
lakes declines when blooms form (Angradi et al., 2018), which in turn 
can negatively affect local economies (Dodds et al., 2009). Despite 
the risk of economic loss, loss in biodiversity, and potential human 
harm, the spatial dynamics of bloom development in spatially com-
plex ecosystems such as shallow lakes remain poorly characterised.

Shallow lakes have a large interface between the sediment and 
water relative to deeper lakes, making them more susceptible to rapid 
changes in water residence time and nutrient inputs (Christensen 
et al., 2013; Rennella & Quiros, 2006; Romo et al., 2013). Due to the 
expansive littoral zones, shallow lakes can have large macrophyte 
beds that modify the light climate and turbulence at the sediment–
water interface (Andersen et al., 2017; Moller & Rordam, 1985; Vilas 
et  al.,  2017). Many shallow lakes are also polymictic, experiencing 
multiple periods of stratification followed by mixing during the ice-
free season. During periods of water column stability, some cyano-
bacteria taxa thrive, initiating blooms (Carey et al., 2012). Additionally, 
episodic nutrient loading from the catchment during storm events 
(Carpenter et al., 2015; Kelly et al., 2019), spatial gradients in nutrient 
availability due to stream inlets and morphology (e.g. embayments), 
and wind-driven circulation (Schoen et al., 2014) can all contribute to 
spatial heterogeneity of algal blooms over time in shallow lakes.

To better understand the spatial dynamics of algal blooms in 
shallow lakes, we performed intensive spatial sampling on Swan Lake 
(Iowa, U.S.A.), a spatially complex, shallow, hypereutrophic water-
body with a history of toxic cyanobacteria algal blooms. In addition 
to measuring algal pigments throughout the lake over the course of 
122 days, we also measured temperature, dissolved oxygen, and pH. 
The spatial sampling captured two bloom events and coincided with 
high frequency monitoring of the same variables using autonomous 
sensors deployed at a fixed station (Ortis et al., 2020). Using these 
data, we addressed the following questions: (1) how does spatial 
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variability of algae, dissolved oxygen, and pH change over the course 
of a season; (2) are high frequency measurements at a fixed station 
an adequate characterisation of surface water dynamics in a shal-
low lake; and (3) what is the optimal spatial sampling frequency to 
capture the mean state of a productive waterbody? Evaluating these 
questions with data from a spatially complex, hypereutrophic lake 
will provide valuable ecological and management-relevant insights 
into algal bloom dynamics.

2  | METHODS

2.1 | Study site

Swan Lake (42.0396, −94.8454) has an average depth of 2 m, sur-
face area of 40.5 ha, and a shoreline development index value of 
1.54 (more irregular shape as compared to a perfect circle with the 
same surface area). The catchment is 350 ha with 92% of the land 
in agricultural use. The estimated water residence time is approxi-
mately 1.5  years. During the ice-free period of 2018, Swan Lake 
had an average total phosphorus concentration of 280 µg/L and a 
total nitrogen concentration of 1.61 mg/L, making it hypereutrophic 
(Carlson,  1977). Total nitrogen was measured as the sum of total 
Kjeldahl nitrogen (method 351.2 v2, US EPA, 1993c) and nitrate + ni-
trite measured using the cadmium reduction method (method 4500-
NO3-F, US EPA, 1993a). Total phosphorus was measured using the 
ascorbic acid method (method 365.1 v2, US EPA,  1993b). The av-
erage total alkalinity during the same period was 139 mg CaCO3/L 
determined through end-point titration (APHA, 1998). In addition to 
seasonal algal blooms, Swan Lake also has non-continuous beds of 
American lotus (Nelumbo lutea) and sago pondweed (Stuckenia pecti-
nata) that peak in biomass in the latter half of the summer and then 
begin senescing. The main surface inlet to the lake enters on the 
western side and the outlet is at the southern edge of the waterbody 
(Figure 1). There are no known springs feeding the lake.

