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Deep learning for water quality

Wei Zhi1,2, Alison P. Appling    3, Heather E. Golden    4, Joel Podgorski    5 & 
Li Li    2 

Understanding and predicting the quality of inland waters are challenging, 
particularly in the context of intensifying climate extremes expected in the 
future. These challenges arise partly due to complex processes that regulate 
water quality, and arduous and expensive data collection that exacerbate 
the issue of data scarcity. Traditional process-based and statistical models 
often fall short in predicting water quality. In this Review, we posit that 
deep learning represents an underutilized yet promising approach that can 
unravel intricate structures and relationships in high-dimensional data. We 
demonstrate that deep learning methods can help address data scarcity 
by filling temporal and spatial gaps and aid in formulating and testing 
hypotheses via identifying influential drivers of water quality. This Review 
highlights the strengths and limitations of deep learning methods relative 
to traditional approaches, and underscores its potential as an emerging 
and indispensable approach in overcoming challenges and discovering new 
knowledge in water-quality sciences.

Artificial intelligence (AI) has been used for data processing since the 
1930s and 1940s1,2. In World War Two, the Turing machine, an early form 
of AI, saved an estimated 20 million lives by decoding data encrypted by 
the German Enigma3. The term ‘deep learning’, however, was not coined 
until 19864, after the emergence of classic algorithms such as recurrent 
neural network (RNN) and convolutional neural network (CNN) in the 
1970s (Boxes 1 and 2). Deep learning (DL), an AI method characterized 
by multiple hidden layers (≥2), has experienced a recent renaissance 
since 20065,6. This renaissance has been catalysed by novel algorithms 
without the need for domain expertise and human supervision and 
the advent of graphical and tensor processing units (GPUs and TPUs). 
These advances have enabled automatic extraction of complex pat-
terns and relationships7, igniting an explosion of applications in almost 
every discipline. Earth and environmental sciences are no exception8. 
DL has been used for predicting flooding and sediments since the late 
1990s9, although its expanded use in hydrology is relatively recent 
(since 2016)10,11. The application of DL in water quality, however, has 
lagged behind12,13 (Box 2).

Here we posit that DL presents promising opportunities for 
addressing water-quality challenges where process-based, statistical, 

and even other machine learning (ML) approaches have frequently 
fallen short, particularly because DL can predict water quality and 
fill data gaps by leveraging diverse, widely available data. In particu-
lar, DL can predict sparsely measured water-quality variables and 
detect patterns in highly complex relationships. Here we (1) describe 
the challenges in water-quality sciences that DL can help to resolve,  
(2) review opportunities for DL in water quality prediction, particularly 
in addressing data scarcity and in fostering new knowledge, (3) intro-
duce emerging tools such as process-guided DL (PGDL), differentiable 
modelling (DM) and explainable DL (XDL) methods, and 4) offer a 
forward-looking perspective on the future of water-quality prediction.

This Review focuses on current literature and future directions of 
DL particularly on water-quality-related topics. Review papers on AI 
and ML applications in other topics abound, including, for example, a 
general DL introduction7, DL in hydrology9,14 and ecosystem science15, 
and ML in marine science16, environmental and water management17,18, 
crop yield mapping19, environmental science and engineering20, inland 
water quantity, quality and ecology21, decision-relevant prediction 
and management13, and differentiable modelling22, to name just a few. 
Interested readers are referred to these reviews on relevant topics.
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frequent and prolonged duration of hypoxia in a warming climate25, and 
persistent and widespread harmful algal blooms (HABs)26. Understand-
ing and predicting water quality are therefore imperative but have faced 
major challenges. First, water chemistry is complex and encompasses 
many variables. For example, the US Geological Survey maintains an 
inventory of up to 24,898 water-quality variables across 17 categories 
(https://help.waterdata.usgs.gov/codes-and-parameters/parameters). 
In this Review, we cast a wide but incomplete net by searching the litera-
ture for DL modelling of common water-quality term (Supplementary 
Text). Their transport and fate are regulated by interacting, complex 
processes under distinct environmental conditions. These multiple lay-
ers of complexity make it challenging to measure, model, understand 
and predict water quality.

Challenges with data scarcity
Data collection and measurements are the foundation of scientific 
discovery. They enable the formulation of hypotheses and the devel-
opment of conceptual and numerical models. Compared with stream-
flow, water-quality data, however, are often more sparse, inconsistent, 
and limited in time, space and frequency27 (Fig. 1), partly owing to the 
complexity of water-quality variables. Common water-quality meas-
urements include water temperature (WT), total suspended solids 
(TSS), dissolved oxygen (DO), biological and chemical oxygen demand, 
salinity, specific conductance, turbidity, sediments, clarity, alkalin-
ity, chlorophyll a (chl a), carbon and nutrients in various forms (for 
example, dissolved organic carbon, nitrate (NO3), total nitrogen (TN), 
total phosphorous (TP) and toxic metals (for example, arsenic, lead). 
Most water-quality variables still require manual and labour-intensive 
measurements using ‘grab samples’ and chemical analysis using large, 
complex analytical instruments, in contrast to hydrological data (for 
example, precipitation, streamflow, evapotranspiration and snow 
depth) that are often measured automatically27. Although sensors 
have been developed for hundreds of water-quality variables28, their 
in situ deployment for routine, automatic measures are limited in 
location, duration and water-quality variables (for example, WT, DO, 
specific conductance, nutrients, dissolved organic carbon). Even for 
the most abundantly measured TSS, the global average is limited to 29 
data counts per station, 1.1% of days with data and a record duration of 
4.2 years (Fig. 1), compared with 12,066, 84% and 38 years for stream-
flow. Some sites do have long-term water-quality records, although 
they are a small fraction of the total (outliers in Supplementary Fig. 1).

In addition, data availability is highly heterogeneous: approxi-
mately 83% of global TSS data comes from 17% of the sampled rivers, pre-
dominantly in North America. Other variables have even lower coverages 
(Fig. 1b–d). An additional limitation of grab samples is that water-quality 
monitoring often fails to capture the full range of streamflow regimes 
(for example, transient peak flow), often leading to bias in modelling 
water quality. Furthermore, monitoring efforts are often patchy, tai-
lored to address specific environmental concerns, such as a summer 
algal bloom event or metal pollution resulting from a mine-waste spill. 
These localized, short-term datasets may have limited applicability 
for broader assessments or long-term trend analyses. Note that most 
examples in the following section are US based due to the availability of 
openly accessible, long-term water-quality datasets; however, relevant 
DL studies in other global locations are discussed wherever possible.

Challenges with model prediction
Predicting water-quality dynamics remains a major challenge yet is 
essential for water management, risk mitigation and climate adapta-
tion29. Linear statistical approaches, including those integrating mass 
balances, are meaningful screening tools to assess drivers (for example, 
climate, urbanization, agricultural expansion). They, however, are 
typically limited by the assumption of linear and/or stationary rela-
tionships between drivers, concentrations or loads of focal variables, 
and therefore cannot simulate changing dynamics and predict future 

Long-standing challenges in water quality
Water quality has been degrading worldwide under the compound 
stresses of direct and indirect human influence23, including increased 
pollution loads from urbanization and agricultural expansion24, more 

Box 1

Deep learning glossary
Artificial intelligence (AI) broadly describes machine intelligence 
that can simulate human intelligence, such as learning, reasoning 
and problem solving.

Machine learning (ML) is a subfield of AI that uses algorithms and 
statistical models to enable machines to learn from data and make 
predictions or decisions without being explicitly programmed.

Neural network (NN) is a type of ML algorithm inspired by the 
structure and function of biological neural networks in human brain. 
It includes neurons as the basic building blocks that are organized 
into input, output and hidden layers.

Deep learning (DL) is a subset of neural network with deeper 
networks, typically with multiple hidden layers (≥2).

DL techniques include recurrent neural network (RNN), 
convolutional neural network (CNN), autoencoder, long short-
term memory (LSTM), deep belief network (DBN), gated recurrent 
unit (GRU), generative adversarial network (GAN) and transformer. 
Detailed information on their structure and function can be found 
in refs. 9,21. Other DL-related acronyms used in this work include 
graphical processing units (GPUs), tensor processing units (TPUs), 
stochastic gradient descent (SGD), process-guided deep learning 
(PGDL), differentiable modelling (DM), explainable deep learning 
(XDL), integrated gradients (IG), expected gradients (EG), Shapley 
additive explanations (SHAP) and local interpretable model-agnostic 
explanations (LIME).

Although different DL algorithms share the common feature of 
having multiple hidden layers to automatically learn from raw data, 
CNN is well suited for spatial analysis tasks such as processing 
image data, whereas RNN, LSTM, GRU and transformer are more 
suitable for sequential tasks such as time-series prediction. DBN is 
useful for feature extraction, for example, to identify commonalities 
among water bodies or water-quality patterns. Autoencoder and 
GAN can produce realistic complex data such as images and 
parameter maps and can also automatically detect anomalies, for 
example, contamination events in a water supply network142,143.

In a typical DL algorithm, raw input data are processed 
through multiple layers, each transforming data for automated 
extraction and learning of hierarchical, nonlinear and complex 
representations7. The advent of powerful computing resources, 
such as software to leverage GPUs and TPUs, has enabled the 
training of increasingly complex and deeper neural networks, 
boosting the breadth of DL applications. The advancement in 
structure also enhanced computational efficiency. For example, 
CNNs have utilized local connectivity, shared weights, pooling 
layers and deep architectures to reduce parameter numbers. RNNs 
use feedback connections and backpropagation through time 
to predict based on an entire sequence of steps, incorporating 
information about recent and cumulative events in the context 
of the timing and order of their occurrence. Although these 
techniques have been around for decades, their applications in 
water sciences have become prevalent only in recent years144.
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water-quality conditions. Other non-ML statistical models similarly 
have limited flexibility and adaptability to changing conditions. For 
example, LoadEST (Load Estimator)30 and WRTDS (Weighted Regres-
sions on Time, Discharge, and Season)31 are primarily based on the 
relationships between concentration, discharge and time. These esti-
mates can be compromised when these relationships vary and depend 
on unmodelled factors32. ML has gained popularity due to its ability to 
analyse and extract patterns from large and complex datasets without 
relying on explicit physical or chemical equations. However, traditional 
ML models often require manual engineering for feature extraction 
from input data and struggle to capture long-term temporal dependen-
cies in scarce data. This is particularly the case for water-quality data. 
For example, the global average TSS record duration is 4.2 years per 
site, far from sufficient for capturing long-term trends.

