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ABSTRACT

Harmful algal blooms (HAB) including red tides and cyanobacteria are a significant environmental issue that can
have harmful effects on aquatic ecosystems and human health. Traditional methods of detecting and managing
algal blooms have been limited by their reliance on manual observation and analysis, which can be time-
consuming and costly. Recent advances in machine learning (ML) technology have shown promise in
improving the accuracy and efficiency of algal bloom detection and prediction. This paper provides an overview
of the latest developments in using ML for algal bloom detection and prediction using various water quality
parameters and environmental factors. First, we introduced ML for algal bloom prediction using regression and
classification models. Then we explored image-based ML for algae detection by utilizing satellite images, sur-
veillance cameras, and microscopic images. This study also highlights several real-world examples of successful
implementation of ML for algal bloom detection and prediction. These examples show how ML can enhance the
accuracy and efficiency of detecting and predicting algal blooms, contributing to the protection of aquatic
ecosystems and human health. The study also outlines recent efforts to enhance the field applicability of ML
models and suggests future research directions. A recent interest in explainable artificial intelligence (XAI) was
discussed in an effort to understand the most influencing environmental factors on algal blooms. XAl facilitates
interpretations of ML model results, thereby enhancing the models' usability for decision-making in field man-
agement and improving their overall applicability in real-world settings. We also emphasize the significance of
obtaining high-quality, field-representative data to enhance the efficiency of ML applications. The effectiveness
of ML models in detecting and predicting algal blooms can be improved through management strategies for data

* Corresponding author at: 12800 Pegasus Dr. Suite 211, Orlando, FL 32816-2450, United States.
E-mail addresses: parkjs@hanbat.ac.kr (J. Park), Keval.Patel@ucf.edu (K. Patel), woohyoung.lee@ucf.edu (W.H. Lee).

https://doi.org/10.1016/j.scitotenv.2024.173546

Received 17 November 2023; Received in revised form 18 May 2024; Accepted 24 May 2024

Available online 27 May 2024

0048-9697/© 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, Al training, and similar technologies.


mailto:parkjs@hanbat.ac.kr
mailto:Keval.Patel@ucf.edu
mailto:woohyoung.lee@ucf.edu
www.sciencedirect.com/science/journal/00489697
https://www.elsevier.com/locate/scitotenv
https://doi.org/10.1016/j.scitotenv.2024.173546
https://doi.org/10.1016/j.scitotenv.2024.173546
https://doi.org/10.1016/j.scitotenv.2024.173546
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scitotenv.2024.173546&domain=pdf

J. Park et al.

Science of the Total Environment 938 (2024) 173546

quality, such as pre-treating missing data and integrating diverse datasets into a unified database. Overall, this
paper presents a comprehensive review of the latest advancements in managing algal blooms using ML tech-
nology and proposes future research directions to enhance the utilization of ML techniques.

1. Introduction

Algae offer many advantages due to their ability to generate oxygen
and biomass (Shao et al., 2021), the latter of which can be processed to
produce sustainable energy such as feedstocks and biofuels such as
biodiesel. Nonetheless, due to the increasing water pollution resulting
from the excessive release of nitrogen (N) and phosphorus (P) into water
bodies, there is a potential for the substantial proliferation of algae.
Algal blooms, which pose threats to both drinking water supply systems
and the ecological health of water resources, have been a major issue in
water quality management in many countries around the world,
including Australia, China, the European Commission, South Korea, and
the United States of America (USA), over the past few decades (Herath,
1997; Wang et al., 2022a; West et al., 2021; Wurtsbaugh et al., 2019). In
the case of Lake Erie, managing algal blooms has been a critical issue in
water quality management over the last two decades, notably when a
significant bloom in 2014 resulted in a three-day ban on tap water usage
in Toledo, Ohio, USA (Ho and Michalak, 2015). There has been growing
attention towards managing eutrophication and algal blooms in the Lake
Taihu area, the Chinese largest freshwater lake, due to escalating
pollution inputs since the 1960s (Wang et al., 2022a). Specific types of
algae (e.g., cyanobacteria) have the capability to generate neurotoxins,
and the overgrowth of these noxious algae is referred to as harmful algal
blooms (HABs) (Erdner et al., 2008). Exposure to these toxins can lead to
various adverse reactions in humans (Hill et al., 2020), such as gastro-
intestinal toxicity from short-term exposure to possibly promoting
cancers and liver disease from long-term exposure (Erdner et al., 2008).
Furthermore, the economic impacts of HABs on the fishing and tourism
industry have been estimated to cost the USA $82 million per year (Hill
et al., 2020). Unless well managed, water bodies with elevated levels of
N and P can undergo HABs, rendering them unsafe for both consumption
and recreation. Therefore, it is critical to develop and utilize suitable
techniques for detecting algae prior to the escalation of HABs. By
monitoring physico-biochemical patterns within the algae ecosystem
such as monitoring water quality parameters, and identifying and
quantifying algal species, timely warnings (e.g., HAB alert with recrea-
tional advisory guidance levels) (Gong et al., 2023) and prediction of
HABs (like weather forecasts) can be provided to ensure the protection
of human health (Hill et al., 2020).

Recent research has been dedicated to utilizing rapidly advancing
machine learning (ML) models for predicting algal blooms and
enhancing monitoring efficiency. Traditional approaches to HAB
monitoring and prediction have typically involved direct microscopic
observation of algae or indirect analysis using chlorophyll-a (Chl-a)
concentrations in a laboratory setting. However, both methods require
specialized analytical expertise and are time-intensive and laborious. In
contrast, advanced ML algorithms for object detection are emerging as
efficient and cost-effective alternatives to algal bloom monitoring.
Traditional methods for predicting algal blooms, such as mechanistic
models, require consideration of various physical, biological, and
chemical factors that influence them. To identify such factors (e.g., algal
growth rate), time-consuming and labor-intensive experiments are
required. However, ML models offer the advantage of building efficient
models with reduced dependence on experimentally determined factors,
and they can produce models with good performance if sufficient high-
quality data is available. Various data-driven ML models, including
artificial neural networks (ANN), deep learning, and ensemble ML
models, exhibiting excellent performance in future prediction, continue
to be explored for algal bloom prediction (Gupta et al., 2023; Wen et al.,
2022).

The primary objectives of this review article are to comprehensively
explore recent studies on ML algorithms including image processing in
predicting HABs and detecting algae (Fig. 1). This study aims to sys-
tematically present the theoretical concepts and characteristics of
various ML models that are increasingly utilized for the detection and
prediction of algal blooms. Furthermore, recent studies on explainable
artificial intelligence (XAI), a novel method for quantitative interpre-
tation of black-box based ML models, were reviewed and presented di-
rections to increase the practical application of machine learning
models.

We analyzed the current status and characteristics of various ML
models used in field algal bloom management, and proposes data quality
management strategies to enhance the performance and utility of data-
driven models such as ML. The article offers insights into the application
of both regression and classification models for HAB prediction (Fig. 1),
highlighting the distinction between models that predict quantitative
algal bloom status and those that categorize bloom levels and can be
used for issuing an algal bloom alert. Furthermore, the review discussed
the growing use of image classification algorithms for algal detection.

Algal bloom management is a crucial issue in water environmental
management, and efforts are ongoing to apply advanced ML models for
efficient algal bloom prediction and monitoring. This paper consolidates
recent research trends in efficient algal prediction and monitoring, and
by summarizing the current research landscape, this paper provides
insights into future research directions necessary for effective algal
bloom management using ML-based technology.

The following sections of this research are organized as follows:
Section 2 presents a critical review of recent research on algal bloom
prediction using ML algorithms (regression vs. classification), and Sec-
tion 3 reviews recent ML-based technologies for algal bloom detection.
Additionally, the application of novel XAI algorithms to overcome the
limitations of ML is included in Section 4. Considerations for effective
ML-driven HAB management strategies are presented in Section 5.
Lastly, Section 6 provides a comprehensive conclusion of this study.

2. Development of ML models for algal bloom prediction
2.1. Model development overview

In the recent decade, various ML models have been used to predict
algal blooms in freshwater bodies such as rivers and reservoirs. The ML
models have general advantages in that they are suitable for non-linear
data while they have high complexity and computational cost compared
to traditional statistical methods (Cruz et al., 2021). Various ML algo-
rithms such as ANN, deep learning, and support vector machine (SVM)
have been used consistently for algal bloom prediction over the past
decade (Vilas et al., 2014). Ensemble models such as random forest (RF)
and gradient boosting decision tree (GBDT) algorithms have been
widely used from the mid-2010s until recently. Deep learning models
such as Long Short-Term Memory (LSTM), gated recurrent units (GRU),
and Transformer have also been increasingly used for algal bloom pre-
diction (Qian et al., 2023; Rostam et al., 2021; Vilas et al., 2014).

Recently, automated machine learning (AutoML) has been devel-
oped, which automates the ML model development process, including
data pretreatment, model selection, and hyperparameter optimization
(Madni et al., 2023; Prasad et al., 2021).

In general, ML models are categorized into regression models, aimed
at predicting continuous outcomes, and classification models, designed
to classify data points into distinct categories or classes. The indepen-
dent variables used for model development include various water
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quality parameters, hydrological parameters, and meteorological pa-
rameters, while Chl-a and algal cell numbers are commonly used as
target variables for algal prediction. Regression models predict the
actual values of Chl-a or algal cell numbers, while classification models
estimate the alert levels necessary for algal bloom management alerts.
Model performance is evaluated using various indices, including coef-
ficient of determination, root mean squared errors (RMSE), and mean
absolute error (MAE) for regression models, and accuracy, recall, and
precision for classification models.

2.2. Theoretical base of ML models

The ML algorithms used for predicting algal blooms can be
commonly categorized into models based on neural networks, such as
ANN and deep learning; tree-based algorithms; ensemble models, which
improve prediction through a combination of multiple models; and
SVM, known for their effectiveness in classification and regression tasks.
This section presents the concepts and theoretical bases of these models.

