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Abstract
The past two decades have seen a drastic increase in the availability and use of genetic techniques to study

phytoplankton communities. As a result, it is now well documented that phytoplankton populations are geneti-
cally diverse, despite predominantly asexual reproduction and minute morphological variation. Genetic varia-
tion can lead to variation also in phenotype, and some traits vary more among genotypes than between species.
Trait-based approaches tackle this by focusing on traits rather than on species. However, trait-based models
often have difficulty predicting and explaining the huge trait-diversity among coexisting individuals competing
for the same few resources. Thus, we ask the question: How do hundreds, if not thousands, of genotypes coexist
in a highly competitive environment? In this review, we gather information on genetic and phenotypic varia-
tions in coexisting genotypes and elaborate on three mechanisms by which broad intraspecific genetic diversity
may be possible: neutral mutations, environmental fluctuations, and trade-offs among traits. These have all
been applied on an interspecies level, and we discuss their use also among coexisting genotypes. We find that
genetic diversity to be almost exclusively studied in blooming species and that clonal diversity frequently mea-
sure above 0.95 (i.e., 95% of individuals sampled are genetically different). Genetic diversity seems stable
throughout blooms, suggesting that competitive exclusion is low or that new genetic material is frequently
being introduced into populations. Further, we find high intraspecific trait-variation in several key traits among
coexisting strains but also that trait-variation is often neglected in studies on phytoplankton, making
coexistence difficult to predict.

Phytoplankton diversity stabilizes ecosystems and generally
determine the efficiency of many aquatic ecosystem processes
such as primary production (Vallina et al. 2014), the transfer
of energy through the trophic food web (Striebel
et al. 2012), and carbon sequestration through the biological
pump (Duffy and Stachowicz 2006; Tréguer et al. 2018).
Since the seminal work of Hutchinson’s “Paradox of the
plankton” (1961), researchers have attempted to answer the
question as to how phytoplankton communities maintain
broad species diversity despite there being such few limiting

resources (Hardin 1960). There are now several mechanisms
identified by which such diversity becomes possible, includ-
ing environmental fluctuations (Hutchinson 1961), con-
temporaneous disequilibrium (Richerson et al. 1970), chaos
(Huisman and Weissing 1999), phenotypic heterogeneity
(Menden-Deuer et al. 2021), and trade-offs (Winter
et al. 2010). These mechanisms have since been successfully
implemented in models and theoretical considerations
seeking to understand marine microbial community
dynamics (Vallina et al. 2014; Acevedo-Trejos et al. 2018;
Våge et al. 2018; Cadier et al. 2019; Dutkiewicz et al. 2020;
Behrenfeld et al. 2021). Thus, the ultimate explanation for
the paradox is likely not a single mechanism, but a combi-
nation of several and perhaps a paradox in itself (Roy and
Chattopadhyay 2007; Wilson 2011; Record et al. 2014).

However, phytoplankton communities are diverse not
only in terms of species, but also in terms of within-species
variability. The past two decades have seen a drastic increase
in the availability and use of genetic techniques to study
phytoplankton populations (Rengefors et al. 2017; Rynearson
et al. 2022). As a result, it is now well documented that phy-
toplankton populations are genetically diverse (de Vargas
et al. 2015; Rengefors et al. 2017). Single-cell isolations from
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phytoplankton populations of various species have revealed
high genetic and phenotypic diversity (Alpermann
et al. 2010; Dia et al. 2014; Kashtan et al. 2014; Tammilehto
et al. 2017), with blooms of some species estimated to con-
tain thousands of genetically distinct lineages (Rynearson
and Armbrust 2005; Sassenhagen et al. 2022). Such broad
genetic diversity may be essential to the evolutionary and
adaptive ability of phytoplankton populations (Barrett and
Schluter 2008; Godhe and Rynearson 2017; Wolf et al. 2018;
Ajani et al. 2021), but similar to the origins of Hutchinson’s
paradox we are still lacking an understanding of how it is
maintained.