Process-based models are another model category for water-
quality predictions. These models typically solve ordinary or partial 
differential equations based on mass-balance principles of water and 
chemical variables and explicitly simulate underlying processes that 
govern water-quality dynamics. One of their major strengths is to 
provide insights into mechanisms of water-quality dynamics33, as 
they are guided by physics and chemistry principles. Process-based 
models, however, suffer from several major limitations. In most cases, 

we lack a comprehensive, mechanism-based understanding such that 
processes may not be accurately and adequately represented in the 
models34. Process-based models also require detailed data on a myriad 
of processes and properties35, including above- and below-ground 
characteristics, water flow, and biogeochemical processes, which are 
time-consuming and expensive to collect. Process-based models are 
also computationally expensive, particularly when simulating at large 
spatio-temporal scales and resolutions. They are also limited because 
extrapolation from one variable to another often requires different 
process representation and calibration data, and therefore model re-
development or re-calibration, even within the same watershed33. This 
is challenging because water-quality concerns vary by space and time.

Deep learning approaches
Strengths of DL approaches
DL approaches can provide high predictive accuracy36 and have the 
potential to address long-standing challenges facing traditional sta-
tistical and process-based models. DL models are flexible, adaptable, 
integrative, scalable and speedy. They are flexible, in that they can learn 
complex relationships from raw data without requiring a careful fea-
ture engineering of inputs and a detailed understanding of underly-
ing processes7, making them useful in deciphering high-dimensional 

Box 2

A brief history from AI to DL and beyond
The term AI was not coined until 1956 (inset in figure)145, although 
the idea originated in the 1930s and 1940s when Alan Turing first 
published about computing machinery and intelligence1,2. The 
concept of neural network was first proposed in 1943146; the first 
trainable neural network was demonstrated in 1958147. Although DL 
approaches such as RNN emerged as early as 1972148, the term ‘deep 
learning’ was not coined until 19864. The approach has been revived in 
representational learning since 20065, as detailed by Schmidhuber145.

DL has been used for prediction and knowledge discovery since 
the 1970s; shallow neural networks (for example, artificial neural 
network) have been used to predict water quality since the 1990s149,150. 
Yet DL application in water resources has gained momentum only 
in recent years. Early DL applications in hydrology (for example, 
flooding151 and river flow152) and water quality153,154  
(for example, chl a, coloured dissolved organic matter and sediment) 
used the multilayer perceptron neural network, although one hidden 
layer was sometimes used to reduce training time and overfitting155.  
A period of quiescent, scattered publications followed until 2017 
when the CAMELS database was published156,157. The CAMELS 
database inspired other datasets including Global Streamflow Indices 
and Metadata Archive (GSIM)136 and CAMELS in individual countries, 
and the global community dataset Caravan (published in 2023 and 
thus not shown on the curve that extends to 2022)158. These datasets 
likely have facilitated DL application in hydrology, as indicated by 
the skyrocketing rise (grey line in the figure), although some popular 
algorithms (for example, LSTM, RNN, CNN) have been around for two 
or three decades (inset in figure).

DL publications on water quality have lagged by a few years, 
with one-fifth and one-quarter of the publications compared with 
those in hydrology by 2021 and 2022, respectively, although part of 
the differences may arise from the community size differences.  
The advent of water-quality databases such as GEMStat159, Global River  
Chemistry (GLORICH) database160, Surface Water Chemistry (SWatCh)  
database161, Global River Water Quality Archive (GRQA)137 and CAMELS- 
Chem162 may similarly accelerate DL application in water quality.
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environmental data with poorly understood mechanisms. Second, they 
are adaptable, in that they can learn from new data without requiring 
substantial modifications of model structure. For example, the same 
model can often be used when new water-quality observations or man-
agement-relevant datasets become available. They are integrative, as 
they can extract hidden patterns and nonlinear representations from 
diverse data sources8, such as sensor data, satellite images and grab 
chemistry data that vary in availability and spatio-temporal coverage. 
They are scalable as they are designed to learn directly from data that 
already embed information on spatial and temporal scales9, which can 
reduce the need for model parameters at particular scales that are impor-
tant yet often unavailable via measurements. Such parameters include, 
for example, local hyporheic exchange and solute transformation rates. 
DL models are also speedy, as they take advantage of both hardware 
advances and optimization algorithms that are designed to efficiently 
traverse high-dimensional parameter space and converge quickly, ena-
bling the exploration of many environmental scenarios and prediction 
of many parameters across broad spatial and temporal extents.

In some instances, DL can also represent physical processes in 
climate and geoscience models, where these processes might be inad-
equately understood and coarsely modelled8,22. For example, deep 
neural networks (DNNs) have been applied to represent turbulent pro-
cesses in ocean models37 and atmospheric subgrid processes in climate 
models38 to minimize the prohibitive cost of running high-resolution 
physical models. The saved computational resources can then be real-
located to enhance simulations either by increasing ensemble sizes or 
by improving the model resolution39. These advantages and features, 
as well as the use of problem-specific DL architectures such as CNN for 
spatial analysis and RNN for time-series tasks (Box 1), are well suited 
to modelling the complex and spatiotemporally dynamic nature of 
water-quality conditions.

Limitations of DL approaches
Despite gaining tremendous momentum, DL models have limita-
tions. In addition to requiring significant computational resources  
such as GPUs and TPUs, DL models require enormous datasets to  
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Fig. 1 | Gauges through ages and across a few representative water-quality 
variables. a,b, Temporal trends of the number of global gauges reporting at least 
one data point for streamflow (Q) (a) and water quality (b), with data from the 
Global Streamflow Indices and Metadata Archive (GSIM)136 and the Global River 
Water Quality Archive (GRQA)137, respectively. The inset maps show global gauge 
locations. c,d, The outliers in Supplementary Fig. 1. The 25%, 50% (middle line) 
and 75% percentiles of data length (c) and temporal coverage (d). Streamflow Q 
has a total of 374 million data points from 30,959 sites, whereas TSS has a total of 
~2 million data points from 68,592 sites. Other variables include TP (1.9 million 
data points from 44,943 sites), DO (1.2 million data points from 48,066 sites), NO3 
(1.2 million from 44,551 sites) and particulate organic carbon (POC; 0.62 million 
data points from 22,877 sites). The length (yr, c) is the number of years that 
have data points. The coverage (%, d) is the temporal coverage percentage 

with data points in days. Streamflow (Q) gauging started in the United States in 
the 1880s and increased steadily until 1960s138, when gauges began to expand 
across Europe and other continents (a). A decrease in streamflow gauges since 
2015 may indicate withering investment139, or a latency in data mobilization: it 
takes time for new observations to become publicly available. The first gauge 
for TSS, the most abundant water-quality variable, was established in the 
United States in 1898137 (b), almost 20 years after the first streamflow gauge. 
The spike in observations in the 1970s probably arose from the substantial 
water infrastructure investments from the Clean Water Act140. Noticeable 
declines followed around 1980 and 1995 are possibly due to funding cuts141. 
Observations in the GLORICH database extend only until 2011 (see breakdown in 
Supplementary Fig. 2), leading to another decline after 2010 (b).
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train effectively. Without sufficient data, they are prone to overfit-
ting9. That is, they become too closely tailored to the training data 
and fail to aptly generalize to new conditions. In other words, DL  
models are only as good as their data; if they have not seen enough 
data, for example, under extreme conditions, they cannot learn to 
extract the input–output relationship under these conditions and 
are not better than traditional models. In hydrology, the availabil-
ity of large benchmark datasets (for example, Catchment Attrib-
utes and Meteorology for Large-Sample Studies (CAMELS)) has 
evolved concurrently with fast-growing DL applications (Box 2). DL  
applications in water quality have grown comparatively slowly, 
potentially indicating data limitations as a bottleneck (Fig. 1 and  
Box 2). DL models are additionally criticized as being ‘black boxes’ and 
lack interpretability and generalizability, such that it is challenging 
to understand mechanisms and extrapolate beyond training data. 
These limitations have triggered advances in PGDL, as discussed in  
later sections.

Deep learning for data-scarcity challenges
The challenges of data scarcity cannot be resolved overnight. Data 
collection requires investments in physical and human resources and 
technological innovations, including the development of new sen-
sors that can automatically measure variables under more frequent 
and intensifying extreme conditions. Yet the need to understand and 
predict water quality is urgent as we face pressing water-quality issues 
under changing climate conditions and human stresses. With ample 
data, DL models can predict water quality at times and locations with-
out observations (spatial and temporal data filling) and help discover 
new information through model and data interrogation. In fact, recent 
work has leveraged publicly available data, including satellite imagery 

and hydrometeorology data, to predict water quality in surface and 
subsurface waters with scarce data.

Spatial data filling in chemically ungauged basins
Prediction from well-monitored to ungauged and unmonitored loca-
tions has been a long-standing challenge. DL models have recently 
shown promises in making prediction for chemically ungauged basins. 
Water-quality data in monitored locations have been used to build 
models together with hydrometeorological data, remote-sensing data 
or spatial features such as basin characteristics, and then extrapolate 
to ungauged rivers. For example, a continental-scale long short-term 
memory (LSTM) model trained with DO data from 480 US rivers made 
robust predictions in 100 rivers where data were purposely excluded 
from the training dataset to resemble ungauged rivers40 (Fig. 2). LSTMs 
trained with process-based model predictions and WT observations 
from 145 well-monitored lakes achieved better performance than a 
pure process-based model of lake temperature when transferred to 
1,882 less-monitored lakes in the Midwest United States41. A deep gated 
recurrent unit (GRU) model combined satellite images with relatively 
limited in situ measurements (that is, 1,260 pairs of water-clarity data 
from 399 lakes) to infer water clarity in 16,475 global lakes with little 
or no data42. Spatially explicit DL models have filled spatial gaps using 
the effects of unmonitored reaches on their neighbours to infer water 
quality at all reaches. Spatial relationships among stream reaches have 
been represented through graph convolution on an adjacency matrix 
based on stream distance43 or travel time44 for temperature prediction, 
or even detailed process-based routing within a DL context for stream-
flow prediction45. Such relationships can be made more nuanced by 
learning more specifics of reaches, such as those with reservoirs and 
those without46 or for learned clusters of physically similar reaches47.
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predict DO dynamics in 100 ‘chemically ungauged basins’ (blank white region 
with triangles in US map; e), where data were excluded during training. f, The DL 
model robustly reproduced the long-term (1980–2019) DO trends and seasonal 
variations (zoom in) in these ‘data excluded’ rivers, indicating its potential in 

predicting DO in chemically ungauged basins. In d, Xt, Ct and ht represent the 
input, cell state and hidden state at the current timestep t, respectively. The 
symbols σ and tanh refer to sigmoid and tanh functions, respectively. Pink circles 
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Temporal data filling
DL models have been used to predict time series of water quality by 
incorporating spatial features, temporal correlations and nonlinearity 
without prior assumptions. Such capabilities underscore its potential 
for effectively filling temporal data gaps. For example, using time series 
of intensively measured hydrometeorological data, sparse DO data 
and static watershed characteristics as inputs, a trained LSTM model 
predicted daily DO in hundreds of US rivers12,40 (Fig. 2). A regional multi-
site LSTM model reproduced and gap-filled daily NO3 measurements 
at 42 monitored stream reaches in Iowa48 with improved performance 
(Supplementary Table 1). Furthermore, a modified LSTM model49 
combined hydrometeorological data and physical properties of lakes  
(for example, coordinates, elevation, surface area) and predicted daily 
WT from 1980 to 2020 in 185,549 US lakes50. LSTM models have also used 
spatial information from adjacent groundwater wells to enhance the 
accuracy of temporal gap filling for specific conductance, especially for 
large decadal gaps in the Columbia River51. Another study demonstrated 
that an LSTM model outperformed other ML models (for example, 
support vector machine, single-layer perceptron) in predicting daily 
TSS concentrations in a Malaysian river52. A hybrid encoder–decoder 
bidirectional LSTM model showed higher accuracy than ML (extreme 
gradient boosting) and standalone DL methods in predicting daily 
sediment loads in the Godavari River Basin in India53.

