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INTRODUCTION: The Earth’s tropical rainforests
and coral reefs are a marvel of biodiversity and
stability. For ecologists, however, they present
a theoretical puzzle. Early ecologists believed
species diversity to be a leading cause of eco-
logical stability, which includes relative con-
stancy in abundance and the ability to recover
from disturbance. However, this view runs
counter to classic theories and simple eco-
logical models, such as the generalized Lotka-
Volterra (GLV) model. The GLV model, along
with Robert May’s seminal results from ran-
dom matrix theory, implies that diversity
should instead lead to instability. Many studies
have since found factors that can extend sta-
bility to more diverse competitive communities,
but theory has yet to demonstrate how di-
versitymay be the cause of stability, producing
a positive diversity-stability relationship. This
disconnect between theory and observation,
framed as the “diversity-stability debate,” casts
doubt on ecologicalmodel predictions at a time
when they are most critically needed.

RATIONALE: Although much theory has fo-
cused on the varied ways in which species
interact with each other, we focus on the
nature of population growth and the way in
which a species interacts with itself. Many
models, including GLV, assume that pop-
ulations grow exponentially at low densities
and saturate at high densities, following the
logistic function. However, there is evidence
from time-series analysis that many popu-
lations of mammals, birds, fish, and insects
tend to follow a different trajectory, one in
which the growth of populations increases
with density raised to a power less than
one. This “sublinear” dynamic is thus simi-
lar to the widely used Bertalanffy model of
individual growth through ontogeny. Here,
we contrast the competitive dynamics that
result under both the logistic and sublinear
growth models. We then confront sublinear
model predictions with several macroeco-
logical patterns, as well as observations of
community recovery from disturbance.

RESULTS:Although logistic andsublineargrowth
share similar features at the population level, they
lead to opposing predictions at the community
level. Whereas logistic growth of populations
implies that diversity begets instability, we
find that sublinear growth allows the emer-
gence of a form of collective regulation of pop-
ulations, leading to community coexistence.
Furthermore, increases in diversity enhance,
rather than weaken, the stability of community
dynamics, reversing the classic diversity-stability
relation. Our results, based on mathematical
analysis and simulations, are robust to a wide
range of alternative assumptions and general-
ized modeling frameworks. We also find that
the sublinear model is consistent with several
well-known macroecological patterns, recovering
production-biomass scaling across ecosystems, as
well as the species abundancedistribution,mean-
variance scaling, and size-density scaling. As
such, themodel allows links to be drawn among
distinct patterns of abundance. Finally, unlike the
GLVmodel, but consistentwith the biodiversity-
ecosystem functioning literature, our model
predicts that losses in biodiversity will tend
to destabilize communities and lengthen their
recovery time after disturbance.

CONCLUSION: The alarming rate of diversity
loss means that ecology is in urgent need of a
theoretical framework capable of making real-
istic predictions.We propose that the sublinear
model is a viable description of population
and community dynamics, drawing an in-
triguing parallel with individual growth dy-
namics. Population time series indicate that
sublinear growth appears to be a more accu-
rate model of population dynamics than the
widely used logistic function. This small differ-
ence in the form of population growth allows
collective regulation, reversing the theoretical
diversity-stability relation predicted by decades
of competition theory. Sublinear growth implies
a positive diversity-stability relation, suggesting
that diversity may be, in part, the cause of sta-
bility. Our results help to clarify the origin of the
diversity-stability paradox, including the implicit
assumptions in May’s argument. Moreover,
sublinear growth recovers common patterns
of production, biomass, and abundance, offer-
ing a simple and general predictive framework.
Although we still lack an understanding of the
mechanistic origin of sublinear growth, our
model is consistentwith early ecologicalwisdom,
modernmacroecology, andwhat is knownabout
some of Earth’s most cherished ecosystems.▪
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From tropical rainforests to coral reefs, some of Earth’s most diverse ecosystems are also the
most stable. This staggering diversity stands in opposition to ecological theory, which for decades has
predicted that diversity begets instability. We show that a small difference in how population growth is
formulated can reverse these classic predictions and match theory with observation. [Photos: Rhett Butler
and MPI MiS]
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Diversity begets stability: Sublinear growth
and competitive coexistence across ecosystems
Ian A. Hatton1,2*†, Onofrio Mazzarisi1,3,4,5†, Ada Altieri6, Matteo Smerlak1,7,8

The worldwide loss of species diversity brings urgency to understanding how diverse ecosystems
maintain stability. Whereas early ecological ideas and classic observations suggested that stability
increases with diversity, ecological theory makes the opposite prediction, leading to the long-standing
“diversity-stability debate.” Here, we show that this puzzle can be resolved if growth scales as a
sublinear power law with biomass (exponent <1), exhibiting a form of population self-regulation
analogous to models of individual ontogeny. We show that competitive interactions among populations
with sublinear growth do not lead to exclusion, as occurs with logistic growth, but instead promote
stability at higher diversity. Our model realigns theory with classic observations and predicts large-
scale macroecological patterns. However, it makes an unsettling prediction: Biodiversity loss may
accelerate the destabilization of ecosystems.

T
here is growing awareness that human
activity is causing widespread species ex-
tinction, leading to a global biodiversity
crisis (1–4). The effect that this has on the
stability of ecosystems to continue to

maintain function is not fully known, in large
part because ecologists still struggle to under-
stand the processes that naturally promote
diversity and coexistence (5–12). Moreover,
models typically fail to predict commonly ob-
served large-scale patterns of production, bio-
mass, and abundance (13–16), offering little
hope that we might predict how stability
and ecosystem properties are expected to
change. Understanding these patterns and
the dynamical processes that underlie them
has long been at the heart of ecology and re-
mains an urgent priority for global change
research (4).

The diversity-stability debate

The balance and stability of ecosystems was
long thought to be related to their diversity
(4, 7, 17–20). Early ecologists observed that
pest outbreaks or large fluctuations in abun-
dance are rare in diverse ecosystems such as
tropical forests, whereas they are relatively com-

mon in simple systems, be they desert, arctic,
or agricultural (4, 7, 17). More generally, they
believed that the varied notions of ecological
stability, which include the ability to recover
from disturbance, to maintain a viable steady
state and to buffer invasions, were enhanced
by diversity (4, 7, 17–20). This conventional
view stands in marked opposition to classic
theories of competitive exclusion derived from
the Lotka-Volterra competition model (21). This
model combines logistic growth with mass-
action interaction kinetics, whereby the com-
petitive effect of a species on another varies
as the product of their densities. The Lotka-
Volterra model predicts that only one of two
competing species can persist unless self-
regulation is stronger than the competitive
effect on growth. This model has since been
generalized to any number of species (gen-
eralized Lotka-Volterra, GLV) and remains the
most commonmodel for studying competition,
mechanisms of coexistence, and the diversity-
stability relation (6, 8, 12, 22–26).
The GLV model has been shown to have

very similar stability properties to those ob-
tained fromMay’s general argument based on
randommatrix theory (5, 6, 12, 25). May showed
that a system exhibits a sharp transition from
stable to unstable interactions as it becomes
more diverse (5, 6). Since then, many factors
have been proposed that allow stability to be
maintained as a system becomes more diverse
(7, 8, 10, 11, 23, 27). These factors include more
realistic parameter values (28), network struc-
tures (29, 30), and levels of connectance (31),
as well as modularity (32, 33), hierarchy (34),
and selection for stable interactions (35).
There has also been renewed focus on the
relative strength of self- versus cross-regulation
(7, 8, 10, 36, 37), which is closely associated with
resource partitioning (38) and niche differen-

tiation (8, 39). A great deal of work on food
web interactions has emphasized the impor-
tance of structured random matrix systems
(9), body size allometric constraints on inter-
actions (40), and the covariance between inter-
action strengths (41). Finally, higher-order
interactions can promote the stability of di-
verse systems, although pairwise interactions
remain unstable (11, 42).
Although these factors are able to rescue

stability at higher diversity, they have not been
able to restore the conventional view that di-
versity is the parent of stability. Moreover,
proposed mechanisms are not always general
across different kinds of communities or large-
scale gradients and typically fail to predict well-
established empirical patterns [e.g., (13–16),
but see (43–47)]. As such, ecology does not yet
have a simple and general dynamical model
that is consistent with the most common pat-
terns of abundance and that recovers a posi-
tive diversity-stability relation. The purpose of
this paper is to propose such a model.