Genetic variation within a population may be maintained by
at least three mechanisms: first, the genetic variation (i.e., the
mutations) is neutral with no effect on the phenotype and,
hence, the performance of the cells. Second, genetic variation
leads to phenotypic (trait) variation and is maintained due to
environmental fluctuations and the consequent lack of steady
state in population sizes. Finally, genotypic variation leads to vari-
ation in several traits and is maintained through trade-offs
between traits. That is, a genotype that performs above average in
one trait (e.g., competitive ability) does this at the cost of a poorer
performance with respect to another trait (e.g., defense), and two
(or more) genotypes can therefore co-exist while competing for
the same resource. This latter mechanism may in fact lead to very
high genotypic variation within microbial populations (Thingstad
and Lignell 1997; Winter et al. 2010).

While many studies have demonstrated that genetic varia-
tion is common within phytoplankton populations, there are
only a few that have examined the potential phenotypic
implications of genetic variation within a population. In this
paper, we review information on intraspecific genetic and trait
variations in coexisting phytoplankton strains. We have three
distinct goals: first, we compile observations where genotypic
diversity has been examined among coexisting strains; next,
we explore to what extent genotypic variation leads to trait
(phenotypic) variation; finally, we discuss how these strains
can coexist.

Data collection
We collected data on clonal diversity (i.e., the number of

distinct genotypes divided by the number of clones isolated)
and intraspecific trait variation using Web of Science or Goo-
gle Scholar searches. Data on clonal diversity were acquired
from past compilations (Godhe and Rynearson 2017) and by
searching using the terms “phytoplankton clonal diversity” or
“phytoplankton genetic diversity.” To find publications on
intraspecific trait variation, we used combinations of the terms
“phytoplankton,” “intraspecific variation,” and “intraspecific
trait variation.” A coefficient of variation (CV, %) was calcu-
lated for trait values among strains from the same population.
We excluded one CV that was based on a negative mean. For
both clonal and trait diversities, we included only strains that

were coexisting at the time of isolation, and we thus excluded
studies where strains originated from different geographical
locations or were isolated from different populations, from
sediments, or where this information was not available. We
chose not to include studies that had used strains that had
been acquired from culture collections with the exception
of Brand et al. (1981), where strains were used within a rea-
sonable time after isolation. Clonal diversity and trait data
values were extracted from the text, tables, or complemen-
tary data files, digitized from graphs, or acquired directly
from the authors.

Genetic diversity of phytoplankton populations
We found 14 studies that reported clonal diversity and that

fit our criteria of isolates (i.e., strains) originating from the
same population and sampling occasion (Table 1). These
14 studies include between 2 and 11 isolates from different
phytoplankton populations. The number of isolates gen-
otyped from each population or sample did not influence
clonal diversity (Supporting Information Fig. S1); thus, we did
not exclude populations that included only a few strains.

Apparent from the collected data is that genetic diversity is
almost exclusively studied in blooming species. During
blooming, phytoplankton mainly reproduce asexually.
Coupled with low morphological (i.e., shape and overall cell
structure) variation among individuals of the same species and
the fact that blooms are often dominated by one or few taxa,
low genetic diversity may be expected. On the contrary,
almost all studies reported intermediate to high clonal diver-
sity, that is, between 0.42 and 1.00 (Table 1; Fig. 1), with the
majority (105 out of 181 samples or populations) reporting
clonal diversity > 0.95 (Fig. 1). The sole exception of such
clonal diversity is found during an autumn bloom of the dia-
tom Pseudo-nitzschia multistrata in the Gulf of Naples in 2013.
Here, Ruggiero et al. (2018) found clonal diversity as low as
0.06 during a single sampling occasion, and 0.18 throughout
the entire bloom. High clonal diversity is found in both fresh-
water and marine environments and across several groups of
phytoplankton (Table 1). How well these data represent the
actual in situ population from which they are isolated is diffi-
cult to answer. Generally, individual cells or colonies are iso-
lated via pipette, and cultures (strains) are established from
these isolates. A common issue is that there can be high vari-
ability in the fraction of isolates that survive and can actually
be cultured, with anything from 0% to 100% of isolates sur-
viving the process (e.g., Wilson et al. 2005; Tammilehto
et al. 2017). Hence, a form of selection occurs, and genetic
(and phenotypic) variation may end up lost. In the 14 studies
compiled for Table 1, we found no statistical relationship
between clonal diversity and isolate survival in the studies
that reported survival for the individual sampling dates
(Supporting Information Fig. S1), and thus we decided not to
exclude any data based on this.
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Temporal variation in bloom diversity
One could imagine that blooms are most diverse in their