Predicting data-scarce variables from data-rich surrogates
Water chemistry sensors have been increasingly deployed in recent 
years at temporal resolutions as fine as minutes; they, however, are 
limited to a handful of variables (for example, turbidity, specific con-
ductance, pH, WT, DO and NO3) with scant spatio-temporal coverage. 
Most water-quality variables are manually measured at low frequen-
cies (for example, monthly, quarterly). Traditional remote sensing 
for water quality has primarily focused on optically active variables 
such as chl a54, coloured dissolved organic matter DOM (DOM)55 and 
water clarity56 in large water bodies (oceans and large lakes and rivers); 
remote-sensing data often have insufficient spatial resolution for small 
rivers and streams.

Many water-quality variables, however, are intrinsically linked 
by shared transport dynamics, redox conditions and biogeochemi-
cal processes including, for example, soil respiration and nutrient 
transformation57. These relationships among variables have long been 
acknowledged and leveraged by surrogate regression models for sedi-
ments58, pesticides59 and nutrients60, among others. Data-rich vari-
ables can therefore provide information about data-poor variables. 
DL approaches are now beginning to explore this opportunity. For 
example, DL models have recently been used to estimate nutrients 
that are non-optically active, based on their correlations with optically 
active variables that were estimated via remote sensing. A backpropa-
gation neural network model trained with limited measurements and 
satellite-retrieved sea surface salinity and remote-sensing reflectance 
successfully estimated NO3 and phosphate concentrations61. Another 
DL model estimated TN and TP based on their correlations with chl a 
and remote-sensing reflectance, and further reconstructed spatio-
temporal patterns of nutrients from 1984 to 202062. These estimated 
variables can further predict other variables, such as dissolved carbon, 
that are less frequently measured but are essential for water quality, 
and CO2–climate feedbacks63. LSTM- and GRU-based models have been 
used to estimate TP and heavy metal concentrations (that is, copper, 
zinc) in urban sewer networks from commonly measured variables  
(for example, temperature, pH, conductivity)64,65.

Predicting groundwater quality from catchment properties
Earth’s subsurface, or the critical zone from soils to parent bedrock66, 
governs the storage and flow of groundwater, biogeochemical reac-
tions and chemical transport from groundwater to surface waters, 
and, therefore, surface water quality67. The subsurface, however, is not 

as readily accessible (for example, via boreholes or geophysics), such 
that below-ground data are even more scarce68,69.

Subsurface properties and functions are generally not as tem-
porally variable as those at the surface. Deep CNN-based DL mod-
els, therefore, are often used to extract spatial patterns. DL models 
have been shown to outperform traditional calibration approaches 
in estimating subsurface parameters, because they can directly infer 
parameters from observations and capture the high nonlinearity with 
fewer realizations70,71. For example, a deep CNN-based model recently 
used two-dimensional land-surface data, including digital elevation 
maps and remote-sensing images, to construct three-dimensional 
subsurface structures in an Australian desert landscape72. The model 
revealed complex relationships between surface and subsurface fea-
tures that are often obscured by traditional methods such as sequential 
Gaussian. The DL model automated a low-cost method to generate a 
three-dimensional subsurface structure that inherits the probabil-
ity structure of a real two-dimensional surface image. Another DNN 
model used widely available time-series streamflow data to estimate 
permeability, an essential property that determines flow rates that are 
arduous to measure directly73, outperforming traditional ensemble 
smoother methods.

Non-DL algorithms have also been used to estimate spatial vari-
ations of mean groundwater quality. For example, random forest and 
generalized boosted regression models have been increasingly applied 
to predict groundwater contaminants from local to global scales74–77.  
An ML model trained with groundwater chemistry (for example, 
alkalinity, Ca, Mg, turbidity) was used to detect anomalous methane 
in groundwater in areas of shale gas production across the United 
States78. ML models have also been used to fill global gaps of ground-
water contaminants including fluoride75 and arsenic74 (Fig. 3). In fact, 
groundwater chemistry may be better predicted by ML methods that 
can explicitly link environmental variables to spatial variability in 
groundwater chemistry but require fewer data. In many groundwater 
cases, predicting spatial variation may be more important than tem-
poral trends, because prediction maps can help identify areas of low 
groundwater quality. Future opportunities lie in developing DL models 
that can train well with scarce data. For instance, some groundwater 
solutes may originate from the same geological setting. In these cases, 
transfer models could be trained on a larger dataset and then used to 
perform learning on less-measured water-quality variables.

Deep learning for robust predictions
A common concern about DL is its limited generalizability, that is, 
capability to extrapolate beyond the training data9. Unlike traditional 
process-based models, DL models usually rely solely on patterns in 
training data, which may be scarce especially under climate extremes 
such as fires, floods and droughts57. Advances to improve model per-
formance with existing knowledge primarily reside in two directions: 
process-guided deep learning (PGDL) and differential modelling (DM). 
As shown in examples below, most existing applications of PGDL and 
DM are more in the realm of improving model prediction and parameter 
estimation. These approaches are expected to reveal process-based 
understanding and new knowledge but have yet to demonstrate such 
capabilities. PGDL and DM applications in water quality have been 
limited so far; we therefore also draw examples from hydrology to 
illustrate their potential use.

Process-guided deep learning
PGDL seeks to encode domain knowledge within otherwise domain-
agnostic model architectures and training algorithms79. By doing so, 
the PGDL model leverages well-established process knowledge and 
discourages violation of known principles, which also helps earn 
stakeholder trust such that stakeholders use model outputs more 
readily. An advantage of PGDL over DL is the improved accuracy and 
reliability beyond training conditions80. PGDL can also improve the 
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physical realism of DL predictions where data are limited, noisy or 
incomplete. One PGDL approach is to use output from process-based 
models (not necessarily calibrated) as additional training data81, which 
augments the availability of data. PGDL can also be achieved by using 
physically meaningful loss function terms, such as a penalty for the 
lack of mass or energy conservation82,83, or by adding asymmetric 
activation functions84 to enforce constraints imposed by underlying 
processes, such as flow, transport and energy balance. Loss terms 
and constraints that explicitly encode hydrological or biogeochemi-
cal knowledge may look much like process-based models, with the 
advantage that the PGDL elements are written in a DL language that 
provides automatic differentiation, that is, calculation of gradients of 
outputs relative to all model variables. PGDL thus overlaps with the 
emerging field of DM, which closely interweaves process-based model 
equations and neural networks in a single differentiable language85. As 
an example, a hybrid physics-guided RNN model for lake temperature86 
incorporated energy conservation and density–depth relations into 
the loss function as penalty terms. The model was pretrained using 
simulated energy budgets from the physics-based General Lake Model 
to initialize the network structure and fill in scarce data. The model 
performed better and can project to warmer and colder conditions 
beyond training data. Similarly, an LSTM model pretrained with an 
energy budget formulation and WT predictions from the General 
Lake Model performed robustly when extended to 68 lakes outside 
of the training conditions82.

Some PGDL methods additionally utilize multi-task learning, 
where DL models are trained to simultaneously predict related 

variables, such as streamflow and stream temperature, to encourage 
the learning of process-relevant information shared between vari-
ables87. For instance, a physics-informed neural network for subsurface 
solute transport88 incorporated Darcy’s law and advection–dispersion 
equations in a DL model and trained it together with hydraulic con-
ductivity, hydraulic head and solute concentrations. The approach 
predicted concentrations of a synthetic solute that better matched 
a synthetic dataset than the standard DL model, especially when the 
training data were sparse. The model accuracy further improved when 
multiple variables were jointly inverted. Compared with single-task 
models, jointly predicted stream temperature and flow may have better 
performance, especially when hyperparameters are carefully tuned87.

Differentiable modelling
DM aims to integrate process-based equations with DL models to simul-
taneously advance process representations, parameter estimation and 
predictive accuracy22. DM encodes existing knowledge and neural net-
works in an automatically differentiable programming language to reap 
the advantages of the physical underpinnings of process-based models 
and the learning capabilities of DL. DM includes physically meaningful 
parameters and equations that can be inspected and/or manipulated. 
DM can additionally approach the predictive accuracy of purely data-
driven DL, suggesting that the DL components of a DM model can learn 
relationships that are encoded by process-based components. Recent 
analyses showed that DM with a physical model as the backbone can 
outperform pure DL, yielding more accurate regional extrapolation of 
streamflow with respect to daily metrics and decadal trends80. Similarly, 
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without time dependence my be sufficient for generating spatial prediction 
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scarce groundwater chemistry. Figure adapted with permission from ref. 74, 
AAAS.
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embedding the hydrologic model EXP-HYDRO within an RNN structure 
and augmenting it with neural network layers accurately captured 
snow water equivalent and transferred streamflow prediction across 
different rivers89. A recent work introduced neural networks to substi-
tute ordinary differential equations for representing hydrologic pro-
cesses90. The results showed comparable performance to DL methods, 
surpassing a conceptual hydrologic model in streamflow prediction 
for 569 US rivers while retaining the interpretability of the conceptual 
model. Furthermore, a process-based model integrated an advective 
dispersion equation with a river network graph and predicted stream 
WT more accurately in data-sparse situations44.