Sublinear population growth

Most prior dynamic ecological modeling has
investigated the nature of the interactions be-
tween species, often by constraining the inter-
action matrix (5–7, 9–12, 23, 25, 28, 29, 41),
with far fewer studies considering the popula-
tion growth term. However, subtle differences
in population dynamics can cause marked dif-
ferences in community interactions (27).
Here, we contrast the logistic population

growth model, classically used in GLV, with
sublinear population growth.We call themod-
el “sublinear” to align with the scaling litera-
ture. The model couples a sublinear growth
term (biomass increases with an exponent k <
1) and a linear loss term, in contrast to the
logistic model that couples linear growth (k =
1) and second-order loss (i.e., mass-action). The
sublinear model of population growth is thus
directly analogous to the Bertalanffy model of
individual ontogenetic growth (48–51) but is not
otherwise related to individual-level scaling.
The logistic and sublinear models can have

a very similar sigmoid shape, and their fits to
individual-level growth curves are often statis-
tically indistinguishable (49, 52, 53), a problem
that would also apply at the population level
[see the supplementary materials, section S1
(54)]. However, the difference between these
models becomes clearer when we consider the
shape of the decline in per capita population
growth with density, a hallmark of density de-
pendence. This shape is linear under a logistic
model, whereas it is concave-up in the sub-
linear model (resembling a curved “L”; Fig. 1A).
These models are both nested special cases

of the more general q-logistic model (55, 56)
[see the supplementary materials, section S1.1
(54)], which has been used to fit a diverse array
of population time series (57–62). The fitted
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value of q provides an empirical measure of
the curvature in density dependence. An ex-
tensive analysis of 1780 population time series
of mammals, birds, fish, and insects showed a
strong tendency for concave-up relations be-
tween per capita growth rate and density (57).
We show a slightly modified reanalysis of
these time series that closely recovers the re-
sults reported in (57) (see the materials and
methods and fig. S1). Representing these fitted
q values in the context of the logistic and sub-
linear models lends support to the possibility
that sublinear population growth may be a
more realistic growth trajectory than logistic
for many species [see Fig. 1B; the materials
andmethods; fig. S2; and the supplementary
materials, section S1.5 (54)].
We find that the classic diversity-stability

relation is reversedwhen sublinear population
growth is embedded in a community model.
For example, May concluded that communi-
ties of populations that are themselves stable
become increasingly destabilized with the di-
versity of interactions (5) (Fig. 2A). By contrast,
we find that communities of populations
with sublinear growth, even those that are
themselves unstable, become increasingly sta-
bilized by diversity (Fig. 2B).

Competition equations

We model the dynamics of S species i with
biomass densities Bi (mass per unit area) as

dBi

dt
¼ Pi Bið Þ þ Ci B1;…;BSð Þ ð1Þ

where Pi is a growth function representing
intraspecific density dependence (population-
level) and Ci captures the effect of interspecific

interactions (community-level). We consider
two forms of population density dependence:

PiðBiÞ ¼
ðri � ziÞBið1� Bi=KÞ ðlogisticÞ
riB1�k

0 Bk
i � ziBi ðsublinearÞ

�
ð2Þ

Each model has three parameters: the physi-
ologically constrained birth rate ri and death
rate zi of a species i and a constant with units
of biomass density: the logistic carrying ca-
pacity K, and the sublinear model constant B0.
While K is usually interpreted as the maxi-
mum biomass density achievable by a popula-
tion, the constant B0 can be viewed as a lower
bound on biomass density, corresponding to
themaximumper capita growth rate Pi/Bi ≃ ri.
We consider the exponent k < 1 as a constant
across all species, as in the individual-level
Bertalanffy model (48–50), and use k = ¾ as a
reference value for the purposes of presen-
tation. We emphasize, however, that a broad
range of values in 0 < k < 1 leads to the same
qualitative outcomes.
To align with the GLV model and prior

theory, we retain the common mass-action
assumption for species interactions:

CiðB1;…;BSÞ ¼ �
X
j≠i

AijBiBj ð3Þ

Combined with logistic growth (Eq. 2), this
assumption (Eq. 3) defines the classic GLV
model (see the materials and methods). The
sign and value of the coefficients Aij charac-
terize the type and strength of interaction
between species. This assumption may be
questionable in the context of predation or
mutualistic interactions because in these cases,

growth rates may exceed the maximum physi-
ological limit to birth rate, r, due to the added
effect of positive interactions. For competi-
tive interactions (corresponding to Aij > 0),
however, this assumption only acts as an addi-
tional loss term. Here, we contrast logistic
growth with an extreme form of the sublin-
ear model where natural death rates zi = 0,
such that populations are themselves unstable
because any positive death rate only enhances
stability. As a null model, we assume no spe-
cial structure for the interaction network: Each
interaction Aij is drawn from a common dis-
tribution with mean m and SD s. We also show
that this assumption could additionally apply
to populations growing sublinearly [see the
supplementary materials, section S5.1 (54)].
Further, we consider alternatives to mass-
action community competition (63) and in-
vestigate the interaction term generalized to a
broader class of community dynamics [see the
supplementary materials, section S6 (54)].

Results

Because populations under logistic growth are
individually stable and collectively unstable,
wemight expect that populations under sub-
linear growth that are individually unstable
(when zi=0) are even less likely to be collectively
stable. We now show that the opposite is true.

Collective competitive coexistence

For simplicity, first consider all species cou-
plings as competitive with the same interaction
strength (A = m > 0, s = 0). For a community
to be locally stable in bothmodels, per capita
production pi = Pi/B and competition ci = Ci/B
must satisfy the condition for a multispecies
equilibrium B* [see the materials and meth-
ods and the supplementary materials, sec-
tion S2 (54)]:

@pi
@Bi

����
���� > @ci

@Bj

����
���� ð4Þ

This inequality shows that stability is only pos-
sible if the interactions of a species with itself
(LHS) are more strongly density dependent
than its interactions with other species (RHS)
on a per capita basis. Within the GLV, this in-
equality translates into the condition that r/K >
m, which means that population interactions
must be stronger than community interactions.
However, in the sublinear model, Eq. 4 leads
to a very different condition that depends on
diversity S and the sublinear exponent k [see
the materials and methods and the supple-
mentary materials, section S2 (54)],