ANN is a well-known ML algorithm, consisting of three layers: an
input layer, hidden layer(s), and an output layer. The hidden layer is
composed of multiple nodes, and the model is optimized by identifying
the optimal values for the weights and biases of each node. These
optimal values are determined to minimize the loss between observed
and predicted model outputs during the training process, commonly
employing a gradient descent algorithm. ANN-based models are effec-
tive in modeling complex non-linear relationships, and their computa-
tional capacity can be enhanced by increasing the number of hidden
layers. The efficiency of ANN model training has been significantly
improved by the back-propagation (BP) method (Rumelhart et al.,
1986). However, training deep networks has been a challenge, leading
to various efforts to overcome this limitation. On such effort is the
development of the Boltzmann machine, a stochastic neural network
where each node is fully connected to every other node.

The Restricted Boltzmann Machine (RBM) simplifies the learning
process by removing the connections between visible-visible and
hidden-hidden units (Hinton, 2012; Hinton et al., 2006). Deep Belief
Networks (DBN), which stack RBMs, are considered an early form of
deep learning model (Hinton et al., 2006). However, increasing the
number of hidden layers led to various computational problems, such as
the vanishing gradient issue that arises during the BP process used to
update the weights of the neural network model. The rectified linear unit
(ReLU) has been instrumental in addressing the vanishing gradient
problem. The use of ReLU as an activation function in a neural network
model, instead of the traditional sigmoid function, mitigates the van-
ishing gradient issue during the BP process (Nair and Hinton, 2010).
Dropout is another critical technique that enhances the performance of
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deep learning models. During the training process, dropout works by
randomly “dropping out” a certain number of outputs from the layers of
the hidden layers. This helps prevent overfitting of the model to the
training data and improves the model's performance on unseen data
(Srivastava et al., 2014).

Recurrent Neural Networks (RNNs) are a class of neural networks
designed specifically to recognize patterns in sequential data, making
them widely used for various data types, including text and time series
data. LSTM, a type of RNN, mitigates the vanishing gradient problem
often encountered in traditional RNNs, by introducing a structure
known as the “cell state” (Hochreiter and Schmidhuber, 1997). The
LSTM structure is composed of the cell state and three gates: forget gate,
input gate, and output gate. The cell state carries information from one
time step to the next, with the three gates selectively controlling the flow
of information through time. In the first step, the forget gate determines
which information to discard from the cell state. Next, at the input gate,
new information is selected to be stored in the cell state. Finally, at the
output gate, the LSTM decides what information should be output at the
current time step. The output gate in an LSTM uses the current input and
the previous hidden state to compute its activation, applying learned
weights and a sigmoid function. Separately, the current cell state is
processed through a tanh function to scale its values between —1 and 1.
The LSTM then computes its output at the current timestep, known as
the current hidden state, by multiplying the output gate activation and
the transformed cell state.

GRU is a type of RNN architecture that also mitigate vanishing
gradient issues like LSTMs, but in a simpler way (Cho et al., 2014). GRU
has a hidden state and two gates, namely an update gate and a reset gate,
which regulate the flow of information within the hidden state. The reset
gate decides the extent of past information to discard, while the update
gate determines the amount of information from the previous hidden
state that should be carried forward to the current state. By applying
learned weights to the current input and the previous hidden state, then
passing them through a sigmoid function, the update gate generates
values between 0 and 1 to serve as coefficients for controlling this in-
formation flow.

SVM is a representative supervised learning algorithm that was
widely used until recently (Boser et al., 1992; Cortes and Vapnik, 1995).
The SVM model is trained to find a hyperplane or decision boundary in
an N-dimensional space (where N is the number of features) that max-
imizes the distance between data points. The distance between the de-
cision boundary is referred to as “margin” and the data closest to the
decision boundary is called “support vector” which determines the po-
sition and orientation of the decision boundary. The SVM is widely used
both for classification and regression models.

Ensemble ML has become a widely used approach in recent years. RF

[ Machine Learning (ML) for HAB detection and prediction ]

[

[ HAB Prediction

(Section 2)

Regression model

(Section 2.3)

Classification model

(Section 2.4)

]
Detection and Enumeration of
Algae using Image-based ML

(Section 3)

Predicts the status of algal bloom using
continuous values of indicators such as
Chl-a and algal cell numbers

Predict the status or level of algal bloom
necessary for algal bloom management
or to issue an algal bloom alert

Detection or monitoring of
algal bloom using ML

‘ (Section 2.5)

algorithms of object detection

I Automated ML for automating the end-to-end process of developing ML models

Explainable artificial intelligence (XAl)
Interpretation of ML model performance to improve the applicability of ML models (Section 4)

Fig. 1. An overview of applying machine learning models for algal bloom management.
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algorithm is a prime example of an ensemble learning method. The RF
algorithm generates multiple individual decision tree models, and the
final model's outcome is determined by either voting (for classification
models) or averaging (for regression models) the results of these indi-
vidual models (Breiman, 2001). Each decision tree is trained on a subset
of the input features, which are randomly selected using a technique
known as bagging. This process encourages diversity among the indi-
vidual models, thus enhancing the robustness and generalization of the
overall RF model. GBDT is one of the prominent ensemble ML algo-
rithms (Friedman, 2001). In GBDT, multiple decision tree models, often
referred to as “weak learners,” are generated sequentially. The perfor-
mance of the model is enhanced by utilizing the information from the
previous weak learner to inform the creation of the next tree model. The
model is trained with the goal of minimizing the residual error at each
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step. XGBoost (Chen and Guestrin, 2016) is one of the most popular
GBDT algorithms, and light gradient-boosting machine (LGBM) is
another innovative GBDT algorithm known for its computational speed
and suitability for large datasets. LGBM employs the gradient-based one-
side sampling method and exclusive feature bundling algorithm to
selectively determine the number of input data for the model training
strategy (Ke et al., 2017). It also utilizes a leaf-wise tree growth strategy.
These algorithms are designed to improve computational efficiency and
accelerate the model simulation speed of LGBM models.

Research into applying variously developed ML models for algal
bloom prediction has been actively pursued in recent years. Due to the
nature of data-driven models, the performance of predictions is influ-
enced by the characteristics of the input data used to build the model.
Even using the same model, performance can vary depending on the

Table 1
A summary of regression ML models to predict algal blooms.
Main model Input variables Target variables Performance evaluation Ref.
Generalized regression neural Monthly/biweekly water quality and daily Chl-a R?, RMSE, and MAE values of 0.819,  (Li et al.,
network (GRNN), SVM meteorological data including wind speed and 5.436, and 3.167, respectively 2014)
solar radiation records

SVM Weekly upwelling indices, temperature, salinity, Bloom status (presence/ The best overall accuracy of P/BD (Vilas
occurrence of a bloom in the previous week below low detection limit(P/  was 78.57 et al.,
(Bloom-1w) or two weeks before the sampling BD)) of Pseudo-nitzschia 2014)
(Bloom-w2), day of the year, ria code spp.

LSTM, ordinary least square (OLS), Weekly water temperature, pH, BOD, COD, DO, Chl-a RMSE of LSTM 16.09 and for OLS, (Lee and

MLP, RNN cyanobacteria cell number, water level, and MLP, and RNN were 17.75, 16.42, Lee, 2018)
pondage and 16.13, respectively

Multivariate Timing-Random Deep pH, NH4-N, and water temperature with 10 Chl-a RMSE 3.88 % for testing data (Wang

Belief Net (MT-RDBN) model, samples per day etal.,
which combines multi-factor time 2019).
series analysis and deep belief net

MS5P (a tree algorithm), extreme Daily water temperature, rainfall, solar radiation, Chl-a The R? of M5P and ELM were 0.83, (Yietal,

learning machine (ELM) total nitrogen, total phosphorus, N/P ratio, and 0.46, 0.44, 0.39 and 0.87, 0.59, 0.48, 2019)
Chl-a 0.40 after 1, 3, 5 and 7 d, respectively
MLR, SVM, ANN EC, DO, water temperature, TN, TP, BOD, COD, Chl-a and transparency MAE, RMSE, R?/R? of SVM for Chl-a (Mamun
TSS, Chl-a, precipitation, transparency (Monthly) prediction varied from 0.56 to 0.80 etal.,
for various sites and seasons 2019)
SVM, DT, RF, ANN, MLR, TSP, RNN, Salinity, DO, turbidity, pH, Secchi Disk Depth, SS, Chl-a MAE: 0.0256-0.5607 (Rostam
DNN, LSTM water temperature, Total Inorganic Nitrogen, RMSE: 0.0360-0.6359 etal.,
Ammonia Nitrogen, PO%’-P, TP, TN, NO3-N, NO3- MSE: 0.0013-0.4044 2021)
N, Silica (1556 instances during 1986-2018) LSTM showed the best performance

RF, SVM, MLP water and environmental parameters including Chl-a RMSE, R? and adjusted Rz/adjusted (Amorim
Secchi depth, salinity, water temperature, NO3 -N, R? were 0.77, 0.74, 0.76 for SVM, RE et al.,
POj~-P, Chl-a, Zooplankton abundance, sunlight and MLP, respectively 2021)
duration, wind speed with daily datasets obtained
from interpolation

LSTM, CNN MODIS-Aqua level 3 Chl-a data Chl-a RMSE for LSTM 3.402142 and CNN (Yussof

4.361724/R (correlation coefficient) etal.,
for LSTM 0.338385 and CNN 2021)
0.111790, respectively
SVM Biweekly/monthly total inorganic nitrogen (TIN), Chl-a RMSE 0.660 and correlation (Deng
PO3-P, DO, water temperature, secchi-disc depth coefficient 0.984 et al.,
2021)
AdaBoost, ANN, GBDT, KNN, SVM. Weekly Chl-a, nitrate, and phosphate Harmful algal bloom MSE ranges 0.031-0.61 and R? (Yu et al.,
ranges 0.939-0.956 AdaBoost 2021)
showed the best R? as 0.956

CART, RF, LR 15 min interval pH, EC, water temperature, and Chl-a MAE ranges 4.40-6.22 (Mozo

system battery etal.,
2022)

LSTM Marine hydrological multidepth environmental Harmful algal bloom MAE, RMSE, Sum of squared error, (Wen et al.,
data including NHz-N, PO3-P, Chl-q, depth, Mean absolute percentage error, 2022)
pressure etc. fitting degree(R) with highest R is

82.1 %

CNN 8 water quality variables (water temperature, pH, Chl-a R? and RMSE of the optimal model (Lee et al.,
EC, DO, TOC, TN, TP, Chl-a) and four weather were 0.934 and 5.463 2022)
variables as input variables

GBR, LSTM Meteorological data including air temperature and Chl-a MAE, RMSE, R? (Lin et al.,
nutrients data (daily, 1-2 weeks) LSTM shows the best R? as 0.2 2023)

RF Physicochemical, hydrological, meteorological Biomass composition of R? > 0.74 for total biomass (Liu et al.,
observation phytoplankton community simulation 2023)

Transformer TP, PO3 -P, TN, NO3-N, NH;-N, COD, TOC Chl-a R? 0.85, RMSE 0.35 (Qian

et al.,
2023)




J. Park et al.

data used for model development, and more advanced and complicated
models do not always yield better results. Consequently, there has been
vigorous research into not only using advanced algorithms like
ensemble ML and LSTM but also applying a range of ML models
including earlier developed ones such as ANN and SVM, independently
or in combination, to analyze their performance and application
characteristics.