Deep learning for knowledge discovery
DL approaches have been criticized as being ‘black boxes’9: the algo-
rithms find the optimal combination of layers and weight functions to 
fit data without offering insights into mechanisms. Such a black-box 
approach does not reveal its inner workings and new knowledge of 
processes. With increasing awareness of this limitation, the pursuit of 
methods to judge the trustworthiness of DL approaches is growing, aim-
ing to turn black boxes into transparent glass boxes for interpretability 
and knowledge discovery (Fig. 4). The toolbox of such techniques is 
growing91. Explainable deep learning (XDL) approaches aim to illumi-
nate the ‘black box’ by evaluating model ‘reasoning’, interpreting model 
decisions, and extracting patterns and drivers (Fig. 4). XDL includes 
model-agnostic and model-specific approaches that identify and rank 
important features, relationships and mechanisms that contribute to 

model predictions92. Model-agnostic concepts include integrated gra-
dients93, expected gradients94, Shapley additive explanations (SHAP)95 
and surrogate models such as local interpretable model-agnostic expla-
nations (LIME)96. They do not require a specific model structure and 
therefore can provide comparable outputs for different models. Model-
specific approaches include attention mechanisms, saliency maps 
and decision trees, and can tailor explanations for specific models (for 
example, transformers, CNNs and tree-based algorithms, respectively). 
These techniques elucidate ‘behaviours’ of deep learning97,98 and sup-
port hypothesis generation. Hypothesis testing is essential for falsifying 
assumptions and theories and uncovering potentially overlooked pat-
terns and correlations99. Consequently, this process fosters knowledge 
discovery, enhances process-based understanding, and facilitates more 
interpretable prediction and informed decision-making.

XDL has been used mostly in understanding temporal trends, 
spatial patterns, and predominant drivers of streamflow, water tem-
perature (WT), and a limited number of water-quality variables. For 
example, XDL has been used to understand the spatial relationships 
of stream temperature and the seasonal importance of streamflow 
versus wind and air pressure in controlling saltwater intrusion into 
the Delaware River100. Saliency maps have been used to highlight the 
most important regions of an input image for predicting streamflow98, 
suggesting that global sea surface temperatures influence river flows 
via atmospheric convection and teleconnections. Another study used 
SHAP values and identified WT, DO and TP as the most influential driv-
ers of riverine chl a, a widely used indicator of harmful algae blooms 
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Fig. 4 | A conceptual diagram showing the ideas and approaches from black 
boxes to glass boxes towards robust model performance and knowledge 
discovery. The efforts include using PGDL (purple), DM and XDL (green) along 
with revealing visualizations. Domain knowledge can be integrated into DL at 
various stages, such as selecting important features, pretraining DL models 
using outputs from process-based models and multi-task learning. Alternatively, 
process-guided loss functions or differentiable process-based modules 

(for example, dashed box) can be used to incorporate mass conservation, 
energy balance, flow transport or other process knowledge to enhance model 
performance. Knowledge discovery can emerge from accurate predictions 
themselves, from inspecting variables and learned parameters within the model 
itself (for example, internal signals), and from XDL. XDL includes common post 
hoc methods such as integrated gradients (IG), expected gradients (EG), SHAP 
and LIME, and model-specific methods such as attention mechanisms.
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(HABs)101. A DNN model predicted a variety of water-quality variables, 
from which SHAP values identified the most influential factors102. In 
addition, hybrid models integrating existing knowledge and DL are 
promising in potentially advancing both prediction accuracy and 
process-based understanding. For example, a hybrid model for lake 
phosphorous combined an RNN model with ecological principles 
(for example, power scaling)103. The model predicted short-term and 
long-term variations in observed phosphorous with high accuracy, 
outperforming the process-based model and RNN alone. The model 
identified lake level and thermocline depth as the most important driv-
ers of phosphorous loads and revealed a decade-long downwards trend 
as contributing to the long and slow change in phosphorous loads. The 
model further suggested that including an additional temperature 
component can improve the process-based model.

The future of deep learning in water quality
As DL becomes increasingly applied, tested and improved in old and 
new regimes, DL will probably become increasingly trustworthy for 
predicting future water quality under various management, policy, 
climate and socioeconomic scenarios. As Earth’s climate evolves, cli-
mate extremes such as floods, droughts, cyclones and fires will become 
more frequent and severe. Such extremes often alter concentrations 
and loads of sediments and solutes by orders of magnitude57,104. During 
extreme wildfires, for example, sediment-loaded water often over-
whelms water treatment plants105; during droughts, DO often drops 
to critically low levels and endangers aquatic ecosystems106. Water-
quality hindcast and near-term forecasts, therefore, will be essential 
for designing water infrastructure and making real-time decisions 
on water and ecosystem management. In addition, the growing chal-
lenges of water-quality management will make trustworthy forecasts 
and scenario projections increasingly valuable. DL can be potentially 
leveraged not only for extreme events forecasting but also for general 
management such as identifying pollution sources107, optimizing moni-
toring networks108 and management decisions109, and automatically 
monitoring water quality54,110. Such predictions are critical for adapt-
ing to climate changes and mitigating the impact of extreme events.

Approaches for hindcasts and forecasts will continue to face 
challenges of data scarcity and incomplete process understanding, 
although the approaches described above can begin to ameliorate 
these challenges. Furthermore, new developments in alternative 
methods such as Bayesian modelling111, evolutionary algorithms112 
and transfer learning113, as well as their hybrid use with DL models, 
could be leveraged for improved prediction. For example, a DL-guided 
evolutionary algorithm was trained to use sensor data to identify con-
tamination sources and improve computational efficiency and model 
performance114. A transfer-learning-based LSTM model captured the 
long-term dependencies among time series and leveraged knowledge 
learned from complete datasets, improving imputation accuracy by 
15–25% for DO concentration115.

Existing work on water quality, whether using traditional DL, XDL, 
PGDL or DM, has only scratched the surface of our capacity to learn 
from DL models. Most work has been limited to a few variables such 
as WT and DO that are largely influenced by meteorological condi-
tions, sediment and phosphorus that are primarily driven by discharge 
regimes, as well as optically active variables such as chl a and coloured 
DOM that can be directly inferred from the spectral signatures of sat-
ellite images. For now, every addition to the literature is valuable in 
developing our sense of what is possible and how to make the best pos-
sible use of DL, not only in practical uses such as forecasting extreme 
events but also in further developing theories and insights that drive 
water-quality dynamics.

Prediction for extreme events and climate scenarios
Water management under extreme conditions traditionally relies on 
human expertise (for example, subjective detection thresholds) and 

ensemble models for extreme weather prediction. However, models 
such as LSTM have shown promise in forecasts under extreme condi-
tions with lead times of up to days116. As extreme events intensify and 
alter water quality, traditional process-based models may be limited 
by our understanding of water-quality theory under extreme condi-
tions57. Existing data, if measured under extreme conditions (a big 
‘if’ for water quality), may already contain valuable information that 
surpasses our current understanding117. Such hidden knowledge in 
data can be leveraged in DL models to forecast water quality under 
extreme conditions. As an example, HABNet, a model that combines 
CNN and LSTM, has discriminated between HAB and non-HAB events 
using remote-sensing data, outperforming historical methods54. An 
integrated PGDL and data assimilation approach forecasted daily WT 
up to 7 days in advance with accuracy and quantified uncertainties109, 
enabling water management decisions such as reservoir water release 
when WT rose above a fish tolerance threshold.

Such existing work is only the tip of the iceberg. We anticipate that 
DL-based forecasting will expand beyond algae blooms and WT. The 
bottleneck of such forecasting is still sufficient data under extreme con-
ditions118. To train well, DL models have to see sufficient input to output 
response to figure out trends and patterns. Extreme conditions chal-
lenge data collection, because physical conditions during, for example, 
floods, often prevent manual data collection but also knock out sensors 
used for automatic data collection. Extreme events, although predicted 
to occur more frequently, will still occur less frequently such that the 
temporal window for monitoring is fleeting. Advances in technology 
for robust and automatic measurements are essential in both gushing 
waters and in close-to-zero-flow dry riverbeds119.

Predicting the future and projecting hypothetical scenarios into 
the future demand more than a capability for hindcasts. Data-driven 
models of all kinds (statistical, ML broadly and DL specifically) may 
predict accurately on training data but fail spectacularly under new 
input conditions. Generalizability demands that new conditions we 
wish to project are represented in the training datasets, which is often 
not the case. XDL can help evaluate the physical realism of DL predic-
tions under diverse conditions, and PGDL can encourage DL models 
to encode physically realistic relationships. Rigorous tests of new DL 
models are needed with respect to generalizability. These include 
conducting spatio-temporal extrapolation tests in ungauged basin 
and future (lead) forecast, as well as in benchmark tests against other 
established methods or models. These tests will offer the capability to 
represent complex processes and project to new scenarios with more 
confidence and transparency, supporting decision-makers in antici-
pating and responding to water-quality challenges. Progress has been 
made with encouraging preliminary findings82,100; DL generalizability, 
however, should not be taken for granted.

Diversifying data sources to combat data scarcity
The challenges of data scarcity will continue, because data collection 
requires investment, human resources and innovation. Data scarcity 
can be ameliorated with expanded use of traditional DL, PGDL and 
DM in conjunction with observations of surrogates and other biogeo-
chemically related predictors. However, data ‘generated’ by DL-based 
approaches should be used with caution. Another approach is to lever-
age an even wider diversity of data sources. For example, hydrology 
data are much more available than water-quality data. Remote-sensing 
data, social media data and citizen science data have become widely 
available. Social media posts, including text, pictures and videos, have 
been mined for flood-water level estimation120, flood assessment121 
and water-quality classification122. Citizen science has also become 
increasingly useful in hydrological and water-quality research123–125. 
Cost-effective crowdsourced monitoring can additionally engage the 
public, thereby enhancing the long-term sustainability of monitoring 
networks123. For example, community-based monitoring provides 
water-quality data (for example, pH, WT, electrical conductivity) in 
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Chile124 and Australia126 (https://www.waterwatch.org.au). Citizen 
science data, however, may be challenging for water-quality variables, 
as measurements of most solutes require expensive technology and 
changes in solute concentrations are often invisible. Yet they can 
potentially provide ‘complementary’ information on environmen-
tal conditions or human behaviour for DL models to learn, infer and 
forecast water quality.

Seeking new knowledge
Earth’s subsurface governs water storage, transport and the generation 
of water-quality variables via biogeochemical reactions127, therefore 
regulating the chemistry of subsurface source water that eventually 
enters rivers and lakes57. In fact, a significant portion of surface waters 
derive from soil water and groundwater128. Surface water chemistry 
therefore reflects water flow paths and its interactions with soils, rocks, 
microbes and roots that mobilize solutes and sediments129. Existing 
theories and empirical relationships abound depicting how physical, 
chemical and biological processes mobilize solids and solutes40,43,130. 
Simultaneous use of both process-based and DL models, whether inde-
pendently or within a coupled framework, can inspire new hypotheses 
about mechanisms and drivers of water-quality dynamics (Fig. 4).