early phase when cell densities are low and there is less com-
petition for space and resources. As the bloom progresses, the-
ory predicts that the most fit genotype should become
dominant and hence that the genetic diversity decreases. On
the contrary, genetic diversity seems stable throughout
blooms. In a bloom of the ochrophyte Gonyostmum semen in a
southern Swedish lake, Lebret et al. (2012) even found that
genetic diversity increased during the � 5-month long bloom-
ing event. This could be due to constant reseeding of cysts or
resting spores from sediments (Lebret et al. 2012). Indeed,
studies of isolates from sediments have found them as

genetically diverse as the pelagic population (Godhe and
Härnström 2010; Jerney et al. 2022). Thus, if intense competi-
tion in the pelagic is constantly leaving strains outcompeted,
the introduction of new genetic material from the deep could
maintain genetic diversity. Biotic and abiotic barriers can sepa-
rate genetically distinct populations (Casteleyn et al. 2010;
Dia et al. 2014; Godhe et al. 2016), even at the same geo-
graphical location (Rynearson et al. 2006), but gene flow
between populations is known to occur (Godhe et al. 2013,
2016). Chen and Rynearson (2016) found four co-existing
populations of the diatom Thalassiosira gravida during a spring
bloom in the North Atlantic. They suggested that this could,
among other things, be due to ocean current transport from
other regions.

Available field data support the notion of some sort of
genotypic succession throughout and between blooms of the
same species. Thus, Rynearson and Armbrust (2005) sampled
only 11% of 607 clonal lineages more than once over 11 sam-
pling occasions throughout a bloom of the diatom Ditylum
brightwellii in Pudget Sound, Washington, and only 4% were
sampled three or more times.

Phenotypic diversity among coexisting phytoplankton
strains

Studies have now shown that populations of phytoplank-
ton are distinctly different not only in their genotypes, but
also in their physiology. As such, the genetic difference found
within phytoplankton populations may also result in pheno-
typic differences, despite being subjected to the same environ-
mental conditions. Larry E. Brand (e.g., Brand 1981, 1985;
Brand et al. 1981) pioneered such experiments, often using a
multitude of strains isolated from the same locations. In
experiments with isolates from populations of the diatom
D. brightwellii, Rynearson and Armbrust (2004) suggested that

Table 1. Clonal diversity within phytoplankton populations.

Environment Group Species Clonal diversity Isolates genotyped Reference

Freshwater Ochrophyte Gonyostmum semen 1.00 4–20 Lebret et al. (2012)

Freshwater Cyanobacteria Microcystis aeurginosa 0.42–1.00 2–12 Wilson et al. (2006)

Marine Diatom Ditylum brightwellii 0.96 24 Rynearson and Armbrust (2000)

Marine Diatom D. brightwellii 0.87–1.00 20–76 Rynearson and Armbrust (2005)

Marine Diatom D. brightwellii 0.82–1.00 2–51 Rynearson et al. (2006)

Marine Diatom Pseudo-nitzschia multistrata 0.46–1.00 7–57 Tesson et al. (2014)

Marine Diatom P. multistrata 0.06–1.00 2–61 Ruggiero et al. (2018)