S > 1þ 1

1� k
ð5Þ

That is, under sublinear growth, local stabil-
ity is (i) possible in the absence of individual
population stability, (ii) independent of the
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Fig. 1. Logistic versus sublinear population growth. (A) Both models can have similar time trajectories
because their per capita growth is a decreasing function of population density, but whereas this function is
linear for logistic growth (blue line), it is concave-up for sublinear growth (orange line). Both models are
nested in the q-logistic model (see the materials and methods). (B) Summary of the analysis by Sibly et al.
(57) showing maximum likelihood fits of the q-logistic model to their 1780 population time series across
four major groups. Values of q near 1 (vertical blue line) indicate a logistic model, and values between
–1 < q < 0 indicate a sublinear model (orange shading from 0 < k < 1; vertical orange line is shown for
reference at q = –0.25, equivalent to a sublinear exponent k = 0.75). The median value of q for all populations
is −0.08, corresponding to a weakly sublinear model (see the materials and methods).
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individual growth rate or the strength of com-
petition, and (iii) enhanced by greater species
richness (i.e., a larger S implies a faster return
to equilibrium). This argument uses zi = 0, but
any positive level of mortality zi in the model

only serves to augment system stability [see
the materials and methods and the supple-
mentary materials, section S2 (54)].
These results generalize to random compe-

titive interactions, where each Aij is an inde-

pendent random variable with positive mean
m (corresponding to competitive coupling) and
SD s. Figure 3 shows three alternate depic-
tions of the opposing stability properties of
logistic and sublinear growth models [see the
materials and methods and the supplemen-
tary materials, section S3 (54)]. In Fig. 3, A
and B, we choose a single set of parameters
and interaction statistics (m, s) to show that
stable coexistence decreases with diversity
for GLV with logistic growth, but increases
with sublinear growth. These opposing sta-
bility properties can be demonstrated across
different values of m and s of the interaction
matrix Aij. Following convention (24), we con-
sider diversity-weighted values of these param-
eters (mS versus s

ffiffiffi
S

p
; Fig. 3C) such that for a

given positive m and s, increasing diversity fol-
lows a square root law upward from the origin.
The differing stability boundaries of logistic
and sublinear growth models show that in-
creasing diversity moves a system out of the
stable regime of logistic growth and into the
stable regime of sublinear growth (see also
fig. S4). Finally, we report replica calcula-
tions to provide exact results for symmetric
interactions of very large systems under lo-
gistic and sublinear growth, which offer an
alternate view of a similar conclusion [see the
materials and methods; fig. S7; and the sup-
plementary materials, section S4 (54)]. Analy-
ses and simulations of sublinear growth scaling
thus paint a picture of the complexity-stability
relationship that is opposed to the principle
that large, tightly coupled communities must
be unstable.
Up to now, we have assumed that there is

no lower bound on biomass density, which in
many cases is unrealistic. For example, a mini-
mum density could arise in which the rate of
encountering a mate falls below mortality rate.

Fig. 2. Time-trajectories of single ver-
sus multispecies logistic and sub-
linear growth models. All models are
shown comprising the same rates of
growth r and mortality z, and all plots
have the same scale (parameter values
are listed in the materials and methods).
(A and B) Single-species logistic growth
(A) and sublinear growth (k < 1) (B)
population models (top row) have differ-
ent forms of density dependence that
both lead to a stable single-species
equilibrium in biomass B but have
differing behavior in a multispecies
competitive community model (bottom
row). With increasing species diversity,
logistic growth leads to increasing
instability, whereas sublinear growth
leads to increasing stability. The positive
diversity-stability relation of the sublinear
growth model holds even in the
unrealistic case when individual popula-
tions are themselves unstable (z = 0; not
shown).

Birth rate

Death rate

Minimum biomass

Interaction strength

Carrying capacity

Growth exponent

Single species

Multi-species

Exponential

B   SublinearA   Logistic

S
in

g
le

 s
p

ec
ie

s
M

u
lt

i-
sp

ec
ie

s

Time  

B
io

m
as

s 
 

Logistic

Sublinear

Logistic

Sublinear

Fig. 3. Contrasting diversity-
stability relations for logistic and
sublinear growth. We set model
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plots (listed in the materials and
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richness S for a given mean m and
SD s of the interaction matrix Aij.
(A) With increasing S, the proba-
bility of obtaining a stable system
declines to zero under logistic
growth but increases to one under
sublinear growth. (B) The
distribution of eigenvalues of the
community matrix are shown in the complex plane. Re(x) and Im(x) denote the real
and imaginary axes, respectively. Increasing diversity under logistic growth pushes
eigenvalues closer to the instability threshold at zero, whereas under sublinear
growth, eigenvalues are pushed away from zero (shown at three diversity levels).
Black lines encircling eigenvalues are computed from equilibrium biomasses
using results of (93). (C) The stability phase diagram for both models generalizes
these results over positive values of m and s, here shown scaled by diversity for

large S (mS and s
ffiffiffi
S

p
). Increases in diversity trace a square root curve for a given m

and s, shown here as dashed black lines for m and s values from plots (A) and (B).
The orange line is the analytical critical stability threshold, and color shading shows
sublinear model simulations. Logistic growth stability resides below a horizontal
threshold, whereas sublinear growth stability resides below a linearly increasing
function, whose slope depends in part on the sublinear growth exponent, k [see the
materials and methods and the supplementary materials, section S3.2 (54)].
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Assuming that extinction occurs at B0 places
an upper bound on diversity and interaction
strength. In more diverse and tightly coupled
communities, the biomasses of all species are
suppressed, eventually triggering extinction
when a species reaches this threshold and
making the equilibrium unfeasible [see the
supplementarymaterials, section S3.3 (54)]. In
the sublinear model, a lower limit on density
implies that there are upper limits to diversity
and interaction strength. Nonetheless, within
these limits, diversity maintains a positive rela-
tion to stability (figs. S6 and S11).
We have tested the robustness of our find-

ings to a wide range of alternative assumptions
[see the supplementary materials, section S5
(54)], including different behaviors below the
biomass threshold B0 (fig. S10), varying levels
of connectance or possible structure such as
modularity in Aij. We have also investigated
explicit consumer-resource frameworks [see
figs. S11 to S13 and the supplementary mate-
rials, section S5.5 (54)]. Furthermore, we have
generalized the findings presented above in
several ways, including positive levels of mor-
tality [z > 0; see figs. S3, S4, and S6 and the
supplementary materials, section S3 (54)],
second-order population interactions [see
figs. S8 and S9 and the supplementary mate-
rials, section S5.1 (54)], and alternative scaling
in community interactions beyond simplemass-
action [see the supplementary materials, sec-
tion S6 (54)]. In all of these cases, our results
are robust: Sublinear growth means that di-
versity begets stability.

Macroecology predictions

The sublinear model provides realistic predic-
tions for a variety of macroecological patterns.
This model was previously proposed to ac-
count for predator versus prey biomass scaling
across clearly delineated trophic commun-
ities (64), as well as omnivorous food webs
(65). Closely related is the pattern of production-
biomass scaling across ecosystems (Fig. 4).
Each point in Fig. 4 represents a separate
ecosystem, whereas each regression encom-
passes a distinct community type, such as
largemammals, invertebrates, fish, and plank-
ton, across a large gradient in biomass (64)
(figs. S14 and S15 and table S2). Production
represents the maximum total change in bio-
mass density in a population or community
over a period of time, which could be a pro-
ductive season of the year or the duration of
an experiment. Biomass exponent values are
usually significantly sublinear (k < 1), with
best fits often ranging from k = ⅔ to k = ¾,
with piscivorous fish as the only major outlier
(64) (see the materials and methods, figs. S14
and S15, and table S2).
To model these patterns, we consider each

point in Fig. 4 a community near equilibrium
and assume a common value for all species of

k = 0.75 and B0 = 0.01 g/m2. We parameter-
ized r and z from independent data for each
major community type (Fig. 5A) while vary-
ing m and s by a common factor across a com-
munity gradient. These assumptions allow the
overall relation to be recovered, including the
slope (by assumption) and both the intercept
andbiomass range, from individual-level growth
and mortality rates [see Fig. 5B; the materials
and methods; and the supplementary mate-
rials, section S7 (54)].
Unexpectedly, this same set of assumptions

also makes realistic predictions for other well-
known patterns in macroecology, including
the species abundance distribution (13, 66),
mean-variance scaling [Taylor’s law (14)], size-
density scaling [Damuth’s law (15, 16, 67)], and
possibly the size spectrum [the Sheldon spec-
trum (68, 69)]. We found that representative
empirical examples of each of these patterns
are closely matched to corresponding model
predictions (see the materials and methods).
Not only is the model consistent with the
overall form of these patterns, but in some
cases makes reasonable predictions for the
slope, intercept, and residual variation (see
the materials and methods). Although prior
theory has shown how some of these patterns
can be predicted (43, 44, 46, 47, 70), we are not
aware of a model capable of predicting cross-

system dynamics (Fig. 4) and different aspects
of abundance with the same set of simple
assumptions [see the supplementary materials,
section S8 (54)].
For the logistic growth model to recover

these patterns, one requires r ~ K−¼, an ad-
ditional assumption that is difficult to justify
[see fig. S17 and the supplementary materials,
section S9 (54)]. Not only does this assump-
tion remove a free parameter and constrain
model flexibility for fitting population time
series, but the needed relation between r and
K is distinctly at odds with well-known body
mass allometry [see the supplementary mate-
rials, section S9.5 (54)]. Moreover, given that
the GLV model is not inherently stable, espe-
cially at high diversity (Fig. 3), unstable inter-
actions must be filtered out or weakened to
ensure community coexistence across these
large-scale gradients. We therefore consider
the sublinear growth model to be more par-
simonious and realistic than logistic growth
for modeling large-scale abundance pat-
terns [see the supplementary materials, sec-
tion S9.5 (54)].