XDL tools can potentially be used to compare PGDL and non-PGDL 
models and reveal what the models can learn differently when we ask 
and/or enable them to better conform to a physics-based reality. Inter-
rogating XDL of multi-task models may reveal influential predictors or 
latent variables the models learn to produce and share among multiple 
variables. The learned relationships can further generate hypotheses. 
Theories and process-based equations combined with DL modules in 
the DM framework may also enable rapid calibration and comparison 
of competing process representations for hypothesis testing22. In 
addition, model interrogation with different types of input can reveal 
influential drivers. For example, assessment of model performance 
with different inputs have revealed temperature as the predominant 
driver of daily DO in US rivers40. Robust model training offers consistent 
‘data’ output with filled gaps, which can enable extraction of temporal 
trends and spatial patterns. For example, a multi-task LSTM model 
trained on WT and DO data in about 800 rivers revealed that rivers 
warm up most rapidly in urban rivers and lose oxygen most rapidly 
in agricultural rivers, and that they lose oxygen faster than oceans131. 
These approaches could open doors for knowledge discovery.

The opportunities for combined XDL, PGDL and DM to inform 
knowledge exist, although they have yet to realize their full potential. 
Current DL research has focused more on approaches and model per-
formance than on knowledge discovery. The emerging data (whether 
original observation or model filled) and knowledge from these 
approaches can have far-reaching impacts, not only on water-quality 
prediction but also on broad understanding of processes that shape 
global biogeochemical cycles of carbon, nutrients and other elements, 
and climate feedbacks132.

In summary, while transparent, interpretable process-based and 
statistical models will remain important for predicting water quality, 
DL models can potentially overcome long-standing data limitations 
and predictive challenges inherent to these traditional approaches. 
DL approaches, however, are only as robust as the quality and quantity 
of the available data. Data and observations are the bedrock of all sci-
entific discoveries133,134. Without intercepted messages, Turing could 
not have decoded Enigma135. Similar to children learning to speak, DL 
models must ‘see’ or ‘hear’ enough data to decipher hidden patterns 
and laws. Using diverse data sources, including remote sensing, social 
media content, citizen science data, surrogate water-quality measure-
ments and process-based model outputs, can potentially improve our 
ability to leverage DL for understanding and predicting water quality. 
Despite these additional sources, data availability will probably remain 
the bottleneck of DL applications in water quality. Paradoxically, with 
the ‘right’ amount of data, DL models can help predict water quality in 

time and space, filling data gaps and reconstructing long-term data. A 
potential future direction is to integrate DL and process-based mod-
els (for example, PGDL, DM), harnessing their individual merits for 
improved prediction, transparency, and knowledge discovery.

We predict that the emergent power of DL approaches for improv-
ing global water quality will be realized through: (1) collating publicly 
available spatial and temporal data and exploring their relation-
ships with water-quality variables for spatio-temporal prediction;  
(2) bringing new tools and fresh eyes to discover hidden patterns, pro-
cesses and relationships that regulate water-quality dynamics; and 3) 
predicting future and unmonitored water-quality conditions to explore 
options for managing and mitigating water-quality impairments under 
climate extremes, and broadly in a rapidly changing world. The out-
come could have far-reaching impacts not only in water-quality fields 
but also broadly in understanding and predicting the future of global 
cycles of carbon, nutrients, other elements and beyond.

Data availability
Streamflow data (Fig. 1a) from the Global Streamflow Indices and 
Metadata Archive (GSIM) were compiled from repositories at https://
doi.org/10.1594/PANGAEA.887477 and https://doi.org/10.1594/PAN-
GAEA.887470. Water-quality data (Fig. 1b) from the Global River Water 
Quality Archive (GRQA) were downloaded from https://doi.org/10.5281/
zenodo.7056647.

References
1. Turing, A. M. Computing machinery and intelligence. Mind 59, 

433–460 (1950).
2. Turing, A. M. On computable numbers, with an application  

to the Entscheidungsproblem. Proc. Lond. Math. Soc. s2-42, 
230–265 (1937).

3. Muggleton, S. Alan Turing and the development of artificial 
intelligence. AI Commun. 27, 3–10 (2014).

4. Dechter, R. Learning while searching in constraint-satisfaction 
problems. In Proceedings of the AAAI Conference on Artificial 
Intelligence Vol. 5, 178–183 (AAAI, 1986).

5. Hinton, G. E. & Salakhutdinov, R. R. Reducing the dimensionality 
of data with neural networks. Science 313, 504–507 (2006).

6. Hinton, G. E., Osindero, S. & Teh, Y.-W. A fast learning algorithm for 
deep belief nets. Neural Comput. 18, 1527–1554 (2006).

7. Lecun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 
436–444 (2015).

8. Reichstein, M. et al. Deep learning and process understanding for 
data-driven Earth system science. Nature 566, 195–204 (2019).

9. Shen, C. A transdisciplinary review of deep learning research and 
its relevance for water resources scientists. Water Resour. Res. 54, 
8558–8593 (2018).

10. Shen, C. P. et al. HESS opinions: incubating deep-learning-
powered hydrologic science advances as a community.  
Hydrol. Earth Syst. Sci. 22, 5639–5656 (2018).

11. Xu, T. & Liang, F. Machine learning for hydrologic sciences: an 
introductory overview. Wiley Interdiscip. Rev. Water 8, e1533 (2021).

12. Zhi, W. et al. From hydrometeorology to river water quality: can a 
deep learning model predict dissolved oxygen at the continental 
scale? Environ. Sci. Technol. 55, 2357–2368 (2021).

13. Varadharajan, C. et al. Can machine learning accelerate process 
understanding and decision‐relevant predictions of river water 
quality? Hydrol. Process. https://doi.org/10.1002/hyp.14565 (2022).

14. Tripathy, K. P. & Mishra, A. K. Deep learning in hydrology and  
water resources disciplines: concepts, methods, applications, 
and research directions. J. Hydrol. https://doi.org/10.1016/ 
j.jhydrol.2023.130458 (2023).

15. Perry, G. L. W., Seidl, R., Bellvé, A. M. & Rammer, W. An outlook  
for deep learning in ecosystem science. Ecosystems 25,  
1700–1718 (2022).

http://www.nature.com/natwater
https://www.waterwatch.org.au
https://doi.org/10.1594/PANGAEA.887477
https://doi.org/10.1594/PANGAEA.887477
https://doi.org/10.1594/PANGAEA.887470
https://doi.org/10.1594/PANGAEA.887470
https://doi.org/10.5281/zenodo.7056647
https://doi.org/10.5281/zenodo.7056647
https://doi.org/10.1002/hyp.14565
https://doi.org/10.1016/j.jhydrol.2023.130458
https://doi.org/10.1016/j.jhydrol.2023.130458


Nature Water

Review article https://doi.org/10.1038/s44221-024-00202-z

16. Song, T. et al. A review of artificial intelligence in marine science. 
Front. Earth Sci. https://doi.org/10.3389/feart.2023.1090185 (2023).

17. Sun, A. Y. & Scanlon, B. R. How can big data and machine 
learning benefit environment and water management: a survey 
of methods, applications, and future directions. Environ. Res. Lett. 
14, 073001 (2019).

18. Zhu, J.-J., Yang, M. & Ren, Z. J. Machine learning in environmental 
research: common pitfalls and best practices. Environ. Sci. 
Technol. 57, 17671–17689 (2023).

19. van Klompenburg, T., Kassahun, A. & Catal, C. Crop yield 
prediction using machine learning: a systematic literature review. 
Comput. Electron. Agric. 177, 105709 (2020).

20. Zhong, S. et al. Machine learning: new ideas and tools in 
environmental science and engineering. Environ. Sci. Technol. 
https://doi.org/10.1021/acs.est.1c01339 (2021).

21. Appling, A. P., Oliver, S. K., Read, J. S., Sadler, J. M. & Zwart, J. A. in 
Encyclopedia of Inland Waters 2nd edn (eds Mehner, T. & Tockner, 
K.) 585–606 (Elsevier, 2022).

22. Shen, C. et al. Differentiable modelling to unify machine learning 
and physical models for geosciences. Nat. Rev. Earth Environ. 4, 
552–567 (2023).

23. Diamond, J. S. et al. Hypoxia is common in temperate  
headwaters and driven by hydrological extremes. Ecol. Indic. 147, 
109987 (2023).

24. Creed, I. F. et al. Enhancing protection for vulnerable waters.  
Nat. Geosci. 10, 809–815 (2017).

25. Nazari-Sharabian, M., Ahmad, S. & Karakouzian, M. Climate 
change and eutrophication: a short review. Eng. Technol. Appl. 
Sci. Res. 8, 3668 (2018).

26. Paerl, H. W., Otten, T. G. & Kudela, R. Mitigating the expansion of 
harmful algal blooms across the freshwater-to-marine continuum. 
Environ. Sci. Technol. 52, 5519–5529 (2018).

27. McCabe, M. F. et al. The future of Earth observation in hydrology. 
Hydrol. Earth Syst. Sci. 21, 3879–3914 (2017).

28. Abbott, B. W. et al. Using multi-tracer inference to move  
beyond single-catchment ecohydrology. Earth Sci. Rev. 160, 
19–42 (2016).

29. Milly, P. C. D. et al. Stationarity is dead: whither water 
management? Science 319, 573–574 (2008).

30. Runkel, R. L., Crawford, C. G. & Cohn, T. A. Load Estimator 
(LOADEST): A FORTRAN Program for Estimating Constituent Loads 
in Streams and Rivers Report no. 4-A5 (USGS, 2004).

31. Hirsch, R. M., Moyer, D. L. & Archfield, S. A. Weighted regressions 
on time, discharge, and season (WRTDS), with an application 
to Chesapeake Bay River inputs. J. Am. Water Resour. Assoc. 46, 
857–880 (2010).

32. Zhang, Q., Blomquist, J. D., Moyer, D. L. & Chanat, J. G. Estimation 
bias in water-quality constituent concentrations and fluxes: a 
synthesis for Chesapeake Bay rivers and streams. Front. Ecol. Evol. 
https://doi.org/10.3389/fevo.2019.00109 (2019).

33. Zhi, W. et al. Distinct source water chemistry shapes contrasting 
concentration–discharge patterns. Water Resour. Res. 55, 
4233–4251 (2019).