2.2 | Field methods

The spatial sampling occurred approximately weekly from day of 
year (DOY) 142 to DOY 264, encompassing the late spring, summer, 
and early autumn. A total of 16 spatial sampling events occurred 
over the course of the 122  days. Measurements of chlorophyll a, 
phycocyanin, temperature, dissolved oxygen saturation, and pH 
were taken 0.25 m below the surface at 98 sampling stations using 
a YSI Pro DSS multiparameter sonde (Yellow Springs Instrument, 
Yellow Springs, OH, U.S.A.) suspended over the side of a 3-m long 
jon boat equipped with an outboard motor. The sensors, which in-
cluded the fluorometric total algae (chlorophyll a and phycocyanin), 
optical dissolved oxygen, and Ag/AgCl pH sensors, were calibrated 
weekly prior to each sampling event according to manufacturer in-
structions. The sampling stations were laid out in a 65 × 65 m grid 
across the lake (Figure 1) with each location measured in the same 

order (north to south) for each sampling event. This spatial resolution 
was selected to allow for many sampling locations to be measured 
in a relatively short window of time, thereby minimising the chance 
that the differences observed between sampling locations was not 
due to time of day. Measurements were taken between 10:00 and 
14:00, except for the first 2 and last 3 weeks when sampling lasted 
until 16:00. Beginning on DOY 177 when submerged macrophytes 
could be identified from the jon boat, the presence or absence of 
submerged or floating leaf macrophytes was noted at each sampling 
station during each sampling event. Sampling locations where mac-
rophytes were always noted as present were considered established, 
permanent macrophyte beds in the lake for that summer. These 
weekly presence/absence data were used to construct the macro-
phyte distributions in Figure 1.

F I G U R E  1   Sampling locations on a 65-m square grid of Swan 
Lake, a 40.5-ha waterbody in western Iowa, U.S.A. The main inlet 
to the lake and only outlet indicated with arrows. (a) The location of 
the macrophyte beds of the two dominant species within the lake 
are shown on the map, with darker shading indicating the regions 
with the vegetation was always observed, indicating permanent 
macrophyte beds, and the location of the high frequency sensor, 
(b) the bathymetry of the lake and location of the lake in the state 
of Iowa, in reference to the U.S.A.
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The fixed station high frequency monitoring of Swan Lake was 
performed using a YSI EXO2 (Yellow Springs Instrument) multipa-
rameter sonde equipped with the same sensors as the YSI ProDSS 
used for the spatial sampling. The sonde recorded measurements 
of chlorophyll a, phycocyanin, dissolved oxygen saturation, and 
pH every 15 min. The instrument was deployed on DOY 135 over 
the deepest point in the lake (3.8 m deep), hanging approximately 
0.5 m below the surface, and removed on DOY 264 after the spa-
tial sampling event on that day. The fixed station sonde was mon-
itored weekly for drift and calibrated according to manufacturer 
instructions when indicated by the quality control algorithm in the 
KorEXO software. Hourly precipitation, wind speed, and wind di-
rection were collected at the Arthur N. Neu Airport in Carroll, Iowa, 
located 4.5 km from the lake, as a part of the National Oceanic and 
Atmospheric Automated Surface Observatory System. The meteo-
rological data were used to aid in the interpretation of spatial dy-
namics over the course of the summer.

2.3 | Data analysis

Spatial heterogeneity can be quantified by calculating the spatial 
variance (e.g., coefficient of variation; CV) or spatial autocorrela-
tion (AC; Moran's I, Moran, 1950). Increasing spatial variance is in-
dicative of increasing patchiness in the ecosystem, such as areas of 
high-density algal biomass and areas of low-density biomass within 
a lake. Spatial AC accounts for the location of those patches within 
the ecosystem in relationship to each other. Local Moran's I quanti-
fies how similar the abundance of algae is at one location compared 
to the density of surrounding neighbours. When measured over 
time for variables that are indices of algal biomass (e.g., the pigments 
chlorophyll a and phycocyanin), both of these metrics of spatial het-
erogeneity can provide insight into the dynamics of algal bloom de-
velopment. In models of algal blooms, both spatial variance and AC 
are expected to be high during the bloom period (Buelo et al., 2018).

Spatial AC and the CV were calculated for each variable on each 
sampling date in order to evaluate the dynamics of these parameters 
over time. Prior to analysis, extreme outliers in the algal pigments 
were removed from the spatial dataset as they were well outside the 
operating range of the Total Algae sensor or there was known in-
terference with the sensor resulting in an inaccurate measurement. 
This resulted in five chlorophyll a and three phycocyanin measure-
ments being removed out of 3,136 total pigment measurements. The 
spatial CV is the standard deviation (SD) of all of the spatial measure-
ments for a variable on a given sampling date divided by the mean of 
those measurements, expressed as a percent. Spatial AC was calcu-
lated as the average value of local Moran's I with a queen's distance 
neighbour list (92 m) with equal weight (1/n) on neighbours, as to not 
impose any assumptions on possible spatial patterns in the variables. 
We limited our analysis to surrounding neighbours because distances 
beyond this have not shown high spatial AC of algal pigments under 
experimental conditions (Butitta et al., 2017). Local Moran's I values 