Discussion

We propose that population growth may scale
as a sublinear power law with biomass. Not
only is sublinear population density dependence
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Fig. 4. Sublinear growth scaling with
biomass across ecosystems. For a
given community type across n
separate ecosystems, the log of total
community productivity is regressed
against the log of biomass, with
the ordinary least squares fitted
exponent and 95% confidence interval
exhibiting values of k < 1. The
dashed gray lines show linear
production (k = 1), implying a constant
reproduction rate regardless of
density. The inset shows a histogram
of k values for these and additional
regressions that derive from additional
sources or different subsets of the
aggregated data shown based on
individual published meta-analyses.
The outlier with a superlinear exponent
(k > 1) is for piscivorous lake fish
(n = 30). See also figs. S14 and S15
and table S2.
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consistent with extensive time-series data (57)
(Fig. 1B), but the sublinear community model
is more parsimonious and realistic than the
logistic for modeling several macroecological
patterns (see Fig. 5 and the materials and
methods). But why should sublinear popula-
tion growth have such an opposing collective
effect on community stability fromwhat classic
theory predicts?
The common rule of thumb that stability

requires population interactions to be stronger
than community interactions is subtle. Stability
lies not in their relative strength per se, but in
their relative rates of change, as measured by
the elements of the community matrix (10).
This means that even very many strong inter-
actions need not destabilize a community if
population interactions change faster than
community interactions (Eq. 4). This can be
readily seen by considering a generalization
of our modeling framework, which permits
alternative scaling in community interactions
beyond simple mass action [see the supple-
mentary materials, section S6 (54)]. Calcu-
lations of the stability properties of thismore
general model reveal that the regime in which
“diversity begets stability” is conserved for a
broad class of dynamics as long as population
growth scaling is less than the scaling of pop-
ulation loss from community interactions [see
the supplementarymaterials, section S6 (54)].

The GLV model corresponds to the boundary
of this regime when all competitive interac-
tions are of equal strength (s = 0), but any
variation in competitive coupling (s >0) quickly
enters the regime where diversity is desta-
bilizing [see the supplementary materials,
section S6 (54)]. These results imply that the
diversity-stability relation depends on the rela-
tive density dependence between population
and community interactions [see the supple-
mentary materials, section S6 (54)], offering a
more nuanced but comprehensive view of the
diversity-stability relation.
The theoretical diversity-stability relation

stems from the interplay of population inter-
actions with community interactions, specifi-
cally the dependence of community matrix
elements on diversity. May’s argument as-
sumed that community matrix elements, in-
cluding diagonal elements, are independent of
diversity S (5, 6). This assumption effectively
holds under logistic growth but not under sub-
linear growth, where diagonal and off-diagonal
elements of the community matrix scale dif-
ferently with S through their dependence on
equilibrium biomass B* [see the supplemen-
tarymaterials, section S3 (54)]. This difference
in the scaling with diversity in the sublinear
modelmeans that increases in diversity result
in a more negative real part of the largest
eigenvalue. Contrary to May’s result, the sub-

linear model thus predicts that more diverse
communities should be more resilient and
lead to shorter damping time [equivalent to
the inverse of the magnitude of the largest
eigenvalue (71)].
The implication of these findings is that

species losses in disturbed ecosystems may
further destabilize communities and slow their
recovery after disturbance. This prediction has
crucial applied relevance amidst global declines
in biodiversity and appears to be gaining
observational support. Recent reviews of the
biodiversity-ecosystem functioning relationhave
shown that more diverse systems often recover
more rapidly fromdisturbance (72–75), though
with some notable exceptions [see the supple-
mentary materials, section S12 (54)].

Limitations

The connections of our modeling framework
to empirical observations are limited by data
quality. We have attempted to link the model
to time-series data, based on model fitting
(Fig. 1B) (57–62), and to production-biomass
and abundance patterns, based on model pre-
dictions (Fig. 4 and 5). Although the time-
series data are extensive (the full dataset
includes almost 180,000 population census
observations across 720 species; see the mate-
rials and methods), many of these time series
are very short, vary over a limited range of
abundance, and are measured in the presence
of other species with whom the focal popu-
lation may interact. As a result, our fits of the
q-logistic growth model sometimes revealed
unrealistic parameter values. We thus hesitate
to draw strong inference from time-series
analysis until high-quality data can unequiv-
ocally distinguish the sublinear model from
other functional forms [see the supplemen-
tary materials, section S1 (54)]. Similarly, many
of the production-biomass relations (Fig. 4)
and abundance patterns (see the materials and
methods) are compiled from different sources,
each with different aims and methods. Al-
though the sublinear model makes realistic
predictions of these macroecological patterns,
avoiding the r versusK dependence needed by
the GLV model [see the supplementary mate-
rials, section S9.5 (54)], further research is
needed to improve the scope and number of
these relations across new community types.
We also lack a good understanding of the

origin of sublinear growth dynamics (53, 64).
Nonetheless, certain animal behaviors and
geometric constraints may offer clues as to
possible kinds of relevant processes. In mam-
mals, for example, group size often exhibits
sublinear scaling with population biomass
(76, 77) (fig. S3). Group-size scaling should
result in sublinear population growth scaling
if a limited number of individuals monopolize
reproduction in a group, such as the parents of a
family or a dominance hierarchy that promotes
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Fig. 5. Modeling production-biomass relations. The sublinear model can be parameterized to yield
predictions for production-biomass relations in Fig. 4, shown here for mammals, phytoplankton,
invertebrates, and fish. (A) Parameters of r and z for each community type are obtained from the geometric
mean of all available data (15) for each group. (B) To simulate the regressions of the four groups in
Fig. 4, we make the following additional assumptions: k = ¾ (from Fig. 4), S = 50 (arbitrary), s/m =
1 (arbitrary), and B0 = 0.01 g/m2 for all groups (from Fig. 4). We also make the simplifying assumption
that z = r/10, given that values are often near this estimate (see the materials and methods). To increase
biomass B�i along a gradient, we decrease both m and s by a common factor. The model recovers the slope
(by assumption, k = ¾), intercept (rB1�k

0 ), and biomass range [B0 to Bmax ¼ B0 z=rð Þ 1
k�1] of the production

regressions (empirical confidence intervals are shown as shaded colored regions in the plot). The residual
variation of each empirical regression is shown on the RHS on the same scale as production and later used to
predict the species abundance distribution (see the materials and methods).
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reproductive skew (78) [see the supplementary
materials, section S11.2 (54)]. Coupling such a
population process with competition for an
additional resource that is depleted in pro-
portion to the densities of all other species
would allow us to link these processes to the
terms of our model. Alternatively, there may
exist a surface-volume constraint such as that
thought to underlie the widely observed self-
thinning rule in forest stands (79). This form
of sublinear density dependence could be as-
sociated with growth scaling of all trees near
⅔, but it remains less clear how to connect
such a process to our model without possibly
additional considerations [see the supplemen-
tary materials, section S11.3 (54)]. Finally, some
of the many factors that give rise to negative
frequency dependence (10), including those
thought to ultimately underlie stability and
coexistence (7, 8, 10, 11, 28), may more proxi-
mally underlie sublinear growth. Given the
specific reproductive and grouping behaviors
of species, we should not expect density de-
pendence at population and community levels
to be equivalent, but why growth scaling may
be sublinear remains unresolved [see the sup-
plementary materials, section S11 (54)].
Of course, we have only considered com-

petitive interactions under sublinear growth,
which allowed us to draw general conclusions
about one class of interactions but neglects the
many and varied food web, mutualistic, and
parasitic interactions that are still needed for
a more complete understanding of ecosystem
dynamics. Although we considered two con-
sumer resource frameworks to explore compe-
tition for a shared resource under sublinear
growth [see figs. S12 to S14 and the supple-
mentary materials, section S5.5 (54)], these
models can also be used to study other kinds
of interactions such as cross-feeding, in which
by-products fromone species serve as resources
for another (80).