Marine Diatom Pseudo-nitzschia pungens 0.89–1.00 3–50 Casteleyn et al. (2009)

Marine Diatom Thalassiosira gravida 0.91–1.00 20–116 Chen and Rynearson (2016)

Marine Diatom Thalassiosira rotula 0.98–1.00 8–96 Whittaker and Rynearson (2017)

Marine Dinoflagellate Alexandrium fundyense 0.83–0.92 12–42 Erdner et al. (2011)

Marine Dinoflagellate A. fundyense 0.47–0.97 17–77 Richlen et al. (2012)

Marine Dinoflagellate Alexandrium minutum 1.00 9–40 Dia et al. (2014)

Marine Dinoflagellate Alexandrium tamarense 1.00 77 Alpermann et al. (2010)

0

25

50

75

0.0 0.2 0.4 0.6 0.8 1.0
Clonal diversity

Fr
eq

ue
nc

y

Fig. 1. Frequency distribution of clonal diversity within 181 samples or
populations of phytoplankton. Data from various sources (see Table 1).
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strain specific growth-rate differences within two populations
were likely due to genetic differences rather than morphologi-
cal (i.e., cell size), and found that no isolate consistently grew
slower or faster at all three different levels of light. Similar phe-
notypic variation among coexisting strains have been demon-
strated in other diatoms (Ajani et al. 2021; Olesen et al. 2022)
and other types of bloom-forming phytoplankton, such as
dinoflagellates (Calbet et al. 2011; Brandenburg et al. 2018) and
cyanobacteria (Wilson et al. 2005; Willis et al. 2016). Thus,
despite belonging to the same species and population, different
strains may vary in their properties, and this may influence the
dynamics of ecosystems.

One way of documenting phenotypic diversity is to quan-
tify how different genotypes may vary in their expression of
traits, and genotypic diversity has been found to be closely
associated with differences also in phenotype (Rynearson and
Armbrust 2004; Gsell et al. 2012). A trait is a measurable fea-
ture of an organism that largely governs how it interacts with
its environment (McGill et al. 2006). Trait-based approaches
were initially used in terrestrial ecology, but has in the past
two decades been applied more frequently to describe also
aquatic ecosystems (Litchman et al. 2007, 2013; Kiørboe
et al. 2018; Beukhof et al. 2019). In phytoplankton, the key
traits (i.e., the traits that explain most of an organism’s fitness)
are cell size, growth, resource acquisition, and defense
(Litchman and Klausmeier 2008; Kiørboe et al. 2018). These
data are now available for a multitude of phytoplankton spe-
cies (e.g., Edwards et al. 2012; Marañ�on 2015; Panči�c and
Kiørboe 2018), but we are still lacking in how these traits may
vary within species despite the important role of intraspecific
variation in community ecology (Vellend 2006; Bolnick
et al. 2011; Violle et al. 2012). Trait-based approaches tackle
trait variation by focusing on traits rather than on species but
still have difficulties predicting and explaining the huge trait-
diversity among coexisting individuals competing for the
same limiting resources. Thus, phytoplankton traits are often
analyzed in terms of species mean values, despite the apparent
issues in doing so (Ives et al. 2007; Xiao et al. 2017; Fontana
et al. 2018). Recent analyses have shown that intraspecific
variation has considerable effects on ecosystem dynamics
(Siefert 2015; Hart et al. 2016; Des Roches et al. 2017), and
particularly so for primary producers (Raffard et al. 2019).
Populations with high intraspecific diversity are generally more
robust to disturbance and global change (Mimura et al. 2017).
Variations in traits within a species can affect reproductive
success, resource acquisition, and interactions with other species,
all of which influence the structure and function of ecosystems.
However, many such analyses and subsequent theoretical
considerations for primary producers often have their roots in
terrestrial plant data (Hughes et al. 2008; Raffard et al. 2019),
although intraspecific variation in phytoplankton are
now starting to get similar recognition (Godhe and
Rynearson 2017; Menden-Deuer et al. 2021; Litchman 2022).
Thus, if we are to fully understand the impact intraspecific

variation in phytoplankton, whether from an evolutionary
or an ecosystem viewpoint, we need first to increase our
efforts in documenting it.