near 1.0 reflect high spatial AC within neighbours, zero indicates a 
random distribution, whereas spatial AC values nearing −1.0 indicate 
a perfectly dispersed distribution (e.g. checkerboard pattern) in the 
variable being measured. As the spatial variability in temperature is 
mediated by physical processes, we used the dynamics and extent 
of the spatial AC of temperature as a benchmark to visually compare 
the dynamics of spatial AC in the other biological variables. This al-
lowed us to tease apart the effect of physically versus biologically 
driven spatial patterns. Additionally, to better visualise the spatial 
patterns in chlorophyll a, phycocyanin, temperature, dissolved ox-
ygen, and pH over the course of the season, the data were interpo-
lated using inverse distance weighting across a 25-m grid (Figure 2).

To evaluate if high frequency measurements at a fixed station 
are an adequate characterisation of the surface water dynamics in 
a shallow lake, we compared the measurements taken by the fixed 
station sonde during the same time period as a spatial sampling 
event. High frequency data from the fixed station sonde were 
trimmed to the period that we sampled the lake spatially. A t-test 
with a Bonferroni correction, to account for the multiple compari-
sons, was performed to compare the distribution from the 98 sam-
pling stations to the fixed station measurements from the same day 
for each of the four biologically mediated variables, chlorophyll, 
phycocyanin, dissolved oxygen, and pH. In addition to comparing 
fixed sonde values to the spatial sampling, we also used the spatial 
data to identify locations in the lake that were consistently rep-
resentative of mean conditions, and therefore ideal locations for 
fixed station monitoring. We identified locations in the lake for 
each sampling event that had measurements within the range of ±1 
SD from the mean for each biologically mediated variable (all vari-
ables except temperature). We then collated these locations across 
all sampling dates to identify which of the 98 sampling locations 
had measurements that most consistently represented the mean 
conditions of the lake.

Finally, we performed a rarefaction analysis to evaluate the op-
timal spatial sampling frequency to capture the mean value of the 
biologically mediated variables. This was done by randomly select-
ing n number of spatial sampling data points (n  =  2–97) during a 
sampling event, calculating the mean value from that subset, and 
then calculating the root mean square error (RMSE), comparing the 
mean estimate from the subset to the mean of all sampling points 
during that event. This calculation was repeated 1,000 times for 
each value of n, and each iteration was then averaged. The aver-
aged RMSE values for each subset of n were fit using a local poly-
nomial regression with a smoothing factor of 0.1 and each sampling 
event's RMSE curve was standardised by subtracting the mean of 
all iterations (global mean) from the mean at n number of stations, 
to aid in visual comparison. The spatial data are available through 
(Ortiz & Wilkinson, 2019) and the fixed station data are available 
in Ortiz et al. (2019) and further analysed in Ortiz et al. (2020). All 
analyses were performed using R 4.0.2 (R Core Team, 2020) using 
the gstat (Pebesma, 2004), rstatix (Kassambara, 2020), and sf pack-
ages (Pebesma, 2018).
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3  | RESULTS

There were two bloom events during the summer of 2018 in Swan 
Lake. The first bloom occurred from DOY 156–184 and was domi-
nated by the diatom Aulacoseira spp. based on a sample taken on 
DOY 177 examined under a compound microscope at 400× mag-
nification. The phycocyanin concentrations on DOY 177 were the 

lowest during this first bloom period (Figure 2), and no cyanobac-
teria were identified in the sample. The second bloom, peaking on 
DOY 236, was dominated by the cyanobacterium Microcystis spp. 
There were also two large precipitation events during the summer, 
occurring after sampling on DOY 170 and lasting through DOY 171, 
and on DOY 232 (Figures 2 and S1). The maximum wind speed re-
corded during the first precipitation event was 10.8  m/s coming 
from the southwest and 11.8  m/s during the second precipitation 
event coming from the southeast. During the first half of the sum-
mer (DOY 142–191) the prevailing winds 24 hr prior to the sampling 
events were from the south, switched to being predominantly from 
the north from DOY 198–219, and then varied in direction for the 
rest of the season (Figure 2). The median wind speed for the first 
period when winds were from the south was 3.6  m/s (Figure  3b). 
When the winds switched to being predominantly from the north 
between DOY 198 and 219, the median wind speed was lower at 
2.5 m/s (Figure S1).