34. Archfield, S. A. et al. Accelerating advances in continental  
domain hydrologic modeling. Water Resour. Res. 51, 10078–10091 
(2015).

35. Zhi, W. et al. BioRT-Flux-PIHM v1.0: a watershed biogeochemical 
reactive transport model. Geosci. Model Dev. 15, 19 (2022).

36. Rahmani, F. et al. Exploring the exceptional performance of 
a deep learning stream temperature model and the value of 
streamflow data. Environ. Res. Lett. https://doi.org/10.1088/ 
1748-9326/abd501 (2021).

37. Bolton, T. & Zanna, L. Applications of deep learning to ocean data 
inference and subgrid parameterization. J. Adv. Model. Earth Syst. 
11, 376–399 (2019).

38. Rasp, S., Pritchard, M. S. & Gentine, P. Deep learning to represent 
subgrid processes in climate models. Proc. Natl Acad. Sci. USA 
115, 9684–9689 (2018).

39. Irrgang, C. et al. Towards neural Earth system modelling by 
integrating artificial intelligence in Earth system science.  
Nat. Mach. Intell. 3, 667–674 (2021).

40. Zhi, W., Ouyang, W., Shen, C. & Li, L. Temperature outweighs light 
and flow as the predominant driver of dissolved oxygen in US 
rivers. Nat. Water 1, 249–260 (2023).

41. Willard, J. D. et al. Predicting water temperature dynamics of 
unmonitored lakes with meta-transfer learning. Water Resour. Res. 
57, e2021WR029579 (2021).

42. He, Y. et al. Water clarity mapping of global lakes using a novel 
hybrid deep-learning-based recurrent model with Landsat OLI 
images. Water Res. 215, 118241 (2022).

43. Jia, X. et al. Physics-guided recurrent graph model for predicting 
flow and temperature in river networks. In Proc. 2021 SIAM 
International Conference on Data Mining (SDM) 612–620  
(SIAM, 2021); https://doi.org/10.1137/1.9781611976700.69

44. Bao, T. et al. Partial differential equation driven dynamic graph 
networks for predicting stream water temperature. In 2021 IEEE 
International Conference on Data Mining (ICDM) 11–20 (IEEE, 2021); 
https://doi.org/10.1109/ICDM51629.2021.00011

45. Bindas, T. et al. Improving river routing using a differentiable 
Muskingum‐Cunge model and physics‐informed machine 
learning. Water Resour. Res. 60, e2023WR035337 (2024).

46. Chen, S. et al. Heterogeneous stream-reservoir graph networks 
with data assimilation. In 2021 IEEE International Conference on 
Data Mining (ICDM) 1024–1029 (IEEE, 2021).

47. Chen, S., Zwart, J. A. & Jia, X. Physics-guided graph meta learning 
for predicting water temperature and streamflow in stream 
networks. In Proc. 28th ACM SIGKDD Conference on Knowledge 
Discovery and Data Mining 2752–2761 (Association for Computing 
Machinery, 2022).

48. Saha, G. K., Rahmani, F., Shen, C., Li, L. & Cibin, R. A deep 
learning-based novel approach to generate continuous daily 
stream nitrate concentration for nitrate data-sparse watersheds. 
Sci. Total Environ. 878, 162930 (2023).

49. Kratzert, F. et al. Towards learning universal, regional, and  
local hydrological behaviors via machine learning applied to 
large-sample datasets. Hydrol. Earth Syst. Sci. 23, 5089–5110 
(2019).

50. Willard, J. D., Read, J. S., Topp, S., Hansen, G. J. A. & Kumar, V. 
Daily surface temperatures for 185,549 lakes in the conterminous 
United States estimated using deep learning (1980–2020). 
Limnol. Oceanogr. Lett. https://doi.org/10.1002/lol2.10249  
(2022).

51. Ren, H., Cromwell, E., Kravitz, B. & Chen, X. Using long short-
term memory models to fill data gaps in hydrological monitoring 
networks. Hydrol. Earth Syst. Sci. 26, 1727–1743 (2022).

52. Latif, S. D. et al. Sediment load prediction in Johor River: deep 
learning versus machine learning models. Appl. Water Sci.  
https://doi.org/10.1007/s13201-023-01874-w (2023).

53. Jamei, M. et al. Designing a decomposition-based multi- 
phase pre-processing strategy coupled with EDBi-LSTM deep 
learning approach for sediment load forecasting. Ecol. Indic. 153, 
110478 (2023).

54. Hill, P. R., Kumar, A., Temimi, M. & Bull, D. R. HABNet: machine 
learning, remote sensing-based detection of harmful algal 
blooms. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 13, 
3229–3239 (2020).

55. D’Alimonte, D., Zibordi, G. & Berthon, J. F. Determination of CDOM 
and NPPM absorption coefficient spectra from coastal water 
remote sensing reflectance. IEEE Trans. Geosci. Remote Sens. 42, 
1770–1777 (2004).

http://www.nature.com/natwater
https://doi.org/10.3389/feart.2023.1090185
https://doi.org/10.1021/acs.est.1c01339
https://doi.org/10.3389/fevo.2019.00109
https://doi.org/10.1088/1748-9326/abd501
https://doi.org/10.1088/1748-9326/abd501
https://doi.org/10.1137/1.9781611976700.69
https://doi.org/10.1109/ICDM51629.2021.00011
https://doi.org/10.1002/lol2.10249
https://doi.org/10.1007/s13201-023-01874-w
https://doi.org/10.1007/s13201-023-01874-w


Nature Water

Review article https://doi.org/10.1038/s44221-024-00202-z

56. Zhang, Y. et al. Improving remote sensing estimation of Secchi 
disk depth for global lakes and reservoirs using machine learning 
methods. GIsci. Remote Sens. 59, 1367–1383 (2022).

57. Li, L. et al. River water quality shaped by land–river connectivity 
in a changing climate. Nat. Clim. Change https://doi.org/10.1038/
s41558-023-01923-x (2024).

58. Rasmussen, P. P., Gray, J. R., Glysson, G. D. & Ziegler, A. C. 
Guidelines and Procedures for Computing Time-Series Suspended-
Sediment Concentrations and Loads from In-Stream Turbidity-
Sensor and Streamflow Report No. 3-C4 (USGS, 2009).

59. Covert, S. A., Bunch, A. R., Crawford, C. G. & Oelsner, G. 
P. Comparison of Surrogate Models to Estimate Pesticide 
Concentrations at Six U.S. Geological Survey National Water 
Quality Network Sites during Water Years 2013–18 Report No.  
2022-5109 (USGS, 2023).

60. Schilling, K. E., Kim, S.-W. & Jones, C. S. Use of water quality 
surrogates to estimate total phosphorus concentrations in Iowa 
rivers. J. Hydrol. Reg. Stud. 12, 111–121 (2017).

61. Wang, D. et al. Satellite retrieval of surface water nutrients  
in the coastal regions of the East China Sea. Remote Sens. 10, 
1896 (2018).

62. Guo, H. et al. Performance of deep learning in mapping water 
quality of Lake Simcoe with long-term Landsat archive. ISPRS J. 
Photogramm. Remote Sens. 183, 451–469 (2022).

63. Kerins, D. & Li, L. High dissolved carbon concentration in arid rocky 
mountain streams. Environ. Sci. Technol. 57, 4656–4667 (2023).

64. Zhang, Y. et al. A hybrid model combining mode decomposition 
and deep learning algorithms for detecting TP in urban sewer 
networks. Appl. Energy 333, 120600 (2023).

65. Jiang, Y., Li, C., Song, H. & Wang, W. Deep learning model  
based on urban multi-source data for predicting heavy metals 
(Cu, Zn, Ni, Cr) in industrial sewer networks. J. Hazard. Mater. 
https://doi.org/10.1016/j.jhazmat.2022.128732 (2022).

66. Li, L. et al. Expanding the role of reactive transport models in 
critical zone processes. Earth Sci. Rev. 165, 280–301 (2017).

67. Li, L. et al. Toward catchment hydro-biogeochemical theories. 
WIREs Water 8, e1495 (2021).

68. Bergen, K. J., Johnson, P. A., de Hoop, M. V. & Beroza, G. C. 
Machine learning for data-driven discovery in solid Earth 
geoscience. Science 363, eaau0323 (2019).

69. Kolbe, T. et al. Stratification of reactivity determines nitrate 
removal in groundwater. Proc. Natl Acad. Sci. USA 116,  
2494–2499 (2019).

70. Sun, A. Y. Discovering state‐parameter mappings in subsurface 
models using generative adversarial networks. Geophys. Res. Lett. 
https://doi.org/10.1029/2018gl080404 (2018).

71. Jiang, P., Shuai, P., Sun, A., Mudunuru, M. K. & Chen, X. 
Knowledge-informed deep learning for hydrological model 
calibration: an application to Coal Creek Watershed in Colorado. 
Hydrol. Earth Syst. Sci. Discuss. 2022, 1–31 (2022).

72. Jiang, Z. et al. Sub3DNet1.0: a deep-learning model for regional-
scale 3D subsurface structure mapping. Geosci. Model Dev. 14, 
3421–3435 (2021).

73. Cromwell, E. et al. Estimating watershed subsurface permeability 
from stream discharge data using deep neural networks. Front. 
Earth Sci. https://doi.org/10.3389/feart.2021.613011 (2021).

74. Podgorski, J. & Berg, M. Global threat of arsenic in groundwater. 
Science 368, 845–850 (2020).

75. Podgorski, J. & Berg, M. Global analysis and prediction of fluoride 
in groundwater. Nat. Commun. https://doi.org/10.1038/s41467-
022-31940-x (2022).

76. Ransom, K. M., Nolan, B. T., Stackelberg, P. E., Belitz, K. & Fram, M. S.  
Machine learning predictions of nitrate in groundwater used for 
drinking supply in the conterminous United States. Sci. Total 
Environ. 807, 151065 (2022).

77. Nolan, B. T., Green, C. T., Juckem, P. F., Liao, L. & Reddy, J. E. 
Metamodeling and mapping of nitrate flux in the unsaturated 
zone and groundwater, Wisconsin, USA. J. Hydrol. 559, 428–441 
(2018).

78. Wen, T., Liu, M., Woda, J., Zheng, G. & Brantley, S. L. Detecting 
anomalous methane in groundwater within hydrocarbon 
production areas across the United States. Water Res. 200, 
117236 (2021).

79. Willard, J., Jia, X., Xu, S., Steinbach, M. & Kumar, V. Integrating 
scientific knowledge with machine learning for engineering and 
environmental systems. ACM Comput. Surv. 55, 1–37 (2023).