2.3. Regression models for algal bloom prediction

Various ML algorithms have been used for the development of
regression models to predict Chl-a or algal cell numbers, the two most
widely used indicators for the quantitative representation of algal
blooms. Higher values of Chl-a or algal cell numbers indicate more se-
vere algal blooms. The main model, input variables and target variable
used for the algal bloom prediction regression models were summarized
in Table 1.

The commonly used algorithms include various types of models such
as ANN, SVM, tree-based ensemble models (e.g., RF and GBDT), and
deep learning models. Many studies have employed multiple models
instead of a single specific model, as summarized in Table 1. The input
variables comprise various factors representing basic water quality el-
ements (e.g., pH, dissolved oxygen (DO), temperature), organic mate-
rials (e.g., biochemical oxygen demand (BOD), chemical oxygen
demand (COD)), and nutrients (e.g., total nitrogen (TN), total phos-
phorus (TP)), with Chl-a being the most frequently utilized item for the
target-dependent variable. The model performances were evaluated
using diverse indices such as RMSE and MAE. Additionally, the coeffi-
cient of determination (R?) is widely employed as an index to enable the
comparison of multiple model performances, given that a high R? in-
dicates a strong agreement between the model and observations.

SVM is an ML model that has been widely used since the early stages
of research for predicting algae. Li et al. (Li et al., 2014) developed
prediction models for algal blooms using various ML methods and
observation data from Tolo Harbour in Hong Kong. Three types of
models were created using BP neural network, generalized regression
neural network (GRNN), and SVM. Monthly/biweekly water quality and
daily meteorological data (e.g., wind speed and solar radiation records)
from January 1997 to December 2004 were used for model develop-
ment, with Chl-a used as the target variable. The experimental results
revealed that the SVM model exhibited the best performance, with R?,
RMSE, and MAE values of 0.819, 5.436, and 3.167, respectively, for the
testing dataset. Vilas et al. (Vilas et al., 2014) developed and validated
SVM models for the prediction of Pseudo-nitzschia spp. using eight years
of data collected in the coastal embayments (rias) in the NW part of
Spain. The models accurately identified presence/below low detection
limit (P/BD) and bloom/no bloom conditions of Pseudo-nitzschia spp.
and predicted blooms in the coastal systems of the Galician rias.

Since the late 2010s, research has continued to apply various ML
models, including various deep learning models, for algal prediction.
LSTM is one of the most popularly used algorithms, and various studies
have used LSTM with multiple ML models for algal prediction. Lee and
Lee (2018) utilized three deep learning models, namely Multilayer
Perceptron (MLP), RNN, and LSTM, for algal bloom prediction. This
study used raw data obtained from 16 field monitoring stations in South
Korea with different observation frequencies, such as daily and weekly.
The data were standardized to weekly frequencies for model develop-
ment. The model employed water temperature, pH, BOD, COD, DO,
cyanobacteria cell number, water level, and pondage as independent
variables to predict Chl-a concentration as the target variable. The re-
sults indicated that the LSTM model exhibited the best performance,
with an average RMSE of 16.09 for the 16 sites. Wang et al. (Wang et al.,
2019) proposed a model called the Multivariate Timing-Random Deep
Belief Net (MT-RDBN), which combines multi-factor time series analysis
and deep belief nets. The MT-RDBN model utilizes autoregressive and
multivariate regression models to describe the relationships between the
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characterization factor at current and previous times, as well as between
the characterization factor and the influencing factors. Rostam et al.
(Rostam et al., 2021) presented a complete framework methodology for
predicting algal growth that includes sensor assembly and integration,
data acquisition, and predictive modeling using data-driven approaches
such as ML and deep learning. Various models including SVM, DT, RF,
ANN, multilinear regression (MLR), RNN, DNN, and LSTM were used for
model development. Model performance was evaluated using MAE,
RMSE, and MSE, with values varying from MSE of 0.0256-0.5607,
RMSE of 0.0360-0.6359, and MSE of 0.0013-0.4044, respectively.
LSTM showed the best performance with MAE of 0.0256, RMSE of
0.0360, and MSE of 0.0013, respectively. The study demonstrates that
using time series with deep learning algorithms, specifically LSTM, is the
best fit for accurately predicting algal growth. Saboe et al. (2021) hy-
pothesized that temporal microbial potentiometric sensor (MPS) signal
patterns can predict changes in water quality parameters using AI/ML
tools. The proof of concept was first tested by correlating MPS signals
with high algae concentrations in an algal cultivation pond. The study
then expanded to predict multiple water quality parameters in real
surface waters, like irrigation canals. Data from the MPS system was
used to train LSTM algorithms, which predicted parameters such as
turbidity, conductivity, Chl-a, blue-green algae, DO, and pH. Real-time
observations over 9 months with a 30-min observation frequency were
used for model development. Results demonstrated the usefulness of
MPSs and AI/ML tools in predicting key surface water quality parame-
ters through a single composite signal, offering a novel and cost-effective
approach for water quality monitoring.

LSTM has shown excellent predictive performance on time-series
data and is widely utilized. However, similar to other ML models, the
performance of the model is significantly influenced by the character-
istics of the input data. Therefore, there is a variety of ongoing research
aimed at improving LSTM's performance by enhancing the composition
of input data. Yussof et al. (Yussof et al., 2021) applied LSTM and
Convolutional Neural Network (CNN) methods to predict HAB events on
the West Coast of Sabah, Malaysia. Satellite time-series data was used,
with Chl-a as an HAB indicator. The dataset covered eight-day intervals
from January 2003 to December 2018. In this study, the LSTM model
proved more accurate than the CNN model based on RMSE and corre-
lation coefficient criteria. Wen et al. (Wen et al., 2022) proposed a local
spatiotemporal HABs forecasting model (STHFM) based on maritime
station monitoring (MSM) data. The model uses principal component
analysis (PCA) to select main environmental factors (MEFs) related to
HABs and determines multiple warning levels based on algae growth
rate. An improved LSTM network incorporating MEFs time series in-
formation from the Autoregressive Integrated Moving Average (ARIMA)
model is used for forecasting. Tested on NOAA's public dataset, the
model achieves a prediction accuracy of 82.1 % and a small prediction
error, demonstrating good HABs monitoring performance. Lin et al. (Lin
etal., 2023) applied two ML models, gradient boost regressor (GBR) and
LSTM network, to predict Chl-a concentrations in a mesotrophic lake.
The input variables for model development include daily meteorological
data (e.g., air temperature and wind speed) and nutrient data (e.g., NOx,
0,, PO3~, and TP). They tested three predictive workflows: one using
only available measurements of daily meteorological data and nutrient
data with 1-2 weeks observation frequency and the other two using a
two-step approach with pre-generated environmental factors such as
daily nutrients and hydrodynamic data from process-based models.
Observations between 2004-2016 and 2017-2020 were used for
training and testing the model, respectively. The ML models out-
performed process-based models in predicting Chl-a concentrations, and
the hybrid model improved predictions of algal bloom timing and
magnitude.

The Transformer stands as a state-of-the-art deep learning algorithm
that surpasses the constraints of the RNN model by adeptly capturing
extensive dependencies across sequences and enabling parallel pro-
cessing. The self-attention mechanism within the Transformer enables
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the model to concentrate on important information. Qian et al. (Qian
et al., 2023) developed a Transformer model, named Bloomformer-1, to
identify the drivers of algal growth in freshwater without requiring
extensive prior knowledge or experiments. Four traditional ML models,
including Extra Trees Regression (ETR), Gradient Boosting Regression
Tree (GBRT), SVR, and MLR, were used to compare the model perfor-
mance with Bloomformer-1. The results show that Bloomformer-1
exhibited the best performance with an R? value of 0.85 and an RMSE
of 0.35. The data used for model development were collected from the
Henan and Hebei sections of China between August 2018 to August
2022, and included water parameters such as TP, PO; -P, TN, NO3-N,
NHj-N, COD, and total organic carbon (TOC). The target variable used
was Chl-a, which served as an indicator of phytoplankton biomass.

Deep learning models have a high level of complexity and demon-
strate strong performance across various fields, leading to their wide-
spread use. However, it's not always the case that higher complexity
models exhibit superior performance. Results can vary based on the
characteristics of each region and the data being used. Therefore,
research involving a variety of models such as ANN, SVM, and ensemble
models, in addition to deep learning models, continues to be conducted
for algal prediction up to the present. Yi et al. (Yi et al., 2019) developed
two models, M5P, a tree-based model, and extreme learning machine
(ELM), to predict short-term algal bloom in the Youngsan River, South
Korea. The models were developed using a dataset that included daily
measurements of water temperature, rainfall, solar radiation, TN, TP, N/
P ratio, and Chl-a from January 2013 to December 2016. The models
predicted Chl-a levels after 1, 3, 5, and 7 days. The M5P model showed
the highest performance in predicting Chl-a after one day, while the ELM
model demonstrated better capability for Chl-a prediction spanning 1-7
days. In a period of rapidly increasing algal blooms, the ELM model
showed higher accuracy than the M5P model. The R? values for the M5P
and ELM models were 0.83, 0.46, 0.44, 0.39 and 0.87, 0.59, 0.48, and
0.40 after 1, 3, 5, and 7 days, respectively.