Links to lower levels

Many of these same limitations have notable
parallels at the individual level of organi-
zation. Growth at the individual level, be it
prenatal, ontogenetic or reproductive (Fig. 5A)
is well known to scale near = ¾ with body
mass across species (15, 67, 81–83), similar to
the way that population and community pro-
duction scales with biomass across ecosystems
(64) (Fig. 4). Individual ontogenetic growth
curve data, however, are often unable to dis-
tinguish among alternative sigmoid models
such as the logistic and sublinear Bertalanffy
models (49, 52, 53). This is perhaps surprising
given these individual-level data are of high
quality, span a broad range of values, and are
measured in the absence of possibly confound-
ing factors [see the supplementary materials,
section S1.2 (54)]. Moreover, the link between
the cross-species patterns (maximum growth

versus adult body mass) and the dynamic
model (e.g., Bertalanffy) describing the growth
of an individual is often tenuous and taken for
granted at the individual level (48–51, 67). At
both levels of organization, further work is
needed to more explicitly connect the cross-
system patternwith thewithin-systemdynamics.
Despite the much longer history of body

mass scaling, there is also still little consen-
sus on the underlying processes responsible
for these patterns or dynamics (15, 49, 84).
Growth scaling is often explained in terms of
metabolic scaling (50, 51, 67, 85), the origins
of which are still widely debated, and there
is growing evidence that body mass scaling
allometries may be better understood as orig-
inating with growth itself (15, 49, 84). Given
the recurrent similarities in growth scaling
across levels of organization, it is possible
that the same kind of abstract dynamical pro-
cesses are responsible for sublinear growth
at both the individual and population levels
(15, 53).
These individual-level limitations, however,

have not hindered body mass scaling relations
from being used to make predictions, which
rank as some of themost general and robust in
ecology (15, 67, 83). Our model makes use of
individual-level data (see Fig. 5 and the mate-
rials and methods) to give realistic quanti-
tative predictions and suggest connections
among common patterns of production, bio-
mass, and abundance. Moreover, the sublinear
model qualitatively aligns theory with ecolog-
ical intuition about the role of diversity in
maintaining stability, as well as results from
biodiversity-ecosystem functioning research
(72–75) [see the supplementary materials, sec-
tion S12 (54)]. This modeling framework may
offer holistic estimates of ecological proper-
ties, which holds promise for identifying crit-
ical thresholds in disturbance regimes or for
forecasting changes in ecological function with
changes in biodiversity.

Conclusions

Ecologists have long puzzled over the source of
the enduring stability of complex ecosystems.
Our results show that sublinear growth scaling
is intrinsically stabilizing as the diversity of
competitive interactions increases. These re-
sults revive conventional wisdom that stability
is conditioned on diversity rather than a mere
possibility under the right circumstances. Our
model offers compelling prospects for linking
dynamical theory with macroecology, high-
lighting links between distinct patterns in
dynamics and abundance. It also predicts
that biodiversity loss may lengthen recovery
time after disturbance and increase the like-
lihood of destabilization. Although we have
yet to uncover how sublinear growth mass
scaling can emerge, a sublinear growth model
offers a framework that may yield better pre-

dictions for nature’s balance and patterns of
abundance.

Materials and methods

Our methods are summarized below and de-
scribed further in the supplementary text and
the additional figures and tables in the supple-
mentary materials. All data and sources are
provided in data S1 [listed in tables S3 and S4,
and further described in the supplementary
materials, section S10 (54)]. All code reproduc-
ing our analyses is available at https://zenodo.
org/doi/10.5281/zenodo.10476101.

Time-series support for sublinear growth

Prior work has shown that many populations
in nature exhibit concave-up curvature in
population density dependence (57–62). This
has been demonstrated by fitting time series
to the q-logistic model (55, 56), where the value
of q allows flexibility in the curvature of density
dependence, including concave-down (q > 1),
linear (logistic growth; q = 1), and concave-up
(q < 1). Special cases of the concave-up q-logistic
include the Gompertzmodel (q = 0) (86, 87) and
a model for immigration (q = −1), the latter of
which has been shown to be broadly stabi-
lizing (88, 89). Between these values resides
the sublinear model (–1 < q < 0) [see the
supplementary materials, section S1.1 (54)].
The q-logistic model has been criticized for

population time-series fitting, given that fitted
maximum growth rates r show an inverse de-
pendence with fitted values of q (90). This
problem is largely overcome by introducing a
new growth-related positive parameter a and
scaling the q-logistic model by the inverse of q:

dB

dt
¼ a

q
B 1� B

K

� �q
 !

ðM:1Þ

allowing a smooth transition to negative q
values through zero and easily recovering other
nested models [see the supplementary mate-
rials, section S1.1 (54)]. Here, B is the popula-
tion density of a species. In the logistic growth
case (q = 1), a ≡ r � z , whereas in the sub-
linear growth case (–1 < q < 0), a/|q| ≡ z, and
K–qa/|q| ≡ rB0

–q [see the supplementary mate-
rials, section S1.1 (54)]. These modifications
allow parameters a and q to be fit largely in-
dependently of one another (fig. S1A) while
easily allowing the recovery of nested models
(table S1).
To summarize the results of the Sibly et al.

analysis (57) in the context of logistic and sub-
linear population growth models, we made
use of this adaptation to the q-logistic model
and reanalyzed their original data. All data
derive from the Global Population Dynamics
Database (91, 92), which includes 4471 pop-
ulation time series (179,859 census observa-
tions) from which Sibly et al. (57) selected
1780 on the basis of several criteria across
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the four major taxonomic groups of mam-
mals, birds, fish, and insects (36,495 cen-
sus observations).
Following methods in (90), we maximize

the log-likelihood function given the param-
eters a, K, q, and s. For each transition in
observed population abundance Bt → Bt+1, we
calculate loge(Bt+1/Bt) and minimize the dif-
ference with modeled per capita growth
transitions a

q 1� B=Kð Þq
� �

. We evaluate the
likelihood of each transition for a given set of
parameters using numerical optimization pro-
vided by the Matlab functions in (90). De-
spite the differences in our analysis, including
our formulation of the q-logistic model and
our fitting routine, we obtain very similar q
values to those reported in Sibly et al. (57) [see
fig. S1B and the supplementary materials, sec-
tion S1.5 (54)].
Fitted q values show a single-peaked fre-

quency distribution across 1780 populations of
mammals (n = 374), birds (n = 302), fish (n =
228), and insects (n= 876), closely reproducing
the results of (57) and shown in Fig. 1B. Fits
exhibit wide variation in q values, however,
often exceeding ±10 (SD is 6.9). We avoid rep-
resenting these unrealistic values by only rep-
resenting the distribution of q over [–2,2]. Given
this wide variation, we consider the median
value of q as a measure of central tendency.
The distribution of fitted q values in Fig. 1B