Intraspecific variation in the expression of traits has been
found in several types and species of phytoplankton, but many,
if not most, have focused on strains that originate from differ-
ent geographical locations, were isolated at different times, or
were acquired from culture collections where similar growth
conditions over time may influence trait expression (Berge
et al. 2012). Cultures that are kept in stable and similar condi-
tions may lose intraspecific differences and cause changes in
the expression of certain traits (Lakeman et al. 2009). Although
these changes can be minimized (e.g., through cryopreserva-
tion), there are a multitude of examples of how phytoplankton
changes over time in culture. For example, cultures may over
time lose mixotrophy ability (Blossom and Hansen 2021), pho-
totaxis (Moldrup et al. 2013), change morphology (Willis
et al. 2022), or possibly evolve different competitive abilities
depending on the conditions to which they are exposed
(Bernhardt et al. 2020). Berge et al. (2012) found that strains of
the dinoflagellate Heterocapsa triquetra that had been kept in
culture for more than 10 yr grew slower and had higher toler-
ance to pH compared to strains that had been in culture for less
than 10 yr. Lack of exposure to predation may also influence
traits. Thus, Lindström et al. (2017) found that a dinoflagellate
(Lingulodinium polyedra) had lost its bioluminescent capabilities
after years in culture. Its ability to flash, however, was restored
after exposure to predatory copepod cues. Martins et al. (2004)
found that a clonal isolate of the dinoflagellate Alexandrium
lusitanicum had lost its ability to produce toxins. Interestingly,
a subculture of the same isolate sent to another laboratory still
produced the toxins. These changes are of course also possible in
self-isolated cultures (as we compare in this paper), but we find
that most studies (for where this information is available) quan-
tify traits within a year of isolation (see Supporting Information
Appendices A1–A7). The main focus and use of many studies
comparing traits among strains are rather how these are adapted
to their specific locations (Sjöqvist et al. 2015; Sildever et al. 2016;
Sefbom et al. 2022), their invasive capabilities (Thomas and
Litchman 2016), how these environments may have influenced
their evolution (Lakeman et al. 2009; Bernhardt et al. 2020), or
how they may be affected by a changing climate (Kremp
et al. 2012; Ribeiro et al. 2013; Matson et al. 2016; Wolf et al.
2018; Bishop et al. 2022), and not how strains coexist. Conse-
quently, studies exemplifying trait-variation among coexisting
strains originating from the same population or bloom are
dramatically fewer.

In our search of the literature, we found 22 studies that
fit our selection criteria for trait diversity among coexisting
strains of the same species (Fig. 2). Of these, 18 were
from marine ecosystems and four from freshwater. The
majority (11) had quantified only 1 trait (Fig. 2a), and on
average only 2.68 traits were quantified. The 22 studies
included isolates from 58 different populations (Fig. 2b).
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The average number of strains included from each separate
population was 7.6 (Fig. 2b). More than half of the sampled
populations included five strains or less. Growth rate was
the most quantified trait (18 studies), followed by cellular
toxin content (9), and cell size (6).

Among the 58 populations studied we found widespread
variation among traits that closely relate to phytoplankton
fitness (Fig. 3), that is, growth, cell size, resource acquisi-
tion, and defense (i.e., toxicity, colony size). Growth
rate was the trait with the lowest average variation within
populations (i.e., among coexisting strains), 24.6% � 34.7%
(mean � SD, n = 122, Supporting Information Appendix A1),
but also had the largest range (CV between 1% and 220%)
(Fig. 3a). Cell size varied slightly more, 32.7% � 24.0% (n = 16,
Supporting Information Appendix A2). Toxicity had among
the highest variation, 59.1% � 38.9% and 81.7% � 32.5%
for intracellular (n = 14, Supporting Information Appendix A3)
and extracellular (n = 8, Supporting Information Appendix A4)
toxicities, respectively (Fig. 3c). We also found moderate to
high variation also in other key traits, such as nutrient
affinity (43.1% � 20.8%, n = 3, Supporting Information
Appendix A5), nutrient uptake rate (57.8% � 19.2%, n = 9,
Supporting Information Appendix A6), and colony size
(30.9% � 20.5%, n = 7, Supporting Information Appendix A7),
although data for these traits were scarcer (Fig. 3d–f). Sample
size did not significantly influence CV positively or nega-
tively (linear regression, R2 = 0.0002, p = 0.97; Supporting
Information Fig. S2).