Mamun et al. (Mamun et al., 2019) developed ML models to predict
algal Chl-a and water clarity in reservoirs during 2000-2017, influenced
by the Asian monsoon, using MLR, SVM, and ANN models. Monthly
observations of electrical conductivity (EC), DO, water temperature, TN,
TP, BOD, COD, total suspended solids (TSS), Chl-a, precipitation, and
transparency were used for model development. The SVM model per-
forms better than the MLR and ANN models in predicting the values of
Chl-a and transparency. The model performance was evaluated using
RMSE, R% and MAE for three zones: riverine, transitional, and lacustrine
zone, where the R? of SVM were 0.75, 0.73, and 0.80, respectively, in
three sites for validation data. The model accuracy was also compared in
three seasons: pre-monsoon (January to June), monsoon (July to
August), and post-monsoon (September to December), where the R? of
SVM was 0.56, 0.63, 0.80 for three seasons for validation data, respec-
tively. The analysis of the relative importance of input variables presents
that water temperature, TP, TN, nutrient ratios (e.g., N/P), and rainfall
are important in predicting Chl-a and transparency in the reservoir.
Amorim et al. (Amorim et al., 2021) developed a model to predict Chl-a
concentrations using measured water and environmental parameters,
including Secchi depth, salinity, water temperature, NOs, PO4, Chl-q,
zooplankton abundance, sunlight duration, and wind speed. However,
the field observations had many missing values and thus interpolated
daily dataset of 13 years from November 2001 to April 2015 was ob-
tained and used for modeling. Three machine learning algorithms,
namely RF, support vector regressor (SVR), and neural networks MLP
regressor, were used, and SVR showed the best performance among the
three algorithms. Deng et al. (Deng et al., 2021) developed models to
predict algal growth and eutrophication in Tolo Harbour, Hong Kong,
using ANN and SVM. The results showed that both methods were
effective, with ANN providing faster results and SVM offering greater
accuracy with longer training times. Water quality indicators, including
total inorganic nitrogen (TIN, mg/L), phosphorus (PO4, mg/L), Chl-a
(ng/L), DO (mg/L), water temperature (°C), and Secchi depth (m), were
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used for model development to predict Chl-a concentration. The model
performance was evaluated using RMSE, and the correlation coefficient
was used to measure the goodness of fit between observation and model
prediction. Yu et al. (Yu et al., 2021) developed an ML-based method to
predict algal blooms using environmental parameters. Five algorithms
were used for model development, including Adaptive Boosting (Ada-
Boost), ANN, GBDT, K-nearest Neighbor (KNN), and SVM. The method
performance was validated on real datasets from two locations in the US
and China. Results show that the developed ML method effectively
predicts short-term concentrations by selecting appropriate features,
providing insight into crucial factors for HAB outbreaks. The R? ranged
from 0.939 to 0.956 for the model developed from weekly-basis water
quality data. AdaBoost demonstrated the best model performance with
an R? of 0.956.

Mozo et al. (Mozo et al., 2022) utilized three ML models, namely RF,
Linear Regression (LR), and Classification and Regression Trees (CART),
to develop the Chl-a soft-sensor. The models were trained and tested
using various data aggregation techniques to enhance their inference
performance. The soft-sensors were designed using compact and energy-
efficient ML algorithms to infer Chl-a fluorescence with low-cost input
variables that can be deployed on buoys with limited battery and
hardware resources. The model was built using field observations
collected over three years at 15-min intervals from two different areas of
As Conchas freshwater reservoir in northwest Spain, where the four
variables (i.e., pH, EC, water temperature, and system battery) were
used as independent variables while Chl-a was used as the target vari-
able for prediction. Liu et al. (Liu et al., 2023) utilized RF to predict
phytoplankton community shifts based on multi-source environmental
factors. The RF models accurately predicted algal communities in Lake
Mjosa, Norway's largest lake, with hydro-meteorological variables being
the most influential factors. The input variables used in the model
included multi-source environmental factors such as physicochemical
(e.g., TN, TP, and water temperature), hydrological (e.g., input and
output discharge, and discharge difference), meteorological (e.g., pre-
cipitation, air temperature, and sunshine duration), and spatial factors
(e.g., latitude and longitude). The target variables were the composition
and biomass of phytoplankton communities. The analysis of feature
importance on model performance revealed that antecedent hydro-
meteorological factors were the most important factors.

Over the past decade, various machine learning models such as ANN,
RF, GBDT, and SVM, along with deep learning models such as LSTM,
have been utilized for predicting algal blooms and various water quality
parameters. Despite the recent surge in the use of various deep learning
models like LSTM, it is observed that relatively simpler models such as
ANN, SVM, and RF remain prevalent. In practice, the acquisition of all
necessary data for model construction is limited, and the available data
that can be collected in the field are typically utilized for building ML
models. Given this reality, selecting the most suitable model that aligns
with the characteristics of the input data can improve the efficiency of
ML models in the field. Additionally, continuous efforts to acquire high-
quality field data over extended periods are essential for enhancing the
efficiency of algal bloom management using ML models.

2.4. Classification models for algal bloom prediction

Prediction of algal bloom status or level is also important for algal
bloom management strategy including early warning, and thus various
ML models were also used for the development of classification model to
forecast algal bloom status or level (Table 2).

SVM and tree-based ensemble models such as RF and GBDT are
popular algorithms used for the development of models for algal bloom
classification, where the status or class of algal bloom is determined by
the occurrence level of Chl-a or algal cell numbers. Xia et al. (Xia et al.,
2020) used a gradient boosting machine (GBM) model to predict algal
blooms in a large river in China, using various water quality parameters
(e.g., water temperature, TN, and TP) and hydrologic variables (e.g.,
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Table 2
A summary of classification ML models to predict algal blooms.
Model Input variables Target variables Performance evaluation Ref.
GBM 10-day water quality data including TN, TP, water Algal bloom level Median Kappa of 0.9 for the best GBM model (Xia
temperature, and daily hydrological data including water (binary) etal.,
level, flow velocity 2020)
ANN, SVM A total of 14 water quality, metalogical, and hydrological Algal alert level for Accuracy, sensitivity, specificity, precision were (Park
variables(weekly) early warning of 0.81, 0.86, 0.79, 0.72 for ANN, and 0.73, 0.86, et al.,
blooms 0.64, 0.62 for SVM 2021)
ANN, SVM Meteorological data (air temperature, accumulated Algal alert level Precision, recall, accuracy (Kim
precipitation), hydrodynamic data (inflow, discharge, water Precision ranges 45.2-92.9 The best precision etal.,
level), and water quality data (TDN, NO3-N, NH;-N, TDP, was observed using ANN with synthetic-added 2021)
PO3~-P and conductivity) where observation frequency ranges dataset.
4-29 days with an average of 7.4 days
SVM, RF, MLP Water temperature, transparency, water color, DO, Occurrence of Accuracy of SVM 0.950, RF 0.924, MLP 0.792 (Mori
(multilayer conductivity, turbidity, pH, SS, COD, TN, TP, Chl-a etc. with Microcystis blooms and F-measure of SVM 0.863, RF 0.677, MLP et al.,
perceptron) observation frequency of four times per year. 0.538 2022)
RF, GBDT, Naive physical and chemical properties of the microalgae, including  Classification of three Accuracy, recall, specificity, and precision with (Koc
Bayes (NB), fusion cell count, biomass weight, pH, ORP, temperature, CO» microalgae varieties accuracy ranges from 86.11 to 93.11 % The best et al,,
of RF-GBT concentration in air, and dissolved oxygen accuracy using the fusion of RF-GBT model 2023)

water level and stream flow discharge) for model development. Algal
bloom is defined by algal density into two groups (<107 cells/ml and
>107 cells/ml). For model development, 10-day water quality data (e.g.,
TN, TP, algal density, and Chl-a) at three sections and daily hydrological
data of water level, flow velocity, and streamflow rates from 2003 to
2014 were used. Two GBM models were developed, using explanatory
variables from the current 10-day (GBMc model) or previous 10-day
period (GBMp model). The model performance was evaluated using
accuracy, Cohen's Kappa statistic where the results showed that GBMp
showed higher accuracy with a median Kappa of 0.9. Park et al. (Park
et al., 2021) developed ML models for an early warning system to pre-
dict HABs in a freshwater reservoir to protect the aquatic ecosystem and
human health. ANN and SVM models were used to predict algae alert
levels based on intensive water quality, hydrodynamic, and meteoro-
logical data. The study applied sensitivity analyses for the input vari-
ables and optimized the parameters of the models. The results indicated
that the ANN model performed better than the SVM model and deter-
mined 6- and 7-day sampling intervals as efficient early-warning pe-
riods. The model was developed using 14 input variables of water
quality, meteorological data, and hydrodynamic data including total
dissolved nitrogen (TDN), NO3-N, NH7-N, total dissolved phosphorus
(TDP), PO; -P, conductivity, sampling interval, water level of reservoir,
inflow and discharge of lake, discharge for hydropower, precipitation,
air temperature, and wind speed. The algal alert level was considered as
the target variable for prediction. Water quality data was generally
collected weakly from 2013 to 2019, and weekly averaged values of
metalogical and hydrological data were used for model development.
For the evaluation of the model performance, accuracy, sensitivity,
specificity, and precision were 0.81, 0.86, 0.79, and 0.72 for ANN, and
0.73, 0.86, 0.64, and 0.62 for SVM, respectively.