are notably shifted below q = 1, representing
concave-up density dependence, as reported
by Sibly et al. (57). These values frequently fall
in the sublinear domain, –1 < q < 0, with far
fewer time series having q ≈ 1 (logistic). The
median value of all 1780 population time series
is −0.08, corresponding to a weakly sublinear
central tendency (Fig. 1B). Very similar distri-
butions of q values are obtained using the
q-scaled q-logistic over the full GPDD of n =
4168 time series, as well as a stricter set of
selection criteria than used by Sibly et al. (57)
from (90), resulting in n = 364 time series
(fig. S2). Although values of q = 0 (Gompertz
model) also appear realistic, the sublinear
model more generally encompasses a larger
number of populations, and we restrict our
analysis to contrasting logistic with sublinear
growth [but see the supplementary materials,
section S2, for the stability characteristics of
other nested q-logistic models (54)]. As we re-
port [see the supplementary materials, sec-
tion S1.5 (54)], all median q values under all
selection criteria and within all major taxo-
nomic groups are within the domain of the
sublinear model.
We take these findings as suggestive that

sublinear growth is a likely description of
population dynamics and a viable alternative
to logistic growth at the community level. A
more conclusive analysis, however, may require
high-quality time series that span a large range
in abundance, including very low densities,

over many generations, and in the absence of
other confounding factors. Such datasets are
difficult to obtain from natural systems and
may require controlled density-growth experi-
ments over a range of taxa.

Community model setup

The GLV model has traditionally considered
the dynamics of S interacting species in terms
of their numerical abundance N. We cast the
community model in terms of biomass den-
sity, B, which permits closer connections to
empirical data (Fig. 4) and allows species of
very different body masses to interact at more
even interaction strengths. Both models are
mathematically equivalent given average spe-
cies body mass m (B = mN).
Birth and death rates have the same mean-

ing in both logistic and sublinear growthmod-
els (r and z have units of 1/time). In the logistic
model, however, death rate can be subtracted
from birth rate to obtain a new exponential
growth rate (r – z), which is not the case in
the sublinear growth model. The distribution
of the values in the interaction matrix Aij is
Gaussian for our analytical treatment to align
with prior theory but is gamma distributed to
ensure positive (competitive) interactionswhen
we test the model against macroecological
data (see Fig. 5 and the subsection “Modeling
abundance data” below). Similarly, we present
our theoretical results in the absence of mor-
tality (z = 0) because it represents the extreme
case where populations are not individually
stable and z > 0 acts only to enhance stabi-
lity. Our theoretical analysis presented in the
supplementary materials (54), however, ac-
counts for positive values of mortality z > 0
[see the supplementary materials, section S3,
and Eq. M.8 in the materials and methods
(54)]. For testing the model against empiri-
cal data, we also assume z > 0, setting both r
and z from auxiliary data (Fig. 5A).
We refer to power law growth with expo-

nent k < 1 as sublinear to align our terminology
with the biological scaling literature, although
logistic growth can also be considered a form of
sublinear growth with biomass. The per capita
growth relation with density, shown in Fig. 1A,
presents a more distinctive sense of the term
“sublinear” with respect to logistic.

Stability criteria for uniform interactions

For uniform interactions (s = 0), the stability
of a multispecies equilibrium B* with respect
to small perturbations of biomasses is deter-
mined by the spectrum of the community
matrix J*, defined as the Jacobian of the sys-
tem evaluated at that equilibrium point. The
equilibrium is (linearly) stable if and only if
the dominant eigenvalue l of J* has negative
real part. In the special case in which all spe-
cies have equal growth rate r and all inter-
actions have equal strength m (and thus all

equilibrium biomasses are equal), the com-
munity matrix has equal diagonal elements

J�ii ¼ B� @pi

@Bi
ðM:2Þ

and equal off-diagonal elements

J�ij ¼ B� @ci
@Bj

ðM:3Þ

(both negative if per capita growth decreases
with density), and we have

l ¼ B� @pi
@Bi

� @ci
@Bj

� �
ðM:4Þ

The linear stability condition is therefore

@pi
@Bi

����
���� > @ci

@Bj

����
���� ðM :5Þ

We now contrast the implication of this con-
dition in the logistic and sublinear growth
models, for which @ci/@Bj = –m, but diagonal
coefficients differ. In the logistic growth mod-
el, where pi = r(1 – B/K), we have @pi/@Bi =
–r/K, so the linear stability condition trans-
lates into

r=K > m ðM:6Þ
a classic condition relating population and com-
munity interaction coefficients. In the sublinear
model, in the extreme case of negligible mor-
tality, z = 0, we have instead @pi/@Bi = (k – 1)pi
(B*;)/B*. Because pi(B*) = ci(B*) = (S – 1)mB* at
equilibrium, we get @pi/@Bi= (k – 1)(S – 1)m, and
the condition becomes m < (k – 1)(S – 1)m, i.e.

S > 1þ 1= 1� kð Þ ðM:7Þ
independently of r and m. Linear stability in
the sublinear model therefore places a lower
bound on species richness S but no restriction
on growth rate or interaction strength. When
z > 0, this condition is sufficient but not neces-
sary for local stability [see the supplementary
materials, section S2 (54)].

Analytical solution for population biomasses

The cavity method is a standard technique in
the physics of disordered systems that was
first applied to the GLVmodel by Bunin (24).
We use it here to estimate the distribution of
equilibrium biomasses in the presence of ran-
dom interactions Aij with mean m > 0 and SD
s; we also assume that individual growth rates
ri and mortalities zi are drawn independently
from a distribution. Under these conditions,
the cavity solution of the sublinear growth
model is the random variable

B� ¼ B0 z þ mSE�
1 þ s

ffiffiffiffiffiffiffiffi
SE�

2

p
h

� �
=r

h i1= k�1ð Þ

ðM:8Þ
where h is a standard normal variable andE�

1
andE�

2 are the first and secondmoments ofB*,
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respectively. This approximation closely aligns
with simulations, as shown in fig. S3. The cor-
responding density function, equivalent to the
species abundance distribution (see below),
can be computed self-consistently from this
equation, as detailed in supplementary mate-
rials, section S3.1 (54).

Stability criteria for random interactions

Once we know the equilibrium species abun-
dance distribution, it is possible to estimate
the distribution of eigenvalues of the community
matrix in the complex plane. Ahmadian et al.
(93) consider large, partially random matrices
of the form M + LJR, where M, L, and R are
deterministic matrices and J is a random
matrix with coefficients that are sampled in-
dependently from a distribution with mean
zero and variance s2. Generalizing the famous
“circular law,” which is the foundation of
May’s original argument, they derive a condi-
tion for all eigenvalues to have negative real
part. Applying this condition to the commu-
nity matrix in the GLV, we find that all eigen-
values have negative real part provided sS +
m < r/K, as per May’s instability threshold
(5, 12). In the sublinear model, however, we
obtain instead the stability conditionX

i

m� 1� kð Þ B�
i

	 
k�2
h i�2

< s�2 ðM:9Þ

Combining this condition with the cavity so-
lution for B* allows us to compute the bound-
ary of the stable phase in the (m, s) plane,
shown as the orange line in Fig. 3C. Further in-
formation is available in supplementary mate-
rials, section S3 (54).
In the special case where interaction coef-

ficients are symmetric (Aij = Aji), we can use
an alternative approach to disordered systems
known as the “replica formalism” [see the sup-
plementary materials, section S4 (54)]. Ap-
plied to community ecology, this method
consists inmapping the dynamical system to a
disordered system at thermal equilibrium
with Hamiltonian

H ¼
X

i

V Bið Þ þ
X
i<j

AijBiBj ðM:10Þ

where V represents self-regulation and temp-
eraturemeasures the strength of demographic
fluctuations. Studying the corresponding free
energy landscape, in particular the complex
structure of its global and local minima using
the “replica trick,” allows predictions of phase
transitions in this system (94, 95). We describe
in supplementary materials, section S3.2 (54),
how the boundary line between stable and
unstable dynamics can be computed as a func-
tion of (m, s) in the GLV and sublinear models.
We show in fig. S7 the results of replica cal-
culations for the sublinear model, which in-
cludes an additional density dependence term

such that p(B) = r(B/B0)
k–1 – rB/K, whereK= 1.