80. Feng, D., Beck, H., Lawson, K. & Shen, C. The suitability of 
differentiable, learnable hydrologic models for ungauged regions 
and climate change impact assessment. Hydrol. Earth Syst. Sci. 
Discuss. 2022, 1–28 (2022).

81. Sun, A. Y., Yoon, H., Shih, C.-Y. & Zhong, Z. Applications of physics-
informed scientific machine learning in subsurface science: A 
survey. In Knowledge Guided Machine Learning (eds Karpatne, A. 
et al.) 111–132 (Chapman and Hall/CRC, 2022).

82. Read, J. S. et al. Process‐guided deep learning predictions of lake 
water temperature. Water Resour. Res. 55, 9173–9190 (2019).

83. Beucler, T., Rasp, S., Pritchard, M. & Gentine, P. Achieving 
conservation of energy in neural network emulators for climate 
modeling. Preprint at https://arxiv.org/abs/1906.06622 (2019).

84. Daw, A. et al. Physics-Guided Architecture (PGA) of Neural 
Networks for Quantifying Uncertainty in Lake Temperature 
Modeling. In Proc. 2020 SIAM International Conference on Data 
Mining (SDM) 532–540 (SIAM, 2020).

85. Shen, C. et al. Differentiable modelling to unify machine learning 
and physical models for geosciences. Nat. Rev. Earth Environ. 
https://doi.org/10.1038/s43017-023-00450-9 (2023).

86. Jia, X. et al. Physics Guided RNNs for Modeling Dynamical 
Systems: A Case Study in Simulating Lake Temperature Profiles. 
In Proceedings of the 2019 SIAM International Conference on Data 
Mining 558–566 (SIAM, 2019).

87. Sadler, J. M. et al. Multi-task deep learning of daily streamflow and 
water temperature. Water Resour. Res. 58, e2021WR030138 (2022).

88. He, Q., Barajas-Solano, D., Tartakovsky, G. & Tartakovsky, A. 
M. Physics-informed neural networks for multiphysics data 
assimilation with application to subsurface transport. Adv. Water 
Res. 141, 103610 (2020).

89. Jiang, S., Zheng, Y. & Solomatine, D. Improving AI system 
awareness of geoscience knowledge: symbiotic integration 
of physical approaches and deep learning. Geophys. Res. Lett. 
https://doi.org/10.1029/2020gl088229 (2020).

90. Höge, M., Scheidegger, A., Baity-Jesi, M., Albert, C. & Fenicia, 
F. Improving hydrologic models for predictions and process 
understanding using neural ODEs. Hydrol. Earth Syst. Sci. 26, 
5085–5102 (2022).

91. Molnar, C. Interpretable Machine Learning (Lulu.com, 2020).
92. Samek, W., Montavon, G., Lapuschkin, S., Anders, C. J. & Muller, 

K.-R. Explaining deep neural networks and beyond: a review of 
methods and applications. Proc. IEEE 109, 247–278 (2021).

93. Sundararajan, M., Taly, A. & Yan, Q. Axiomatic attribution for 
deep networks. In International Conference on Machine Learning 
3319–3328 (ICML, 2017).

94. Erion, G. et al. Improving performance of deep learning models 
with axiomatic attribution priors and expected gradients. Nat. 
Mach. Intell. 3, 620–631 (2021).

95. Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting 
model predictions. Adv. Neural Inf. Process. Syst. 30, 1–10 (2017).

96. Ribeiro, M. T., Singh, S. & Guestrin, C. “ Why should i trust you?” 
Explaining the predictions of any classifier. In Proc. 22nd ACM 
SIGKDD International Conference on Knowledge Discovery and 
Data Mining 1135–1144 (ACM, 2016).

http://www.nature.com/natwater
https://doi.org/10.1038/s41558-023-01923-x
https://doi.org/10.1038/s41558-023-01923-x
https://doi.org/10.1016/j.jhazmat.2022.128732
https://doi.org/10.1029/2018gl080404
https://doi.org/10.3389/feart.2021.613011
https://doi.org/10.1038/s41467-022-31940-x
https://doi.org/10.1038/s41467-022-31940-x
https://arxiv.org/abs/1906.06622
https://doi.org/10.1038/s43017-023-00450-9
https://doi.org/10.1029/2020gl088229


Nature Water

Review article https://doi.org/10.1038/s44221-024-00202-z

97. Xie, W. et al. Interpretable framework of physics‐guided neural 
network  
with attention mechanism: simulating paddy field water temperature 
variations. Water Resour. Res. 58, e2021WR030493 (2022).

98. Liu, Y., Duffy, K., Dy, J. G. & Ganguly, A. R. Explainable deep 
learning for insights in El Niño and river flows. Nat. Commun. 
https://doi.org/10.1038/s41467-023-35968-5 (2023).

99. Sadayappan, K., Kerins, D., Shen, C. & Li, L. Nitrate concentrations 
predominantly driven by human, climate, and soil properties in 
US rivers. Water Res. 226, 119295 (2022).

100. Topp, S. N. et al. Stream temperature prediction in a shifting 
environment: explaining the influence of deep learning architecture.  
Water Resour. Res. https://doi.org/10.1029/2022wr033880 (2023).

101. Lee, D. et al. Integrated explainable deep learning prediction 
of harmful algal blooms. Technol. Forecast. Soc. Change 185, 
122046 (2022).

102. Zheng, H., Liu, Y., Wan, W., Zhao, J. & Xie, G. Large-scale prediction 
of stream water quality using an interpretable deep learning 
approach. J. Environ. Manage. 331, 117309 (2023).

103. Hanson, P. C. et al. Predicting lake surface water phosphorus 
dynamics using process-guided machine learning. Ecol. Modell. 
430, 109136 (2020).

104. Carpenter, S. R., Booth, E. G. & Kucharik, C. J. Extreme 
precipitation and phosphorus loads from two agricultural 
watersheds. Limnol. Oceanogr. 63, 1221–1233 (2018).

105. Robinne, F.-N. et al. Scientists’ warning on extreme wildfire risks 
to water supply. Hydrol. Process. 35, e14086 (2021).

106. Whitehead, P. G., Wilby, R. L., Battarbee, R. W., Kernan, M. & Wade, 
A. J. A review of the potential impacts of climate change on 
surface water quality. Hydrol. Sci. J. 54, 101–123 (2009).

107. Wang, P. et al. Exploring the application of artificial intelligence 
technology for identification of water pollution characteristics 
and tracing the source of water quality pollutants. Sci. Total 
Environ. 693, 133440 (2019).

108. Kontos, Y. N., Kassandros, T., Katsifarakis, K. L. & Karatzas, K. 
Deep Learning Modeling of Groundwater Pollution Sources. In 
International Conference on Engineering Applications of Neural 
Networks 165–177 (Springer, 2021).

109. Zwart, J. A. et al. Near-term forecasts of stream temperature using 
deep learning and data assimilation in support of management 
decisions. J. Am. Water Res. Assoc. 59, 317–337 (2023).

110. van Lieshout, C., van Oeveren, K., van Emmerik, T. & Postma, E. 
Automated river plastic monitoring using deep learning and 
cameras. Earth Space Sci. 7, e2019EA000960 (2020).

111. Beria, H., Larsen, J. R., Michelon, A., Ceperley, N. C. & Schaefli, B. 
HydroMix v1.0: a new Bayesian mixing framework for attributing 
uncertain hydrological sources. Geosci. Model Dev. 13,  
2433–2450 (2020).

112. Tang, Y., Reed, P. & Wagener, T. How effective and efficient are 
multiobjective evolutionary algorithms at hydrologic model 
calibration? Hydrol. Earth Syst. Sci. 10, 289–307 (2006).

113. Iman, M., Arabnia, H. R. & Rasheed, K. A review of deep transfer 
learning and recent advancements. Technologies 11, 40 (2023).

114. Qian, K., Jiang, J., Ding, Y. & Yang, S.-H. DLGEA: a deep learning 
guided evolutionary algorithm for water contamination source 
identification. Neural Comput. Appl. 33, 11889–11903 (2021).

115. Chen, Z. et al. A transfer learning-based LSTM strategy for 
imputing large-scale consecutive missing data and its application 
in a water quality prediction system. J. Hydrol. 602, 126573 (2021).

116. Xiang, Z., Yan, J. & Demir, I. A rainfall-runoff model with LSTM-
based sequence-to-sequence learning. Water Resour. Res. 56, 
e2019WR025326 (2020).

117. Nearing, G. S. et al. What role does hydrological science play 
in the age of machine learning? Water Resour. Res. https://doi.
org/10.1029/2020WR028091 (2021).

118. Guo, D. et al. A data-based predictive model for spatiotemporal 
variability in stream water quality. Hydrol. Earth Syst. Sci. 24, 
827–847 (2020).

119. Zimmer, M. A. et al. Zero or not? Causes and consequences of 
zero-flow stream gage readings. WIREs Water 7, e1436 (2020).

120. Chaudhary, P., D’Aronco, S., Moy de Vitry, M., Leitão, J. P. & 
Wegner, J. D. Flood-water level estimation from social media 
images. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 
https://doi.org/10.5194/isprs-annals-IV-2-W5-5-2019 (2019).

121. Kanth, A. K., Chitra, P. & Sowmya, G. G. Deep learning-based 
assessment of flood severity using social media streams. Stoch. 
Environ. Res. Risk Assess. 36, 473–493 (2022).

122. Hanif, M., Khawar, A., Tahir, M. A. & Rafi, M. Deep learning based 
framework for classification of water quality in social media data. 
In Proc. MediaEval 2021 Workshop (MediaEval 2021).

123. Njue, N. et al. Citizen science in hydrological monitoring and 
ecosystem services management: state of the art and future 
prospects. Sci. Total Environ. 693, 133531 (2019).

124. Yevenes, M. A., Pereira, H. & Bermudez, R. Citizen science as a 
co-creative measure to water quality: chemical data and local 
participation in a rural territory. Front. Environ. Sci. 10, 940778 (2022).

125. Nardi, F. et al. Citizens and Hydrology (CANDHY): conceptualizing 
a transdisciplinary framework for citizen science addressing 
hydrological challenges. Hydrol. Sci. J. 67, 2534–2551 (2022).

126. Dyer, F. et al. Waterwatch data quality: an opportunity to augment 
professionally collected data sets. In Proc. 7th Australian Stream 
Management Conference 27–30 (ASM, 2014).

127. Rose, L. A., Karwan, D. L. & Godsey, S. E. Concentration–discharge 
relationships describe solute and sediment mobilization, 
reaction, and transport at event and longer timescales. Hydrol. 
Processes 32, 2829–2844 (2018).