Recently, class imbalance in data has been recognized as one of the
factors that can degrade model performance. Research on improving
model performance by addressing this issue has been consistently con-
ducted (Kim and Park, 2023; Kim et al., 2021). Kim et al. (Kim et al.,
2021) also developed an early warning system using ANN and SVM
models based on meteorological (e.g., air temperature and accumulated
precipitation), hydrodynamic (e.g., inflow, discharge, and water level),
and water quality data (TDN, NO3-N, NHj-N, TDP, PO:O{’-P, and con-
ductivity). Due to an imbalance in alert level data, the adaptive synthetic
(ADASYN) sampling method was employed to enhance prediction per-
formance. The study showed that combining original and synthetic data
improved the model performance in predicting critical alert levels. The
model precision ranged from 45.2 to 92.9, with the best precision
observed using ANN with a synthetic-added dataset. The improved
models can aid in designing management practices to mitigate algal
blooms within reservoirs.

In recent years, new approaches have emerged to enhance the per-
formance of ML models, such as selecting input variables with a higher
relative effect on model performance or fusing multiple models (Mori
etal., 2022; Park et al., 2022b). Mori et al. (Mori et al., 2022) developed
an ML model for predicting the occurrence of Microcystis in water res-
ervoirs using water quality data. The data observed between 2004 and
2020, with an observation frequency of four times per year, was used for
model development. The model uses feature engineering and selection
to improve accuracy, and the input independent variables include
various water quality parameters (e.g., temperature, transparency,
water color, DO, conductivity, turbidity, pH, SS, COD, TN, TP, and Chl-
a). The target variable is the occurrence of Microcystis blooms. SVM, RF,
and MLP were used for prediction, with accuracy and F-measure as
evaluation indices. The results show that the model performance was
improved by feature engineering and feature selection of input vari-
ables. Koc et al. (Koc et al., 2023) cultivated three different microalgae
species (i.e., Chlorella kessleri, Botryococcus braunii and Synechococcus
leopoliensis) using various light sources and collected data on essential
cultivation parameters. A 10-fold-cross validation method was
employed to partition the algal growth dataset, and three machine
learning algorithms—RF, Gradient Boosted Trees (GBT), and Naive
Bayes (NB), —were utilized. The model was developed using the phys-
ical and chemical properties of the microalgae, including cell count,
biomass weight, pH, ORP, temperature, CO, concentration in air, and
DO as independent input variables to classify microalgae varieties. The
researchers also computed an RF-GBT fusion to enhance accuracy. The
best prediction, with a 93.11 % accuracy, was achieved using the RF-
GBT fusion-based algorithm, while RF, GBT, and NB had accuracies of
93.06 %, 90.28 %, and 86.11 % respectively.

Similar to regression models, classification models have also been
developed using a variety of algorithms from relatively simpler algo-
rithms like ANN and SVM to deep learning. Algal bloom levels were
often used as the target variable of these ML models, making classifi-
cation models particularly suitable for such applications. The perfor-
mance of classification models is greatly influenced by the
characteristics of the input data, especially considering the challenges of
monitoring natural phenomena where acquiring data of desired con-
centrations is limited. Thus, future improvements in model performance
could be achieved through research efforts aimed at improving the
composition of input data, such as addressing data imbalance through
additional preprocessing algorithms.

2.5. Automated ML for algal bloom prediction

Automated ML (AutoML) is a field of study that focuses on creating
algorithms and tools that automate the end-to-end process of developing
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ML models, from data preprocessing to model selection, optimization of
hyperparameters, and model evaluation. Neural architecture search
(NAS) is a representative AutoML approach that searches an optimal
structure of neural networks (Zoph and Le, 2016). Recently, various
open-source libraries have been used for the development of ML models
for the prediction of water quality. Prasad et al. (Prasad et al., 2021)
developed two AutoML models using the “mljar-supervised” algorithm
and the Tree-Based Pipeline Optimization Tool (TPOT). The models
were created using 9 parameters and around 5000 records of field ob-
servations collected between 2009 and 2019. The 9 parameters included
TDS, turbidity, pH, COD, iron, phosphate, sodium, chloride, and nitrate,
and were used to calculate the water quality index. The dataset was
balanced between classes using the Synthetic Minority Oversampling
Technique (SMOTE). The results showed that the AutoML and TPOT
models achieve higher accuracy of 1.4 % and 0.5 %, respectively,
compared to conventional ML techniques for binary and multi-class
water data. TPOT was also found to be 0.6 % more accurate than con-
ventional ML techniques for multi-class water data. Auto H20 and Auto-
sklearn are also representative open-source auto ML libraries (Feurer
et al., 2020; LeDell and Poirier, 2020). Both libraries provide detailed
reports on the specific performance of individual models selected in
automated ML, as well as the weights of individual models within the
final auto ML model developed from the ensemble of those individual
models. Fig. 2 presents an example of a variable importance heatmap of
input variables for a model to predict Chl-a concentration. The heatmap
(Fig. 2) is a part of the result report in the auto H20 model, where the
relative importance of input variables for each individual model
included in the auto H20 model is presented. The model was developed
using the open-source auto H20 library (LeDell and Poirier, 2020). Field
observation data from the Miho River monitoring station, covering the
period from April 1, 2016, to December 31, 2021, and reported in the
Water Environmental Information System, which is managed by the
National Institute of Environmental Research of Korea, were used for
model development. The color scale bar in Fig. 2 indicates the relative
variable importance. A variable with higher importance in the heatmap
(e.g., red color with higher number) has a greater impact on model
performance.

AutoML improves the usability of ML models, allowing non-expert
developers to use ML models with relatively simple preprocessing. It is
believed that continuous research aimed at enhancing the usability of
ML models, similar to AutoML, will be necessary to enable the broader
use of advanced ML models in algae bloom management.
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Fig. 2. An example of variable importance heatmap of auto H20 model.
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3. Detection and enumeration of algae using image-based ML
3.1. Image-based algal detection overview

Given the diversity in harmfulness among different algal species,
quantitative analysis of the types and quantities of algal bloom species is
crucial for effective algal bloom management. Conventionally, for
image-based algal detection, a well-trained algae taxonomist classifies
and counts the algae species found in microscopic images to investigate
the algae populations at a given time and geographic location. However,
there is a shortage of such experts and their classification accuracy is
around 67-83 % due to the large diversity of algae species (there are
over 30,000 species) (Xu et al., 2022). Furthermore, manual counting
and classification are very time-intensive. Thus, there is a growing effort
to replace this conventional method with automated ML models using
different types of imaging strategies. Furthermore, image-based ML
technology is expected to continue developing in the future. By updating
various field images, continuous improvement and increased accuracy
in field algal detection technology are also expected.

Over the past decade, object detection technology using ML has
shown significant advancements. The ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) has been a great contributor to the
development of ML models for image classification. As a CNN archi-
tecture of deep learning models used for computer vision application,
Residual Neural Network (ResNet), which was the winner of the 2015
ILSVRC competition, demonstrated the practical application of ML
models for image classification by achieving remarkable performance
with a top-5 error rate of <5 % (Alyafeai and Ghouti, 2020). Until
recently, CNN was one of the most fundamental algorithms used for
object detection. CNN extracts features from input data through two
processes: convolution and pooling (Krizhevsky et al., 2017; LeCun
et al., 1998; Sultana et al., 2020; Zeiler and Fergus, 2014). The first step
in a CNN is the convolutional process, where the features of the input
image are extracted using a convolution kernel that slides along the
input feature matrix. The output of the convolutional process is then
reduced in dimension through a subsequent pooling process.

Earlier microscopy-based studies explored how ML algorithms can be
used to distinguish and classify different species of algae, and count their
number of cells accurately (Chen et al., 2020; Qian et al., 2020; Ruiz-
Santaquiteria et al., 2020; Suh et al., 2021). After establishing that
different ML algorithms (e.g., CNN, R-CNN, LR, and SVM) are effective
for accurate counting and classification of algae in microscopic images,
subsequent research endeavors focused on optimizing the code (e.g.,
YOLO, AlgaeFiner, and deep CNN) to reduce the computational time and
improve the capability to differentiate among various genera (Abdullah
et al., 2022; Gong et al., 2023; Liu et al., 2022; Park et al., 2022a; Xu
et al., 2022; Zhou et al., 2023). Emphasis was also placed on improving
the practicality of the system. For instance, one study created an algo-
rithm from the YOLO model that can better recognize algae species from
low magnification images which reduces costs as high magnification
microscopes are expensive. Other studies made the code more light-
weight through the implementation of better algorithms by developing
an algal self-organized detection system, which reduces the analytical
time and computational power required (Gong et al., 2023). Further-
more, several studies aimed to expand the range of genera that can be
precisely classified (Gong et al., 2023; Park et al., 2022a; Qian et al.,
2020; Xu et al., 2022).

There are also a few studies that use ML to automatically analyze
non-microscopic images of algae, such as from ship and coastal sur-
veillance cameras (Wang et al., 2022b; Zou et al., 2022), unmanned
aerial vehicles (Yang et al., 2022), or satellites (Hill et al., 2020). These
studies can detect macro-algal populations (e.g. clumps of floating
algae) from the collected images/videos. Table 3 provides an overview
of the image-based ML algae detection studies that will be discussed in
this section.

Overall, the benefits of using various image-based ML algorithms for
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Table 3
A summary of algal detection using image-based ML.