These results provide an alternative analytical
approach to randommatrix theory, but show a
similarly increasing stability boundary with
diversity [see the supplementary materials,
section S4 (54)].

Density threshold in the sublinear model

The sublinearmodel with parameter B0 allows
the growth rate, r to have dimension of 1/time.
This permits r to be biologically meaningful
and parameterized from auxiliary data that
are available for maximum population growth
rates (Fig. 5A). However, the sublinear model
assumes that a near maximal growth rate is
only possible at the minimum realistic popu-
lation density, where any effects of crowding
are negligible. Realistically, biomass cannot go
to arbitrarily low values, below which, for ex-
ample, the rate of encounter with a viable mate
falls belowmortality rate. At the extreme, when
biomass approaches zero, sublinear growth
approaches infinity, which is also unrealistic.
Our theoretical results in Fig. 3 have consid-
ered B0 to be a simple normalization con-
stant, with no change in behavior at Bi = B0.
However, if this constant is made to repre-
sent an extinction threshold, aswas assumed for
making macroecological predictions (see Fig. 5
and the subsection “Modeling abundance data,”
below), then extinction can occur at high di-
versity or interaction strengths (fig. S5). In-
creasing these parameters (m and S) suppresses
the biomass of all species until the minimum
species biomass Bi = B0 is reached, whereby it
is removed from the community. Other low-
density behaviors, such as a switch to expo-
nential growth below a threshold (fig. S10), can
also allow extinction at high m and S, but below
this limit these behaviors do not qualitatively
alter our findings of a positive diversity-stability
relation.

Production-biomass relations

All empirical data in Fig. 4 have been previously
published (64, 96–109) and most are sum-
marized in (64) (figs. S14 and S15). In table S2
we report summary statistics for 39 production-
biomass regressions, with raw data provided
in supplementary data S1 [described in the
supplementary materials, section S10 (54)].
For large mammal communities, herbivore
community production is calculated from car-
nivore abundance and their per capita con-
sumption, which closely aligns with estimates
of herbivore community reproductive growth
as outlined in (64). For the grassland and for-
est relations, we aggregate data from multiple
large meta-analyses, each of which themselves
reveal very similar production-biomass scal-
ing. For invertebrates, we consider the popu-
lations of sometimes very different species
resulting in wide residual variation, but simi-
lar scaling is also evident when populations

are aggregated into communities (64) andwhen
disaggregated among the best represented
genera (100) (listed in table S2). Fish include
freshwater planktivore and benthivore popu-
lations, each of which is themselves signifi-
cantly sublinear, but exclude higher trophic
piscivores, which exhibit near linear growth
(102, 104). For marine sediment bacteria, we
chose to display only one of three groups ex-
amined in the original study (109), which was
the most extensive and the only one to display
a significant relation. This study (109) mis-
reported the slope of their data, which is evi-
dent from their Fig. 1A, and we assume that
the plotted data, rather than the regression
statistics, are correct.
These data, spanning very different terres-

trial and aquatic systems, include species that
range from bacteria to large mammals and
trees, representing some 20 orders of mag-
nitude range in bodymass. Therefore, themeth-
ods used to measure community biomass and
production vary extensively and cannot be con-
cisely summarized. Further information is
available in (64) and in the references listed in
table S4. Generally, the original studies all
sought to estimate total community biomass
and themaximum change in that biomass over
representative spatial extents and temporal
periods such that these data can be reasonably
combined through simple unit conversions.

Modeling production data

Weoutline how the sublinearmodel is capable
of recovering cross-ecosystem production ver-
sus biomass regressions (Fig. 4) [see the sup-
plementary materials, section S7 (54)]. As
mentioned, the GLVmodel with logistic growth
can also recover these patterns but requires
additional assumptions that appear unrealis-
tic, so we defer details for the logistic growth
model to the supplementarymaterials, section
S9 (54).
The sublinear growth model is intended as

a high-level description of a single interacting
community within an ecosystem. However,
it is relevant to consider what additional as-
sumptions are needed to recover the cross-
ecosystem patterns over different communities,
as observed in Fig. 4. We consider the four
focal groups of mammals, phytoplankton, in-
vertebrates, and fish, for which extensive allom-
etric and macroecological data exist. The full
model for biomass density (g/m2) is written as

dBi

dt
¼ riBi

Bi

B0

� �k�1

Q Bi � B0ð Þ

� ziBi � Bi

X
j≠i

AijBj ðM:11Þ

where B0 is the minimum biomass achievable
by all species i. This extinction threshold sets
the value at which per capita growth rate is at
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amaximum ri and belowwhich growth is zero
(Q denotes the Heaviside step function). All
other parameters are as previously defined,
except we now assume gamma-distributed Aij

to ensure purely competitive interactions (all
Aij > 0). The dimensionality of terms can be
summarized as follows:

Bi½ � ¼ B0½ � ¼ mass

area
;

ri½ � ¼ zi½ � ¼ 1

time
;

Aij½ � ¼ area

mass� time
ðM :12Þ

Other than the value of k (dimensionless),
we estimate all parameter values for a given
community type from independent data from
those in Fig. 4. We make the following five
assumptions, which we retain for modeling
both the production-biomass relations (Fig. 4),
and the four macroecological abundance pat-
terns (see next subsection). First, we assumek=
¾ for all species. Second, we assume that diver-
sity S is constant for each community type and
arbitrarily set S = 50. Third, we assume that
population parameters can be estimated from
auxiliary data. Different species are character-
ized by different fixed intrinsic growth rates ri
and naturalmortality rates zi such that a given
community type can be characterized by an
average rate of growth r and mortality z. We
estimate r and z as the geometric mean of all
available individual reproductive growth and
mortality rate data for each focal group inde-
pendently from allometric data (15) (Fig. 5A).
For mammals, phytoplankton, invertebrates,
and fish, we obtain r values of 0.54, 490, 33, and
7.3, and z values of 0.17, 53, 3.0, and 0.25, re-
spectively. Given the respective ratios of these
values, we make a further simplifying as-
sumption that z = r/10, which allows a single
maximum biomass value for all species (see
assumption 5, below). Fourth, we assume that
the lower bound on biomass B0 is indepen-
dent of body mass (15) and equivalent for all
species i, which we estimate at 0.01 g/m2 (from
Fig. 4) for all cross-community patterns. We
model the within-community species abun-
dance distribution (fig. S16) by fixing N0 con-
stant across species [see the next subsection
and (110–112)]. The upper bound on biomass
Bmax is obtained by assuming r º z (Fig. 5A),
which gives a constant for all species, Bmax,
calculated as Bmax = B0(z/r)

1/(k–1) [see the sup-
plementary materials, section S7 (54)]. Fifth,
we model a biomass gradient, along which a
community type exists, by varying interaction
strengths m and s in order that equilibrium
biomass ranges between B0 and Bmax. This
can be achieved by varying m over the same
r/B0–scaled values for each community type.
Lowering m increases B* until natural mor-
tality dominates over competition. We as-

sume s/m = 1, which only affects the intercept
of mean-variance scaling [see the next sub-
section and the supplementary materials, sec-
tion S8 (54)]. Given the similar scaling of basal
metabolism with maximum individual pro-
duction (15, 67, 83), varying m on the same
scale as growth rate ensures that interaction
strengths may be metabolically relevant for
the mean body size of each major taxonomic
group (9, 28, 29, 40, 41).