3.1 | Spatial dynamics

During the two bloom periods, there was not a latitudinal or lon-
gitudinal trend in chlorophyll a concentrations; instead, there were 
patches of high chlorophyll a concentration on otherwise low-
concentration dates (Figure 2). Unlike chlorophyll a, phycocyanin had 
a strong latitudinal trend with higher concentrations in the northern 
portion (sample sites A1–G4) of the lake during the first bloom. This 
spatial pattern is readily observed on DOY 184 but is also noticeable 
for many of the sampling events during the first bloom (Figure 2). 
During sampling events with a strong latitudinal gradient in phy-
cocyanin (DOY 166–184 and 236) the mean concentration in the 
northern portion of the lake was nearly double the concentration in 
the southern portion of the lake (7.29 and 3.76 μg/L, respectively). 
On these dates, the prevailing winds 24  hr prior to the sampling 
event were out of the north (Figure S1), yet the lowest concentra-
tions of phycocyanin were found in the southern portion of the lake. 
Even when the lake was not blooming, there were patches of high 

F I G U R E  2   The spatial pattern of each of the variables 
chlorophyll a (Chl, µg/L), phycocyanin (Phyco, µg/L), dissolved 
oxygen (DO, percent saturation), pH, and temperature (Temp, 
°C) for each sampling event. The 98 sampling locations taken in a 
65-m grid (Figure 1) were interpolated to a 25-m grid using spatial 
inverse distance interpolation for visualisation here. The colour 
ramps for each variable are scaled from the lowest to the highest 
value observed over the course of the season across all sampling 
locations. The wind roses are the wind speeds (m/s; colour ramp) 
and direction the wind came from for the 24 hr prior to a sampling 
event. The concentric circles are the frequency of winds from that 
direction for the 24-hr period (expressed as a percentage, largest 
circle is 80% of the time). In the case of a longer spoke, the greater 
amount of time the wind was from that direction. The horizontal 
lines between DOY 170 and 177, and DOY 226 and 236 mark 
the two large precipitation events that occurred between those 
sampling dates
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concentrations of phycocyanin in the northern portion of the lake 
(e.g., DOY 212), located among the densest, permanent patch of 
American Lotus (Figures 1 and S3). The average phycocyanin con-
centrations at the sampling locations within the American Lotus 
patch was higher than the average concentration in the rest of the 
lake for 14 of the 16 sampling events (Figure S2).

The daytime saturation of dissolved oxygen varied the most out 
of the five variables monitored, ranging from borderline hypoxic 
(30% saturation) to supersaturated (up to 350%; Figure 2). While the 
dissolved oxygen saturation increased near the peak of the bloom, 
the highest average saturation was on DOY 191, after the first bloom 
had collapsed. There was a weak pattern over the course of the sea-
son of higher saturation in the northern portion of the lake, similar 
to the distribution of higher phycocyanin concentrations. However, 
within the northern portion of the lake, regions of low dissolved ox-
ygen saturation formed in the surface waters, particularly later in 
the summer (Figure 1). Beginning on DOY 198, the mean dissolved 
oxygen concentration in the American lotus patch was consis-
tently lower than the average for the rest of the lake until DOY 250 
(Figure S2). The distribution of pH also had a weak spatial pattern 
during the summer, with slightly elevated values in the northern por-
tion of the lake during the first bloom (e.g. DOY 177; Figure 2). While 
pH was elevated at the onset of the first bloom period from DOY 
149–170, it was highest overall on DOY 191 and 198 after the first 
bloom had collapsed. Unlike the other variables, temperature had a 
subtle south to north latitudinal gradient with warmer temperatures 

in the southern portion of the lake and colder in the north during the 
latter half of the summer (Figure 2). On average, this difference be-
tween the northern portion of the lake and the southern was 0.5℃. 
The warmest day of sampling was DOY 191.

Spatial variability in algal pigments during the first bloom event 
was low, with two exceptions. There was an increase in the CV of 
chlorophyll a on the last day of the bloom (DOY 184; Figure 3a) that 
continued to increase as the bloom collapsed. There was also a tem-
porary increase in phycocyanin CV during the first bloom on DOY 
177 (Figure 3b), coinciding with a temporary decline in phycocyanin 
concentration across the lake. The CV of both algal pigments was 
higher than the CV of temperature over the course of the entire 
sampling period.