Science of the Total Environment 938 (2024) 173546

HABs detection method

Algorithm(s) used

Number of genera/
species classified

Average precision

Image acquisition method

Reference

Microscopy (60x magnification)
Microscopy (40x magnification)

Microscopy (high magnification)
Microscopy (200x and 400 x magnification)

Microscopy (low magnification — 10x)

Microscopy (high magnification)
Microscopy (high magnification)

Publicly available microscopy pictures (i.e.,
online algae databases)
Microscopy (40x magnification)

Microscope images using automatic image
acquisition equipment: Algae-Hub (20x and

40x magnification)
Satellite imaging + historical records of HABs

Offshore and ship surveillance cameras

Surveillance videos

Ruiz-Santaquiteria
et al. (2020)
Chen et al. (2020)

Qian et al. (2020)
Suh et al. (2021)

Liu et al. (2022)
Park et al. (2022a)
Abdullah et al.
(2022)

Xu et al. (2022)

Zhou et al. (2023)

Gong et al. (2023)

Hill et al. (2020)

Zou et al. (2022)

Wang et al. (2022b)

Algae classification and SegNet, Mask-RCNN" 10 species (diatoms) 85 %
counting from microscope
images LR", SVM¢, and 9 species (red tide 96 %

XGBoost® combined algae)

Faster RCNN* 27 genera 74.64 %

Weighted mask 1 genus (Microcystis) 92.5 %

RCNN

YOLO® 2 genera (Chlorella Up to 80 %
and Isochrysis)

YOLO 27 genera 89.8 %

YOLO 4 genera 91.0 %

Modified CNN 13 genera 93 %

TOOD‘, YOLO, RCNN 6 genera 82.6 % (YOLO model)

tested

YOLO 54 genera 70.6 %

Algae communities from CNN 1 species (K. brevis) 86 % prediction
naval, aerial, and satellite accuracy up to 8 days
images in future

AlgaeFiner 2 species (Ulva 45-49 %
prolifera and
Sargassum)

AlgaeMask 2 species (Ulva 45 %
prolifera and
Sargassum)

RecepNet (semantic Blue-green algae 82 %

segmentation)

Unmanned aerial vehicle (UAV) images Yang et al. (2022)

# RCNN or R-CNN: Region-based Convolutional Neural Network.
b IR: Logistic Regression.

¢ SVM: Support Vector Machine.

4 XGBoost: Extreme Gradient Boosting.

€ YOLO: You Only Look Once.

f TOOD: Task-aligned one-stage object detection.

detection and enumeration of algae are a significant reduction in time
and improved accuracy across diversely populated samples. This leads
to significant cost reduction in sample analysis and enables faster data
collection and processing. Being able to obtain more data can allow for
better predictions and management of HABs. While current research
indicates promising results for the future, some improvements such as
increasing the number of genera detection and the accuracy of detection
can still be made before practical use.

3.2. Segmentation for automatic enumeration and identification of single
algal cells from microscopic images

To classify and enumerate algae cells from microscope images, ML
algorithms must first identify single cells using a process called seg-
mentation (Ruiz-Santaquiteria et al., 2020). This allows the software to
automatically detect objects (e.g., single cells) in a microscopic image of
a water sample by drawing a boundary around each object to select it.
The shape created by the boundary, which contains all the pixels inside,
is called a Region of Interest (Rol) (Ruiz-Santaquiteria et al., 2020).
Once the individual cells are selected, features can be extracted from
each cell such as texture, shape, and size (Chen et al., 2020). The process
of segmentation facilitates cell counting and even cells aggregated in
clusters can be accurately enumerated, while feature extraction can
classify the cells by species.

There are two segmentation techniques used for algal monitoring:
instance segmentation and semantic segmentation. In instance seg-
mentation, a deep neural network is trained to recognize and distinguish
between various objects, while in semantic segmentation, a segmenta-
tion mask is used to isolate a specific portion of an image from the rest of

an image using parameters specified by the user such as object size range
and pixel intensity range. A mask is a file or variable that has the loca-
tions of the Rols (Ruiz-Santaquiteria et al., 2020). Ruiz-Santaquiteria
et al. (2020) showed that instance segmentation is more accurate than
semantic segmentation in picking out and counting individual diatom
cells (Ruiz-Santaquiteria et al., 2020). They used the SegNet model as
the semantic segmentation model and the Mask Region-based Con-
volutional Neural Network (Mask R-CNN) as the instance segmentation
model. They found that although their instance segmentation model has
greater average precision in classifying algae species, it has lower
detection ability and thus misses some cells in the image compared to
their semantic segmentation model (Ruiz-Santaquiteria et al., 2020).
Using instance segmentation, (Suh et al., 2021) used weighted Mask R-
CNN to improve boundary distinguishment between a collection of ob-
jects (i.e., objects with touching boundaries). However, this technique
required obtaining an optimal value for a parameter and they only
managed with one genus of algae: Microcystis.

Through the integration of various ML algorithms, classification
accuracies can be improved (Chen et al., 2020; Qian et al., 2020). In
Chen et al. (2020), three algorithms consisting of Logistic Regression
(LR), Support Vector Machine (SVM), and Extreme Gradient Boosting
(XGBoost) were used to classify algae images based on extracted fea-
tures. Their model achieved over 95 % segmentation efficiency and 96 %
classification accuracy with 200 test images of red tide algae species
(Chen et al., 2020).

3.3. Improving region-based CNN (R-CNN) algorithm for faster detection

R-CNN is considered one of the early deep learning algorithms for
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object detection with a two-stage process (Girshick et al., 2014). In the
first stage of R-CNN, the model proposes regions where the target object
is located using a selective search algorithm. A CNN is then used to
extract the features of the proposed regions, and these features are
classified using an SVM. In R-CNN, each proposed region is individually
passed through a CNN to extract features, which is computationally
expensive and time-consuming.

Fast R-CNN addresses this issue by using a Rol pooling layer to
extract features from the entire feature map, rather than applying the
CNN to each proposed region individually (Girshick, 2015). The Rol
pooling layer takes the proposed regions as inputs and extracts a fixed-
size feature map for each region, allowing the CNN to be applied only
once to the entire input image. This reduces the number of computations
and makes Fast R-CNN significantly faster than R-CNN. Faster R-CNN
introduces a Region Proposal Network (RPN), which shares convolu-
tional features with the object detection network (Ren et al., 2015). The
RPN generates object proposals much faster than the selective search
algorithm used in R-CNN and Fast R-CNN, resulting in faster training
and testing times. This allows Faster R-CNN to achieve state-of-the-art
performance on object detection tasks with improved speed.

Qian et al. (2020) applied Faster R-CNN to a large dataset of colored
microscopic images which contained 27 genera of algae including cya-
nobacteria with a mean average precision of 74.6 % (Qian et al., 2020).
Although the average precision was lower than Chen et al. (2020)
(discussed in the previous section), being able to differentiate between
many genera of algae is a significant improvement as field samples tend
to have a great diversity of algae species.

3.4. YOLO models for more efficient single algal cell detection

YOLO models are proposed to be better than CNN models for iden-
tifying and classifying objects in microscopic images of microalgae
(Abdullah et al., 2022; Park et al., 2022a). The YOLO models were
recently developed in 2016 for algal image detection to improve clas-
sification accuracy and inference time (Redmon et al., 2016). Over time,
different versions have been developed, which include a tiny version of
each model using a smaller number of convolutional layers to reduce
processing time compared to standard models (Bochkovskiy et al., 2020;
Jiang et al., 2020; Park et al., 2022a).

The YOLO algorithm is considered to be the first one-stage algorithm
to include region proposal and object classification in a single stage
(Redmon et al., 2016). The first version of YOLO, YOLO v1, reduced the
inference time for object detection by processing the region proposal
and object detection in a single stage, but it showed relatively low ac-
curacy compared to other two-stage models. Since then, the YOLO
models have been improved with versions 2 and 3 (Redmon and Far-
hadi, 2017; Redmon and Farhadi, 2018). To assess object detection
models (e.g., R-CNN and YOLO), the mean average precision (mAP) is
used, and a higher score indicates greater accuracy in the model de-
tections. YOLO v3 showed comparable accuracy with a mAP of inter-
section over a union threshold of 0.5 (mAP-50) ranging from 51.5 to
57.9. This level of accuracy is similar to other two-stage models while
having several times faster inference time than other two-stage models
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(Redmon and Farhadi, 2018). YOLO is a representative one-stage object
detection model, and since then, new versions have been continuously
developed and used in various fields including algal detection.

Recently, several independent studies used YOLO models to classify
and count algal cells from microscope images. Fig. 3 shows the repre-
sentative workflow of using YOLO models to analyze images of micro-
algae. First, the microscope images are acquired and labeled by hand to
facilitate the training of various YOLO models. Then, additional mi-
croscope images are utilized to evaluate the ability of the diverse models
in classifying and counting the algal cells present.

Liu et al. (Liu et al., 2022) used YOLO to classify and count ocean
microalgae from low-magnification images (10x). As high-
magnification images are more expensive to acquire and contain fewer
algae cells per image, being able to accurately classify and count algae
cells from a lower magnification image is attractive. The authors used an
improved algae-YOLO object detection approach to automatically count
single algae cells from low magnification with an 82.3 % reduced
parameter space size without loss of accuracy (Liu et al., 2022). How-
ever, they only analyzed images of lab-grown cultures containing one
species of algae (either Chlorella sp. or Isochrysis sp.) which limits their
model for field application as natural water samples will contain diverse
types of algae species. Despite this, being able to accurately detect cells
at lower magnification and significantly reduce the parameter space can
be built upon in future studies to help bring automated detection of
algae one step closer to practical use (e.g., cost reduction).

Park et al. (Park et al., 2022a) were able to accurately classify and
count 30 algae genera using 4 different versions of YOLO (YOLO.v3,
YOLO.v3 tiny, YOLO.v4, and YOLO.v4 tiny). The tiny versions are built
off the standard version to be faster but less accurate by decreasing the
number of convolutional layers. However, the study found that YOLO.v4
tiny achieved the highest mAP at 89.8 %, while also being able to
analyze the images the quickest (4 fps). Abdullah et al. (2022) also
tested YOLO.v3, YOLO.v4, and YOLO.v5 with 4 algal species (Cosma-
rium, Closterium, Scenedesmus, and Spirogyra) and obtained a slightly
higher mAP (90.1 %) using YOLO.v5 compared to the similar study
(Park et al., 2022a).

Recently, Gong et al. (Gong et al., 2023) compared the performance
of various versions of YOLO models, including versions 5 to 7, for the
classification of 53 algal genera. The mAP-50 of the YOLO models
ranged from 56.1 % to 70.6 %, with YOLO v7 showing the best model
performance with a mAP-50 of 70.6 %.