128. Hare, D. K., Helton, A. M., Johnson, Z. C., Lane, J. W. & Briggs, M. 
A. Continental-scale analysis of shallow and deep groundwater 
contributions to streams. Nat. Commun. https://doi.org/10.1038/
s41467-021-21651-0 (2021).

129. Li, L. et al. Toward catchment hydro‐biogeochemical theories. 
WIREs Water https://doi.org/10.1002/wat2.1495 (2021).

130. Zhi, W. & Li, L. The shallow and deep hypothesis: subsurface 
vertical chemical contrasts shape nitrate export patterns from 
different land uses. Environ. Sci. Technol. 54, 11915–11928 (2020).

131. Zhi, W., Klingler, C., Liu, J. & Li, L. Widespread deoxygenation in 
warming rivers. Nat. Clim. Change 13, 1105–1113 (2023).

132. Li, L. et al. Climate controls on river chemistry. Earths Future 10, 
e2021EF002603 (2022).

133. Harari, Y. N. Sapiens: A Brief History of Humankind (Random 
House, 2014).

134. Popper, K. The Logic of Scientific Discovery (Basic Books, 1959).
135. Hodges, A. Alan Turing: The Enigma: The Centenary Edition 

(Princeton Univ. Press, 2012).
136. Do, H. X., Gudmundsson, L., Leonard, M. & Westra, S. The Global 

Streamflow Indices and Metadata Archive (GSIM)—Part 1: the 
production of a daily streamflow archive and metadata. Earth 
Syst. Sci. Data 10, 765–785 (2018).

137. Virro, H., Amatulli, G., Kmoch, A., Shen, L. & Uuemaa, E. GRQA: 
global river water quality archive. Earth System Sci. Data 13, 
5483–5507 (2021).

138. Gunn, M. A., Matherne, A. M. & Mason, J. R. R. The USGS at 
Embudo, New Mexico: 125 Years of Systematic Streamgaging in the 
United States Report No. 2014-30344 (USGS, 2014).

139. Burt, T. P. & McDonnell, J. J. Whither field hydrology? The need 
for discovery science and outrageous hydrological hypotheses. 
Water Resour. Res. 51, 5919–5928 (2015).

140. Read, E. K. et al. Water quality data for national‐scale aquatic 
research: the Water Quality Portal. Water Resour. Res. 53, 
1735–1745 (2017).

http://www.nature.com/natwater
https://doi.org/10.1038/s41467-023-35968-5
https://doi.org/10.1029/2022wr033880
https://doi.org/10.1029/2020WR028091
https://doi.org/10.1029/2020WR028091
https://doi.org/10.5194/isprs-annals-IV-2-W5-5-2019
https://doi.org/10.1038/s41467-021-21651-0
https://doi.org/10.1038/s41467-021-21651-0
https://doi.org/10.1002/wat2.1495


Nature Water

Review article https://doi.org/10.1038/s44221-024-00202-z

141. Council, N. R. Confronting the Nation’s Water Problems: The Role of 
Research (National Academies Press, 2004).

142. Li, Z., Liu, H., Zhang, C. & Fu, G. Generative adversarial networks 
for detecting contamination events in water distribution systems 
using multi-parameter, multi-site water quality monitoring. 
Environ. Sci. Ecotechnol. 14, 100231 (2023).

143. Qu, H. & Yuan, W. Water quality Anomaly detection based on 
optimally reconfigured convolutional autoencoder. In 2022 
International Conference on Wearables, Sports and Lifestyle 
Management (WSLM) 137–141 (IEEE, 2022).

144. Shen, C., Chen, X. & Laloy, E. Broadening the use of machine 
learning in hydrology. Front. Water https://doi.org/10.3389/
frwa.2021.681023 (2021).

145. Schmidhuber, J. Annotated history of modern AI and deep 
learning. Preprint at https://arxiv.org/abs/2212.11279 (2022).

146. McCulloch, W. S. & Pitts, W. A logical calculus of the ideas 
immanent in nervous activity. Bull. Math. Biophys. 5, 115–133 (1943).

147. Rosenblatt, F. The perceptron: a probabilistic model for 
information storage and organization in the brain. Psychol. Rev. 
65, 386 (1958).

148. Amari, S.-I. Learning patterns and pattern sequences by self-
organizing nets of threshold elements. IEEE Trans. Comput. 100, 
1197–1206 (1972).

149. Maier, H. R. & Dandy, G. C. The use of artificial neural networks for 
the prediction of water quality parameters. Water Resour. Res. 32, 
1013–1022 (1996).

150. Maier, H. R. & Dandy, G. C. Neural networks for the prediction and 
forecasting of water resources variables: a review of modelling 
issues and applications. Environ. Modell. Softw. 15, 101–124 (2000).

151. Chang, F. J. & Hwang, Y. Y. A self-organization algorithm for real-
time flood forecast. Hydrol. Process. 13, 123–138 (1999).

152. Dawson, C. W. & Wilby, R. L. A comparison of artificial neural 
networks used for river flow forecasting. Hydrol. Earth Syst. Sci. 3, 
529–540 (1999).

153. Cigizoglu, H. K. Estimation and forecasting of daily suspended 
sediment data by multi-layer perceptrons. Adv. Water Res. 27, 
185–195 (2004).

154. Dransfeld, S., Tatnall, A. R., Robinson, I. S. & Mobley, C. D. A 
comparison of multi-layer perceptron and multilinear regression 
algorithms for the inversion of synthetic ocean colour spectra.  
Int. J. Remote Sens. 25, 4829–4834 (2004).

155. Pankiewicz, G. S. Neural network classification of convective 
airmasses for a flood forecasting system. Int. J. Remote Sens. 18, 
887–898 (1997).

156. Addor, N., Newman, A. J., Mizukami, N. & Clark, M. P. The CAMELS 
data set: catchment attributes and meteorology for large-sample 
studies. Hydrol. Earth Syst. Sci. 21, 5293–5313 (2017).

157. Newman, A. et al. Development of a large-sample watershed-scale 
hydrometeorological data set for the contiguous USA: data set 
characteristics and assessment of regional variability in hydrologic 
model performance. Hydrol. Earth Syst. Sci. 19, 209 (2015).

158. Kratzert, F. et al. Caravan—a global community dataset for large-
sample hydrology. Sci. Data https://doi.org/10.1038/s41597-023-
01975-w (2023).

159. GEMStat Database of the Global Environment Monitoring System 
for Freshwater (GEMS/Water) Programme (UN Environment 
Programme, 2018).

160. Hartmann, J., Lauerwald, R. & Moosdorf, N. GLORICH—global river 
chemistry database. Pangaea 902360, 520 (2019).

161. Rotteveel, L., Heubach, F. & Sterling, S. M. The Surface Water 
Chemistry (SWatCh) database: a standardized global database of 
water chemistry to facilitate large-sample hydrological research. 
Earth Syst. Sci. Data 14, 4667–4680 (2022).

162. Sterle, G. et al. CAMELS-Chem: augmenting CAMELS (Catchment 
Attributes and Meteorology for Large-sample Studies) with 
atmospheric and stream water chemistry data. Hydrol. Earth Syst. 
Sci. Discuss. 2022, 1–23 (2022).

163. D’Alimonte, D. & Zibordi, G. Phytoplankton determination in an 
optically complex coastal region using a multilayer perceptron 
neural network. IEEE Trans. Geosci. Remote Sens. 41, 2861–2868 
(2003).

Acknowledgements
W.Z. was supported by the National Natural Science Foundation of 
China (52121006) and by the Barry and Shirley Isett Professorship (to 
L.L.) at Penn State University. L.L. was supported by the US National 
Science Foundation via the Critical Zone Collaborative Network 
(EAR-2012123 and EAR-2012669), Frontier Research in Earth Sciences 
(EAR-2121621), Signals in Soils (EAR-2034214), and US Department 
of Energy Environmental System Science (DE-SC0020146). J.P. was 
supported by Swiss Agency for Development and Cooperation  
(SDC) (WABES project, 7F-09963.02.01). This paper has been 
reviewed in accordance with the US Environmental Protection 
Agency’s peer and administrative review policies and approved for 
publication. Mention of trade names or commercial products does 
not constitute endorsement or recommendation for use. Any use of 
trade, firm, or product names is for descriptive purposes only and 
does not imply endorsement or recommendation for use by the 
US Government. Statements in this publication reflect the authors’ 
professional views and opinions and should not be construed to 
represent any determination or policy of the US Environmental 
Protection Agency.

Author contributions
W.Z. and L.L. conceived the idea for the review paper and wrote the 
first draft. A.P.A., H.E.G. and J.P. provided content for multiple sections 
and edited multiple versions of the paper. L.L. finalized the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version  
contains supplementary material available at  
https://doi.org/10.1038/s44221-024-00202-z.

Correspondence and requests for materials should be addressed  
to Li Li.

Peer review information Nature Water thanks Danlu Guo and the  
other, anonymous, reviewer(s) for their contribution to the peer review 
of this work.

Reprints and permissions information is available at  
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with 
the author(s) or other rightsholder(s); author self-archiving of the 
accepted manuscript version of this article is solely governed by the 
terms of such publishing agreement and applicable law.

© Springer Nature Limited 2024

http://www.nature.com/natwater
https://doi.org/10.3389/frwa.2021.681023
https://doi.org/10.3389/frwa.2021.681023
https://arxiv.org/abs/2212.11279
https://doi.org/10.1038/s41597-023-01975-w
https://doi.org/10.1038/s41597-023-01975-w
https://doi.org/10.1038/s44221-024-00202-z
http://www.nature.com/reprints

	Deep learning for water quality
	Deep learning glossary
	A brief history from AI to DL and beyond
	Long-standing challenges in water quality
	Challenges with data scarcity
	Challenges with model prediction

	Deep learning approaches
	Strengths of DL approaches
	Limitations of DL approaches

	Deep learning for data-scarcity challenges
	Spatial data filling in chemically ungauged basins
	Temporal data filling
	Predicting data-scarce variables from data-rich surrogates
	Predicting groundwater quality from catchment properties

	Deep learning for robust predictions
	Process-guided deep learning
	Differentiable modelling

	Deep learning for knowledge discovery
	The future of deep learning in water quality
	Prediction for extreme events and climate scenarios
	Diversifying data sources to combat data scarcity
	Seeking new knowledge

	Acknowledgements
	Fig. 1 Gauges through ages and across a few representative water-quality variables.
	Fig. 2 The use of a DL model for spatio-temporal water-quality gap filling.
	Fig. 3 Global maps of groundwater arsenic.
	Fig. 4 A conceptual diagram showing the ideas and approaches from black boxes to glass boxes towards robust model performance and knowledge discovery.