Conversely, the CV of pH and dissolved oxygen were elevated 
during the first bloom period, with pH CV declining and remaining low 
after the first bloom (Figure 3c) and dissolved oxygen CV only tempo-
rarily declining after the first bloom (Figure 3d). Temperature had low 
variability throughout the first bloom until DOY 177, when the lake 
began to heat up, peaking in both temperature and spatial variability 
on DOY 191 (Figure 3e). Between the first and second blooms, DOY 
191–226, there was a decrease in spatial variability among the algal 
pigments and pH as the bloom collapsed, while temperature and dis-
solved oxygen CV remained relatively high and variable. During the 
second bloom period, CV was low for all variables except for chlo-
rophyll a. In general, the CV of temperature and pH, expressed as a 
percentage, was an order of magnitude lower than the other variables.

F I G U R E  3   Time series of the spatial 
coefficient of variation (CV) and spatial 
autocorrelation (AC; local Moran's I) of 
the biologically mediated variables in 
Swan Lake (same variable abbreviations 
as Figure 2). The gray polygons indicate 
periods of algal bloom. The red line is the 
time series of temperature local Moran's 
I for comparison
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Spatial AC, quantified as local Moran's I, did not fall substan-
tially below 0 for any of the variables and peaked at 0.79 among 
all variables (Figure 3). The highest AC value for chlorophyll a and 
phycocyanin was during the first bloom event (Figure  3f,g); how-
ever, phycocyanin AC also increased substantially during the second 
bloom. During the first bloom, the AC of temperature varied sim-
ilarly to both pigments’ AC, particularly phycocyanin, but became 
decoupled after the bloom collapsed. While the AC of temperature 
remained high during the inter-bloom period, the AC of the pigments 
was substantially lower. Conversely, the dynamics of AC of tem-
perature, dissolved oxygen and pH remained coupled throughout 
the summer (Figure 3h,i). Dissolved oxygen saturation and pH both 
increased in AC during the first bloom and then declined throughout 
the rest of the season with the exception of a minor increase in AC 
during the second bloom event.

3.2 | Fixed station versus spatial sampling

There were a greater number of days with a significant difference 
between the spatial and fixed station measurements than days 
in which the data sets were not significantly different (Figure 4). 
Among all 64 comparisons (four variables  ×  16 sampling events), 
the spatial and fixed station data sets had means that were not sig-
nificantly different 37.5% of the time. However, the direction of 
change from week to week was generally consistent between the 
spatial and fixed station data sets. Phycocyanin had the greatest 
number of events with similar values, with seven of the 16 sampling 
events having non-statistically different mean values measured 
spatially and at the fixed station (Figure  4b). These occurrences 
were mainly during non-bloom periods. However, even when the 

mean phycocyanin values were similar between the sampling meth-
ods on a given day, the range of values captured by the fixed sta-
tion was five times less than the variability captured in the spatial 
data. This pattern of infrequent occurrences of similar mean values 
between the two methods during non-bloom periods and a dimin-
ished range in the fixed station data, was shared to a degree, among 
the other three variables as well. Interestingly, dissolved oxygen 
saturation only had five out of the 16 events with means that were 
not significantly different, all of which occurred when the lake was 
above 100% saturation (Figure 4c).

While a majority of the comparisons between the fixed station 
and spatial data indicate that the algal pigments had a larger range 
of values in the spatial data, there were a handful of instances where 
the opposite was true. During the first bloom, the fixed station 
sonde measured a wide range of chlorophyll a concentrations and 
had a higher mean chlorophyll a for all dates (Figure 4a). Similarly, 
we observed higher mean phycocyanin at the fixed station sonde on 
DOY 156, 166, 177, 191, and 219 (Figure 4b). However, this pattern 
did not hold true for dissolved oxygen or pH (Figure 5c,d).

The spatial sampling sites that most consistently captured the 
mean values in the lake on a given sampling date were in the north-
west portion of the lake, near the inlet. The best performing site 
for all variables was site E3, just west of the American lotus patch 
and adjacent to a bed of sago pondweed (Figure 1). The four biolog-
ically mediated variables from sample site E3 were within the mean 
(± SD) range of all of the spatial measurements 95% of the time. The 
second-best performing location was in the middle of the American 
lotus patch, site D4, with the values from this site being within the 
mean (± SD) range 92% of the time. The site where the fixed station 
was located, site H2, was only within the mean (± SD) range 58% of 
the time.