Zhou et al. (Zhou et al., 2023) also used YOLO algorithms to classify
and count algae genera even when they are in different physiological
states (e.g., bleaching, translating, or normal) and compared with
various other algorithms (i.e., TOOD and RCNN) to find the YOLO model
performed best at 82.6 % precision. Various authors have been contin-
uously releasing new versions of the YOLO model, up until YOLO V8 in
early 2023.

3.5. Designing ML models for practical use in microscopic detection of
algae

Manual algal classification from microscopic images often faces

-
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Fig. 3. A procedure for algae classification and counting from microscopic images using YOLO models.
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challenges in achieving high accuracies (Xu et al., 2022). Clever design
of ML models can allow for high accuracy algae classification and
enumeration without extensive model training.

Xu et al. (Xu et al., 2022) utilized deep CNN's ability to differentiate
between objects using publicly available microscopic images of different
algae species to train their algorithms. Approximately 800 algal images
were used along with 400 of these images for testing and 13 different
algal genera were classified (Xu et al., 2022). They demonstrated that
efficient and accurate algal classification was possible even with a small
number of algal images for training a CNN due to a series of technologies
that were applied for efficient feature extraction. This has the potential
for a national-scale application by collecting public databases (e.g., algal
images) without the need for extensive sampling events (Xu et al.,
2022).

Gong et al. (Gong et al., 2023) used a self-organized algorithm that
does not require a set of training images but rather learns over time as
more images are fed. Using this method, they were able to create a
dataset that ultimately had 28,329 images with 562,512 single-cell
images covering 54 genera. Furthermore, their ML program accurately
classified and counted the algae on a 2 cm x 2 cm field image (which
corresponds to a 100 pL sample) within 5 min. They also included an
interface to upload their results to the cloud to help send warnings about
potential algal blooms.

3.6. Detection of floating algae using ML

While most studies focus on improving automated counting and
detection in microscopic images, ML-based image analysis can also be
applied to the images of macroscopic floating algae communities. This
method offers the advantage of automatically detecting algae using
simple images collected by surveillance cameras on ships, eliminating
the need for microscopic images of collected samples. However, this
approach has its limitations, as it can only detect species of floating
algae, and requires high concentrations to form visible floating com-
munities. Discussed below are two studies that use ML for analyzing
images collected from ship and shoreline surveillance cameras.

Zou et al. (Zou et al., 2022) proposed a new instance-segmentation
network named AlgaeFiner to monitor floating-macroalgae (specif-
ically Ulva prolifera and Sargassum), which have recently caused out-
breaks within relatively short periods in China. They analyzed RGB
images collected from surveillance cameras aboard ships and other fa-
cilities along the shores. Mask Transfiner network was added to the
AlgaeFiner to enhance the quality of floating-algae segmentation even
with images taken in various atmospheric and water conditions (e.g.,
cloudy, foggy, windy, wavy, sunny/glary, and rainy) with 45-49 %
detection precision.

Wang et al. (Wang et al., 2022b) proposed a new algorithm called
AlgaeMask which also uses instance segmentation to detect floating
algae from ship and coastline surveillance videos. Their algorithm was
based on the CenterMask algorithm and was able to achieve up to ~45 %
detection precision of Ulva prolifera and Sargassum as opposed to up to
15 % with CenterMask.

3.7. Detecting spatiotemporal HABs trends using remote sensing imaging

In recent years, there have been many remote sensing studies on
HABs detection and monitoring including satellite-derived methods.
Khan et al. (2021) provides a thorough meta-analysis review on remote
sensing studies for HAB detection and monitoring that were published
up to 2020. As shown by their meta-analysis, there have not been many
studies that utilize ML on remote sensing data (Khan et al., 2021). Using
remote sensing imaging is advantageous in that vast areas of water can
be monitored. However, similar to images of floating macroalgae from
surveillance cameras (discussed in Section 3.6), remote sensing data is
limited by its inability to fully characterize the diversity and numbers of
algal species in a body of water. In this section, we summarized the ML
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modeling using remote sensing imaging.

The most common method of HAB detection is currently based on
Chl-a (Hill et al., 2020). Hill et al. (Hill et al., 2020) used ML to incor-
porate historical data on HABs outbreaks and reflectance band data from
satellite images to detect Karenia brevis algae (K. brevis) HAB events.
Because HAB outbreaks follow well-defined spatiotemporal patterns,
those patterns can be used to inform ML algorithms to predict future
outbreaks. Specifically, in this study, images taken by satellites
measured Chl-a from backscattered light of waters to quantify algae
concentration. Using this data of backscattered light (i.e., Chl-a con-
centration), a CNN algorithm was trained to compare the spatiotemporal
patterns in the data to historical patterns to forecast future HABs. They
achieved 86 % prediction accuracy up to 8 days ahead in Floridan
coastal waters, which is significantly improved compared to previous
models, such as the HAB Operational Forecast System in Florida, which
can only predict respiratory-related HAB outbreaks up to 4 days in
advance.

Although instance segmentation networks are quite popular due to
their accuracy, semantic segmentation networks are less complex and
can be designed to reduce computational complexity (Yang et al., 2022).
Using a large dataset of unmanned aerial vehicles images, Yang et al.
(Yang et al, 2022) developed a real-time semantic segmentation
network, RecepNet, based on a bilateral segmentation network (BiSe-
NetV2) and were able to achieve 82 % mean intersection over union
(mlIoU) for blue-green algae detection.

4. Explainable artificial intelligence (XAI)

ML models are often referred to as black-box models. Due to the
inherent nature of black-box models, interpreting the outcomes of ML
models can be challenging. This is regarded as a significant limitation
when employing ML models in practical field management and decision-
making processes. To address these limitations, various algorithms are
used for interpreting model simulation results. Ensemble models such as
RF, XGBoost, and LGBM often have internal algorithms to quantify the
relative importance of input variables. In recent years, XAl is increas-
ingly used for the interpretation of various factors on target variables in
ML models (Adadi and Berrada, 2018; Arrieta et al., 2020; Park et al.,
2023). Shapley (SHAP) analysis is a popular XAI algorithm (Lundberg
et al., 2018; Lundberg and Lee, 2017).

Fig. 4 is an example of the SHAP analysis result for an XGBoost model
to predict Chl-a concentration using the field observation data from the
Miho River monitoring station, the same data used in Section 2.5 for an
example of auto H20 model. The python open source libraries XGBoost
(Chen and Guestrin, 2016; XGBoost), SHAP (Lundberg et al., 2018) and
Scikit-learn (Pedregosa et al., 2011) were used for development and
visualization of the model in Fig. 4. Fig. 4(a) visualizes the SHAP values
of input variables used for model training. The y-axis of the graph is
determined by sorting variables based on their influence on the model
results, with the most influential variable at the top, followed by others
in descending order of influence. In Fig. 4(a), each dot represents the
SHAP value of an individual observation, where the color of the dots
corresponds to the actual observation values. Higher measurement
values are represented in red, while lower values are indicated in blue. A
positive SHAP value indicates that the measurement of the corre-
sponding variable contributes to an increase in the predicted target
value of the model. Conversely, a negative SHAP value means that the
variable has an impact that leads to a decrease in the target value from
model prediction. For example, as shown in Fig. 4(a), the variable PH
has the most significant impact on the model's performance, indicating
that higher values of PH tend to contribute to an increase in the pre-
dicted values of Chl-a. SHAP analysis also allows for detailed interpre-
tation of individual measurements. Fig. 4(b) is an example of SHAP
analysis for a certain date of measurement, wherein the recorded TEMP
value on the date was 17 °C, resulting in a predicted Chl-a concentration
of 38.49 rng/rn3. The largest bar scale (i.e., TEMP) indicates the most



J. Park et al. Science of the Total Environment 938 (2024) 173546
High
PH -’: .
TOC -—--‘-—.—-——-. PR
[}
=
TEMP --m—— oo [}
g
TURB s E]
©
&
EC ) —*—- -
DO - _+_ ——
- T T T T v T Low
-20 0 20 40 60 80 100
SHAP value (impact on model output)
(a) SHAP analysis result of model training
higher & lower
27.83 38.49

TURB=31 EC=824 TOC=58

TEMP =17

PH=T72

(b) SHAP value analysis for an individual observation day.

Fig. 4. An example of SHAP value analysis.
(a) SHAP analysis result of model training.
(b) SHAP value analysis for an individual observation day.

significant impact on the model performance. Additionally, the color of
the variable indicates its tendency to either decrease (blue) or increase
(red) the predicted Chl-a concentration.

Recent studies used SHAP to understand and quantify the effect of
various environmental factors on algal blooms (Lee et al., 2022; Park
et al., 2022b). Park et al. (Park et al., 2022b) calculated three indices
SHAP, feature importance (FI) and variance inflation factor (VIF) to
quantify the relative importance of input variables on an XGBoost model
to predict Chl-a concentration. The water quality monitoring data
collected in three parallelly located field stations in Geum River, South
Korea between October 2017 and March 2021 were used for model
development. The results showed that the model performed most stably
when the priority of input variables was determined by SHAP.

The factors influencing algal blooms are diverse and include nutrient
levels, weather conditions, and more. These characteristics can vary
depending on the overall pollution load and the specific characteristics
of the target area. Existing studies also propose various influencing
factors on pollution. TN and TP are among the significant contributors,
and their impact can vary based on whether concentrations exceed a
certain threshold or not. Mamun et al. (2019) analyzed the relative
importance of input variables in predicting Chl-a using three ML algo-
rithms: MLR, SVM, and ANN. The effect of input variables on model
performance varied among different models. Water temperature was
found to be the most important variable for MLR and SVM, followed by
TN and TP. On the other hand, TSS and BOD were found to be more
important for ANN. Xia et al. (2020) analyzed the relative importance of
input variables on a GBM model to predict algal blooms using the
Varlmp function in a caret package and presented that water level and
water temperature were more important than nutrient concentration
since the concentration of TN and TP were usually above thresholds and
not limiting algal blooms. Ly et al. (Ly et al., 2021) used ML algorithms
to predict algal blooms in the Han River, South Korea, using monthly
data collected from 40 field stations between 2011 and 2020. Eight
different ML algorithms, including RNN, LSTM, GRU, SVM, and decision
tree regression (DTR), were compared for their suitability to predict the
Trophic State Index (TSI) values based on Chl-a. The ML algorithms
helped identify the most important water quality parameters contrib-
uting to algal bloom prediction, showing that eutrophication and algal
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proliferation were influenced by the interplay between nutrients,
organic contaminants, and environmental factors. Qian et al. (Qian
et al., 2023) used an attention mechanism to analyze the driving factors
of algal growth in their deep learning-based Transformer model, and the
results indicated that TP had the highest effect on algal growth in the
Henan section, China, whereas TN had the highest effect on algal growth
in the Hebei section, China.