Modeling abundance data

We tested the ability of the sublinear commu-
nity model to recover other well-known mac-
roecological abundance patterns. To do so, we
use the same assumptions and parameter
values that are used to model the production-
biomass data (see previous subsection) to mod-
el abundance (Fig. 6). These patterns relate to
the variation in abundance (Fig. 6, A and B)
and how abundance relates to body mass
(Fig. 6, C and D).We again focus onmammals,
phytoplankton, invertebrates, and fish. Analyt-
ical derivations and results of simulations are
shown in the supplementary materials, sec-
tion S8 [logistic model abundance predictions
are described in the supplementary materials,
section S9 (54)]. All empirical data used to
represent these patterns have been previously
published and are summarized in table S3,
with raw data provided in supplementary data
S1 [see the supplementary materials, section
S10 (54)] and references in table S4.

Species abundance distribution
The species abundance distribution is awithin-
community pattern of species commonness
and rarity that is heavy-tailed and often best
described by a lognormal distribution (66), al-
though other distributions are also claimed,
including the log-series, power law, and nega-
tive binomial, among others (13). Data in
Fig. 6A derive from the following sources:
mammals (globally) from (113), phytoplankton
(Lake Biwa, Japan) from (114), and inverte-
brates (moths in Britain) and fish (Arabian
Gulf) from (115). In Fig. 6A, each distribution
is shown normalized with a geometric mean
of one individual per unit area.
To model relative abundance within a given

community,we assume a constant lower bound
on abundance N0, given this common obser-
vation from studies of particular communities
(110–112, 115). We also assume the distribu-
tion of ri values within a community type is
comparable to the residual variation of the
production-biomass regressions (shown on
RHS in Fig. 5B; fig. S15 highlights the shape
parameter). These assumptions give a log
normal species abundance distribution P(N*),
with a shape parameter (SD of the log of the
variable) that is about four times [1/(1 – k) ≃ 4]
wider than that of the distribution of growth
rates, depending on the value of k [see the
supplementary materials, section S8.1, for
analytical derivation (54)]. We thus obtain
a long tail that is approximately within the
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Fig. 6. Modeling abundance patterns.
Four macroecological patterns of abun-
dance are shown across four taxonomic
groups. Sublinear model solutions
derive from the same set of parameters
values and assumptions used previ-
ously (see Fig. 5 and the materials and
methods). (A) The species abundance
distribution is predicted to be log
normal as obtained from the
distribution of population growth rates
within each major group (shown on
RHS in Fig. 5B). The width is four times
[1/(1 – k)] that of population growth
rates and appears similar to the
observed range of variation for each
group. (B) Mean-variance scaling with
an exponent of 2 is recovered when
z = 0. Predictions deviate from power
law scaling for finite z as B* approaches
Bmax (colored circles). The intercept
depends on s/m, here assumed to be 1.
(C) The size-density scaling prediction
of −1 (i.e., N* ~ m–1) is equivalent to
biomass being independent of body

mass (because r ~ z ~ m–¼; see Fig. 5A). The intercept is predicted to be 1 individual/m2, and the
empirical intercept is 0.15. The residual variation ranges from B0 to Bmax = B0(z/r)

k–1 (i.e., four orders of magnitude;
colored circles). (D) The size spectrum is shown averaged over the entire ocean to give size-class abundance in
the same units as the population abundance of a species, shown in (C). The size spectrum is not explicitly modeled
but requires that size-class diversity is invariant with body mass across locations in the ocean.
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empirically observed range of variation re-
ported for similar community types to our
focal groups (Fig. 6A). Our model need not
necessarily predict a log normal, but rather
preserves the shape of the distribution of
growth rates (when this is broad), extending
the tail of the latter by 1/(1 – k) and resulting in a
relatively long-tailed distribution.

Mean-variance scaling

The variance in population abundance (or bio-
mass, as shown in Fig. 6B) is known to scale as
a power lawwithmean abundance, with expo-
nents ranging from 1.5 to 2 for both temporal
and spatial fluctuations of a species (also
known as Taylor’s law) (14, 116). Data in Fig.
6B include species biomass time series for
255 species from (15). We consider separate
simulations as modeling a given community
type across separate patches in space and com-
pute the mean and variance in equilibrium
biomass for each species.
We used the same assumptions listed in

the previous subsection (“Modeling produc-
tion data”). These assumptions give mean-
variance scaling with exponent 2 when z → 0
[see the supplementary materials, section S8.2
(54)], but deviations from a power law are evi-
dent when z > 0 as mean biomass approaches
Bmax (open circles in Fig. 6B). The intercept is
dependent on the value of s/m, shown here set
at 1 (Fig. 6B). We have also derived analytical
results supporting these findings in the case
where growth rates of a species are log norm-
ally distributed, [see the supplementary mate-
rials, section S8.2 (54)].

Size-density scaling

Size-density scaling is the relation of the aver-
age population density of a species versus aver-
age adult body mass across separate systems
(also known as Damuth’s law) (16). This rela-
tion is known to scale near−1 across all species
(15, 67), but with some 3 to 4 orders of mag-
nitude residual variation in abundance. Data
in Fig. 6C derive from (15). Again, we use the
same above-listed assumptions (assumptions
1 to 5 in “Modeling production data”). Given
that all growth and loss terms are assumed to
scale in the same way (Fig. 5A) and the upper
and lower bounds on biomass are indepen-
dent of body mass, the corresponding bounds
on numerical density should scale with body
mass asm–1. Themodel is thus consistent with
the slope (= −1), but also several other aspects
of the size-density relation, including the in-
tercept (= 1 individual/m2) and the four-order
residual variation [Bmax/B0 = (z/r)1/(k–1) = 104]
[see Fig. 6C and the supplementary materials,
section S8.3 (54)].

Size-spectrum scaling

Size-spectrum scaling is the body size–
frequency distribution within a community

(regardless of species identity) and is known
to scale near −1 within most aquatic systems
for the relation of log abundance versus log
size class (also known as the Sheldon spec-
trum) (68, 69). A similar scaling is evident for
the complementary cumulative distribution
function of body mass. Data in Fig. 6D are
from (69), which estimated total ocean counts
in each size class. We have transformed counts
to density by dividing by ocean area (3.61 ×
1014 m2) to show the correspondence between
the size spectrum and the above-mentioned
species size-density relation (Fig. 6C). Not only
are the axes of each pattern equivalent, but
slopes and intercepts are quite similar. The
size spectrum, however, is a within-system uni-
variate frequency distribution across size classes
rather than a cross-system bivariate relation
across species. Together, these patterns sug-
gest that species diversity in a community
should be independent of species body size,
whichmay have some empirical support across
metazoan taxa (117). Although we have not
specifically modeled the size spectrum, our
model is broadly consistent if we assume an
invariance in size-class diversity.

Model simulations

Simulations of model behavior over a range of
parameters served to validate our analytical
results, as well as the robustness of our find-
ings under different assumptions that were
less amenable to formal analysis [see the sup-
plementary materials, section S5 (54)]. Simu-
lations were run by numerical integration of
dBi/dt = Pi(Bi) + Ci(B1,…,BS) using the Julia
programming language, and all code is avail-
able at: https://zenodo.org/doi/10.5281/zenodo.
10476101.
Parameter values for generating Fig. 2 are

for a single species (top row of plots) and S =
15 species (bottom row of plots), with the same
population parameters, r = 1 and z = 10–0.25,
and interaction matrix statistics, m = 0.1 and
s = 0.01. Logistic growth assumes carrying
capacity K = 10, whereas sublinear growth
assumes k = 0.75 for all species.
Parameter values used in Fig. 3 are the same

across all plots (A to C), and we set the in-
trinsic growth rate r = 1, mortality z = 0, logis-
tic carrying capacity K = 20, and sublinear
scaling k = ¾. Plot A is shown for m = 0.01
and s = 0.005. Plot B is shown for m = 0.005
and s = 0.0005 and with S = 25, 50, and 100
species. Plot C shows thesemodels generalized
across parameters m and s of the interaction
matrix and diversity S, with the dashed black
lines showing the m and s values used in A and
B. Logistic growth stability resides below the
horizontal line at r/K = 0.05, whereas sub-
linear stability is below a positively increasing
threshold (orange), which depends in part on
k. Further information is available in the sup-
plementary materials (54).
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