F I G U R E  4   Comparison of the mean 
(lines and points) and range (shaded 
polygon) of measurements from the 
spatial sampling and fixed station 
measurements. The fixed station data 
were trimmed to the period that spatial 
sampling occurred. A filled circle is used 
for the sampling dates when the means 
from the two sampling approaches 
were significantly different (p < 0.05), 
and an open triangle is used for the 
sampling dates when the mean of the 
two approaches were not significantly 
different. The dark blue vertical lines 
indicate the dates of the two major 
precipitation events and the red dashed 
line in panel (c) is at 100% dissolved 
oxygen saturation
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3.3 | Optimal spatial resolution

To evaluate the spatial sampling resolution needed to capture the 
mean state of the surface water on a given day, we performed a rar-
efaction analysis for each variable and each sampling event, calcu-
lating the RMSE of a subset of sampling locations compared to the 
mean value of all 98 measurements that day. The plateaus of the 
RMSE curves from the rarefaction analysis were used to evaluate 
the smallest number of spatial sampling locations needed to cap-
ture the mean across the lake during that sampling event (Figure 5). 
Additionally, we also evaluated the temporal pattern of the minimum 
number of sampling locations needed to capture the mean.

Mean values were underestimated for all variables on all 
sampling dates when there were less than 10 sampling stations 
(Figure 5). However, the severity of the underestimation differed 
among the variables. The rarefaction analysis for chlorophyll a in-
dicated that 10–30 sampling locations was sufficient for capturing 
the mean chlorophyll a in Swan Lake, otherwise the mean con-
centration would be under estimated (Figure  5a). When an algal 
bloom was occurring, it took more sampling locations to near the 
mean chlorophyll a concentration on that date. However, when the 
bloom was particularly patchy during development (DOY 226) or 
collapse (DOY 191), including a larger number of sampling locations 
led to overestimating the mean chlorophyll a concentration as lo-
cations with high concentrations were over-represented in the data 
set. There were similar patterns in phycocyanin RMSE with most 
sampling dates plateauing between 20 and 30 sampling locations 
with a few exceptions (Figure 5b). For DOYs 156–170 (rise of the 
first bloom) and 212, at least 60 sampling locations were needed 
to capture the overall mean in phycocyanin for that sampling date. 
Dissolved oxygen saturation and pH were generally well character-
ised by approximately 10–15 sampling locations as both had a ma-
jority of dates in which the RMSE curves plateaued at that spatial 

sampling resolution (Figure 5c,d). However, at the beginning (DOY 
154), peak (DOY 184), and end (DOY 205) of the first bloom, twice 
as many sampling locations were needed to capture the mean dis-
solved oxygen. Only two dates required more sampling locations 
for pH to capture the mean, DOY 177 and 198, which plateaued at 
approximately 40 sampling locations. The largest RMSE were ob-
served during bloom conditions for all variables: DOY 177 had the 
largest error for phycocyanin and pH, while the largest RMSE was 
on DOY 184 for dissolved oxygen and on DOY 236 for chlorophyll 
a (Figure 5).

4  | DISCUSSION

The spatial heterogeneity of water quality parameters was highly 
dynamic in Swan Lake, a shallow, hypereutrophic, temperate water-
body. The temporal dynamics in heterogeneity were driven in part 
by the two blooms, the peaks of which were preceded by large pre-
cipitation events. These rain events could have delivered nutrients 
from the agriculturally dominated catchment into the lake from the 
northern inlet, helping to fuel the subsequent algal blooms and the 
spatial patterns observed during blooms (Stockwell et  al.,  2020). 
However, there are also a number of other factors that probably 
contributed to the spatial variability and pattern during and follow-
ing these bloom events, including the prevailing wind direction prior 
to sampling, the bathymetry of the basin and location of the surface 
inlet, and the potential for macrophyte beds to contribute to local 
patchiness.

The spatial patterns that the algal blooms created were consis-
tent with the expectations from previous modelling and experimen-
tal work that spatial AC increases as algal blooms develop (Buelo 
et al., 2018; Butitta et al., 2017; Serizawa et al., 2008). This pattern 
was the strongest for phycocyanin, evident by the strong latitudinal 