Water temperature is another factor that is consistently identified as
one of the key factors influencing algal growth. Baek et al. (2021) uti-
lized a numerical model and ML to identify environmental factors
influencing Alexandrium catenella blooms through intensive monitoring
and DT methods. A. catenella is an algal species responsible for red tide,
causing paralytic shellfish poisoning. The study found that water tem-
perature was the primary driving factor for A. catenella blooms, followed
by phosphate concentration and retention time. The DT model revealed
that water temperature below 17.2 °C, higher phosphate levels, and
increased retention time were key factors in the algal species' growth.
These findings can help predict A. catenella blooms and inform mitiga-
tion strategies. The combination of ML and numerical simulation could
be an effective approach for managing A. catenella blooms. The total
classification accuracy of A. catenella bloom levels was 82.25 % for the
training set and 75.0 % for the test set (Baek et al., 2021).

Tamvakis et al. (Tamvakis et al., 2021) used ML techniques to predict
the presence of 18 potentially harmful marine microalgae at the genus
level, based on a small set of abiotic variables identified as drivers of
blooms. The RF algorithm accurately identified the presence of most
genera, with a mean accuracy of 89.2 % across all samples. Analysis of
the input variable importance revealed that temperature had the most
significant effect on the presence of genera, where this effect varied
among different genera. Lee et al. (Lee et al., 2022) developed a CNN
model to predict the concentration of Chl-a using eight water quality
variables (water temperature, pH, EC, DO, TOC, TN, TP, and Chl-a) and
four weather variables (e.g., average wind speed) as input variables.
Daily water quality data were collected from 40 automatic water quality
monitoring stations between April 2015 and December 2018 from four
major rivers in Korea. The optimal CNN model showed an R? value of
0.934 and an RMSE value of 5.463, respectively. The SHAP analysis was
performed to quantify the relative importance of input variables on the
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model performance, which showed that Chl-a in the previous time
period had the most significant impact on the prediction, with water
temperature, DO, and TP identified as major factors affecting Chl-a
prediction. Jung et al. (Jung et al., 2023) applied ML to identify the main
factors influencing the occurrence of blue-green algae in a stagnant river
area. They used an RF model and evaluated its accuracy using validation
data. The input independent variables included water quality parame-
ters such as pH, EC, DO, BOD, COD, TP, and Chl-a, hydraulic data
including outflow and hydraulic retention time (HRT), and meteoro-
logical data such as temperature and precipitation. The target variable
was the occurrence of blue-green algae. The model was trained on data
from 2015 to 2019 and tested on data from 2020 to 2022. The re-
searchers used the mean decrease in Gini to evaluate the importance of
each variable in the model. The results showed that overall temperature
is the most important factor affecting the occurrence of blue-green algae.
The evaluation result also showed that the RF model had high accuracy
in predicting the occurrence of blue-green algae in stagnant rivers (Jung
et al., 2023).

Overall, prior studies have highlighted that various environmental
factors such as water quality and weather conditions from upstream sites
can serve as input variables to construct predictive models for algal
blooms. Through quantitative analysis facilitated by XAI, the impact of
diverse upstream influencing factors can be assessed, shedding light on
the underlying causes of algal bloom occurrences including pollution
sources. Continuous exploration of XAI for conducting scientific and
quantitative analyses of environmental factors affecting water quality,
and leveraging these results for decision-making in water quality
improvement, holds the potential to expand the applicability of ML-
driven models for algal bloom management.

5. Consideration for effective ML-driven HAB management

Here, we demonstrated the current development and utilization of
various ML models for HAB prediction and algae detection based on time
series data and image analysis using object detection technology. Data-
driven models, such as ML, have the advantage of relatively easy initial
construction as they do not require the estimation of parameters based
on experiments. However, in real-world scenarios, the quality and
characteristics of input data, such as the measurement frequency of
input data, selection of input variables, and the correlation between
measurement items, can significantly impact the performance of the
model (Park et al., 2022b). Therefore, first of all, obtaining high-quality
and field-representative data is essential for developing desirable
models and optimizing overall model performance. Given the intricate
internal algorithms of ML models, acquiring a sufficient quantity of
high-quality data is necessary to achieve optimal model performance.
Real-time monitoring data collected from on-site, field deployable sen-
sors can be highly valuable for ML models. Additionally, regular accu-
racy management is required to prevent errors or biases in field sensor
data. In field monitoring stations, long-term missing data over several
months is often observed. Thus, efforts should be made to minimize
missing data through proper interpolation of mission data or measures
using duplicate measurement devices to enhance data quality for model
construction. Furthermore, during the planning and site selection stages
of establishing a new field monitoring plan, determining appropriate
measurement frequencies, measurement parameters, and measurement
locations, while considering the application of ML models can signifi-
cantly contribute to enhancing the efficiency of water quality manage-
ment with the use of rapidly evolving ML tools.

In addition, by establishing an integrated database that manages
various data on water quantity and quality together, the effectiveness of
utilizing ML models can be improved. To predict the occurrence of algal
blooms, it is essential to leverage not only water quality data but also a
range of measurements including water quantity, weather conditions,
and watershed environment. It is believed that the efficiency of data
acquisition and quality control on water management can be
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significantly enhanced through the establishment of a system that in-
tegrates and manages data from these different domains.

Exploring XAI presents a promising avenue for expanding the
application of ML algorithms to algae bloom management. For example,
when constructing an ML model to predict the occurrence of algal
blooms, XAI can be employed to perform a quantitative assessment of
the factors influencing the increase in algal blooms. This approach fa-
cilitates the analysis of the necessary measures to reduce the occurrence
of algal blooms. Such analysis results can contribute to enhancing the
efficiency of decision-making for algae bloom management, such as
prioritizing pollution reduction projects needed to mitigate algal bloom
occurrences. Ongoing research into applying XAI for algae bloom
management indicates a burgeoning field. Through continuous research
on utilizing XAI in the future, it will be possible to advance and improve
the efficiency of algal bloom management techniques.

6. Conclusions

The public health and ecological concerns towards HABs have pro-
pelled research to better manage HABs and monitor algae populations.
For HABs management, it is crucial to analyze the current status and
predict future occurrences of algae.

Research into using advanced ML models for algal bloom detection
and prediction is relatively recent and has evolved alongside the
development history of ML models. As new models are developed,
research typically focuses on applying them to the detection and pre-
diction of algal blooms. Initially, early-developed ML models such as
ANN and SVM were used in algal bloom prediction. Over time, more
advanced models with superior performance, such as ensemble models
and deep learning models, have been developed and used for algal
prediction. In terms of object detection models, those based on the CNN
algorithm have continuously improved in both performance and
detection speed. The YOLO model, in particular, has demonstrated
excellent performance while reducing inference time, making it one of
the most widely used object detection algorithms for algal cell detection
to date.

One of the advantages of ML models over traditional mechanistic
models in predicting algal blooms is that they eliminate the need to
identify physico-chemical-biological factors affecting algal growth
through time-consuming and labor-intensive experiments. The appli-
cation of ML-based image detection and prediction models with excel-
lent performance can reduce the time, manpower, and costs required for
field management, enhancing real-time responsiveness. Ultimately, the
integration of all available data (e.g., satellite images and on-site real-
time sensor data) into ML algorithms can improve algal bloom predic-
tion significantly and efficiently with high accuracy. As discussed, algae
blooms follow certain patterns though they may occur randomly and
behave differently in geographical areas. One can imagine that the use of
ML along with the collection of high quality and high quantities of data
on algal populations and the incorporation of data with spatiotemporal
patterns (e.g., satellite images) and historical records can significantly
improve algal bloom prediction, maybe even to a month or two in
advance. It may also be able to combine and incorporate geographic
information into the HAB prediction to provide practical implications
for the prevention and control of HAB. For example, is the surrounding
area of HAB events highly agricultural versus commercial? Are there
other geographical considerations (e.g., temperature and altitude) that
can influence algal blooms and their dynamics? Advancements in ML
algorithms can provide the answers to these questions, leading to the
development of a timely and highly accurate prediction tool for HAB
management.

As observed in previous studies, ML-based algorithms are rapidly
advancing. By reviewing past studies, we can identify directions to
further enhance the effectiveness of ML technology. The success of ML
models largely depends on the quality of the data used in model con-
struction and how this data is preprocessed and selected for model
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construction. However, more complex models do not necessarily mean
better performance. Therefore, a wide variety of ML models continue to
be actively used and research often involves applying multiple ML
models together to compare their performances. The key is to choose
models that align with the specific characteristics of the input data.
AutoML emerges as an innovative approach that facilitates the con-
struction of optimal models suited to the characteristics of the data. As
research continues in this field, we can expect both the performance of
ML models and their ease of use to improve.

Generally, ML models require sufficient data for training the models,
and on-site real-time sensor data from existing monitoring systems is a
useful tool for obtaining the necessary data for applying ML models.
Securing high-quality data can maximize the effectiveness of advanced
ML models. Considering the ongoing increase in the utilization of ML
models, it is essential to conduct research and considerations regarding
the types of data and acquisition methods (e.g., measurement frequency,
locations, and parameters to be measured) that can enhance the effec-
tiveness of model development for field applications. Additionally, the
establishment of a systematic platform for the integrated management of
data acquired from various fields can enhance the usability of the data
and the efficiency of quality control. Further, XAI provides a quantita-
tive and scientific interpretation for the results of ML models, increasing
the applicability of ML-based technology in policy development and
decision-making for mitigating algal bloom.
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