F I G U R E  5   Standardised root mean 
squared errors (RMSE) of rarefaction 
analysis. Fit lines represent each sampling 
dates standardised RMSE (16 in total) and 
the gradient from light to dark indicates 
first sampling event to last
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gradient in concentrations during the bloom periods. The sampling 
dates with phycocyanin concentration gradients (e.g., DOY 166, 177, 
184, 236) coincided with persistent winds from the south 24 hr prior 
to the sampling event, which probably resulted in the higher concen-
tration of algal cells in the northern portion of the lake. The effect 
of persistent wind directions influencing the distribution of cyano-
bacteria has also been documented in other shallow eutrophic lakes 
(Wu et al., 2010). The shallow sediments of the northern basin were 
also likely to be a source of akinete recruitment (Karlsson-Elfgren & 
Brunberg, 2004), further contributing to the higher concentrations 
of phycocyanin in the northern portion of the lake during the first 
bloom. Augmented nutrient availability in the northern part of the 
lake due to external loading from the catchment through the sur-
face inlet and internal loading from the sediments overlain by an 
unstratified water column (Song & Burgin, 2017) may have further 
amplified the phytoplankton gradient, particularly following precip-
itation events. Finally, the tendency of the dominant cyanobacteria 
taxa Microcystis spp. to form surface scums probably enhanced the 
spatial patterns observed with our surface sampling approach.

The sampling dates with a strong gradient of phytoplankton con-
centrations from north to south also resulted in north–south gradients 
in water chemistry. On these dates, both dissolved oxygen and pH 
formed a gradient of high values in the northern portion of the lake 
and lower values in the south, which would be expected with greater 
primary production where phytoplankton concentrations were high-
est. The spatial patterns in the surface water chemistry demonstrate 
how phytoplankton spatial distribution, driven by wind, can create hot 
spots and moments of biogeochemical activity within lakes (McClain 
et al., 2003) that may be missed with traditional, single-station sam-
pling. The dense, permanent patch of floating leaf American lotus mac-
rophytes also created a hot spot of biogeochemical activity.

Macrophyte beds can have a large local influence on water 
chemistry by inducing stratification, decreasing flow and trapping 
particles, and modifying the light environment (Green, 2006; Vilas 
et al., 2017). For 14 of the 16 weeks (87.5%) of the season the phy-
cocyanin concentrations were higher in the bed of American lotus 
than concentrations elsewhere in the lake. In fact, even on sampling 
dates when phycocyanin concentrations were otherwise low (e.g., 
DOY 212), the American lotus patch can be identified based on the 
phycocyanin concentrations that are nearly twice as high as the rest 
of the lake. We hypothesise that the macrophyte patch allowed for 
microstratification in the water column and reduced wind-driven 
flow. These physical conditions are likely to favour cyanobacteria 
dominance and the formation of surface scums. Similarly, the dis-
solved oxygen concentrations in the American lotus patch became 
consistently lower than the rest of the lake later in the summer, 
probably due to the plants beginning to senesce, creating a hot spot 
of decomposition, decreasing both dissolved oxygen and pH (Vilas 
et al., 2017). While there is not strong evidence in the data that the 
other submerged macrophyte beds had a similarly strong effect on 
water chemistry, the data from the American lotus patch illustrate 
how macrophytes can contribute to local patchiness and overall spa-
tial heterogeneity.

4.1 | Considerations for monitoring

The variables we measured in this study are often the target of 
water quality monitoring as the dynamics of these variables coin-
cide with changes in ecosystem function and services. Monitoring 
is often performed at a fixed station over time to capture the dy-
namics of the ecosystem, but this strategy could potentially result 
in missed information about the ecosystem's behavior. While the 
temporal dynamics of all the variables were synchronous between 
the fixed station and spatial sampling data sets in Swan Lake, our 
conclusions regarding the magnitude of the blooms and variability in 
the lake's structure would have been substantially different relying 
solely on the fixed station data. Among the four biologically medi-
ated variables, only 37.5% of the fixed station estimates of the mean 
state of the lake statistically matched the estimate from the spatial 
sampling. The vast majority of those instances (96%) occurred dur-
ing non-bloom periods, which also coincided with lower wind speed 
conditions, no prevailing wind direction, and no major precipitation 
events. The large difference between the spatial sampling and fixed 
station measurements of algal pigments during blooms was probably 
driven, in part, by the depth of the sensors at the fixed station and 
the variable accumulation of cyanobacteria at the surface of the lake 
dependent upon environmental conditions and the dominant taxa 
(Chaffin et al., 2020). It is clear from our data that during periods of 
heightened biological activity such as blooms, fixed station monitor-
ing is unlikely to be representative of the mean ecosystem state in 
shallow lakes.

Despite the high degree of horizontal spatial variability that 
has been documented in this study and others (Butitta et al., 2017; 
Loken et al., 2019; Van de Bogert et al., 2012), fixed station designs 
are widely used in water quality monitoring programmes. In Swan 
Lake, we determined that the historical location for water quality 
monitoring, where the fixed station sensors were deployed, was 
one of the least-representative locations for mean conditions in the 
lake. Given the hypereutrophic state of the lake, the most imme-
diate management concerns are toxic cyanobacteria blooms and 
summer fish kills due to low dissolved oxygen. However, the mean 
value of these variables (phycocyanin and dissolved oxygen) across 
the lake were only captured by the fixed station sensors 58% of the 
time. While selecting a fixed station site for high frequency sensor 
deployment includes many considerations including the location of 
previous data collection and management needs, based on our anal-
ysis we would advise performing a spatial survey to identify if and 
when the fixed station site is representative of mean conditions in 
the lake. A complementary spatial survey will help contextualise the 
fixed station dynamics and provide additional, management-relevant 
information about the lake.

It is also important to consider the trade-offs between high 
frequency fixed station monitoring and higher resolution, but less 
frequent spatial monitoring. High-frequency monitoring at a single 
station provides insight into ecosystem function such as metabo-
lism (Staehr et al., 2012), early warnings of impending regime shifts 
(Carpenter et al., 2011; Wilkinson et al., 2018), and crucial information 
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on diel variability in limnological conditions (Andersen et al., 2017). 
However, as we observed in Swan Lake, the spatial variability within 
a given day often exceeds the temporal variability at a single point 
in a shallow lake. Without the spatial sampling snapshots, we would 
have underestimated the magnitude of the algal blooms, hampering 
our limnological understanding of the ecosystem's functioning and 
impeding our ability to accurately estimate rates such as methane 
emissions on a global scale (DelSontro et al., 2018).

From a practical stand point, the understanding gleaned from 
the spatial sampling could help managers design targeted algal toxin 
monitoring or management interventions to help control fish hab-
itat quality in persistently hypoxic areas (Bardshaw et  al.,  2015). 
However, the time and cost investment in repeated spatial sam-
pling at the resolution performed in this study may not be feasible 
for both research and management programmes. The rarefaction 
analysis we performed for all four of the key water quality moni-
toring variables revealed that minimal information was gained after 
c. 30 locations were sampled across many conditions and vari-
ables. Often 12–20 sample locations across the 40.5-ha lake (or 
a 1–2 samples/ha) was sufficient to capture the spatial variability 
within the lake, with a few exceptions. These exceptions occurred 
during times of higher variability such as when the blooms were 
just starting or when the bloom began to collapse. The need for a 
higher spatial resolution during bloom events to fully capture their 
variability has also been found using remote sensing techniques in 
other, larger lakes (Lekki et al., 2019). As the spatial resolution of 
remote sensing technologies continues to improve, it may become 
more cost effective to capture the spatial heterogeneity of algal 
pigments in small lakes over time. However, one of the benefits of 
manual spatial sampling is being able to pair other measurements 
such as dissolved oxygen, pH, and nutrients (e.g., nitrate; Loken 
et al., 2018; Pellerin et al., 2016) with information on the distribu-
tion of algal biomass.

Our intensive spatial monitoring of a shallow, hypereutrophic 
lake revealed how spatially heterogeneous shallow lakes are over 
the course of a single season and allowed us to tease apart the 
drivers of that spatial heterogeneity. We found that variability was 
greatest during biologically intensive periods, such as during algal 
blooms and in dense floating-leaf macrophyte beds, and that fail-
ure to capture this variability would have hampered our under-
standing of the ecosystem's functioning and overall mean state. 
Small lakes such as Swan Lake dominate the global distribution of 
waterbodies (Verpoorter et  al.,  2014). Adequately capturing and 
characterising the magnitude of variability in production of these 
waterbodies is important given their role in mediating global nu-
trient cycles (Biddanda, 2017; Downing, 2010), especially methane 
emissions (DelSontro et al., 2018; Loken et al., 2019). Our data pro-
vided an estimate of the spatial resolution needed to capture the 
dynamics in ecosystems similar to Swan Lake and a method that 
could be readily adapted to other ecosystems. While our results pro-
vide new understanding of the magnitude and temporal dynamics 
of spatial heterogeneity in shallow lakes, continued investigation of 
horizontal spatial heterogeneity in a range of aquatic ecosystems, 

from oligotrophic to eutrophic, is needed to better understand the 
structure and drivers of horizontal spatial variability in lakes.
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