Means of coexistence within phytoplankton
populations

From the above, it is clear that phytoplankton populations
exhibit large intraspecific variation on both a genetic and phe-
notypic level. Understanding the mechanisms that allow for
such coexistence to take place is crucial for predicting ecosys-
tem stability and function (Litchman et al. 2007; Kiørboe
et al. 2018). In this section, we will explore three mechanisms
by which this may be possible: (i) neutral mutations,
(ii) environmental fluctuations, and (iii) trade-offs between
key traits. All of these have previously been applied on an
interspecific level, and we will discuss their application also
within populations. Since intraspecific trait-variation may be
as large as (or even larger than) interspecies trait-variation, it is
likely that the same mechanisms constraining species diversity
applies also within species.

Neutral mutations
Mutations that result in phenotypic changes may be sub-

jected to either positive or negative selection, depending on
the selective pressures acting on the cell. As such, mutations
that come with a fitness advantage are more likely to be
accrued in the population and vice versa. However, a muta-
tion that is not subject to natural selection is considered neu-
tral and neither help nor harm an individual’s fitness
(Kimura 1983). Thus, neutral mutations can lead to the devel-
opment of subpopulations (i.e., different strains within a
larger population) that differ slightly in their genetic makeup,
but that do not differ significantly in their fitness. Different
strains can accumulate these mutations over time without
advantages or disadvantages in survival and reproduction. The
accumulated mutations can serve as a smorgasbord of genetic
material for evolution to act upon should environmental con-
ditions, and thus selection pressure, change (Rengefors
et al. 2017). Thus, neutral mutations may become non-
neutral, and the ultimate effect of a mutation on cell fitness is
therefore context dependent. Our data compilation suggests
that genetic variation between genotypes may become
manifested in phenotypic variation. Rarely, however, do
studies quantify both genetic and phenotypic variations,
thus, the relationship between the two remains cryptic
except in few cases (Rynearson and Armbrust 2004; Gsell
et al. 2012). This relationship may perhaps be assessed as
genomic resources improve (e.g., Postel et al. 2020), instead
of relying on neutral markers (e.g., microsatellites)—so far
almost exclusively used to determine genetic diversity—
that do not provide information on functional diversity
and thus what genes are under selection. This has been an
issue also in phytoplankton studies focusing on local adap-
tation (Rengefors et al. 2017) or the effects of global change
(Sjöqvist 2022). In a population of thousands of clonal lin-
ages or more (Rynearson and Armbrust 2004), we, however,
find it likely that most mutations have none or negligible
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Fig. 2. Frequency distributions of the number of traits quantified in the
22 studies that fit our selection criteria (a), and the number of strains
included from each population in these studies (b).
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trait implications, thus, allowing co-existence between
genetically different but physiologically identical strains.

Environmental fluctuations
The competitive exclusion principle states that, at steady state,

the species (or as in our case, strain) with the best competitive
ability will outcompete others (Hardin 1960; Litchman
et al. 2007). It has recently been demonstrated that phenotypic
heterogeneity (i.e., phenotypic variation that is not genetically
based) on its own promotes co-existence in microbes (Menden-
Deuer et al. 2021). Also, in reality phytoplankton communities
are very seldom, if ever, at steady state: when environmental
changes occur on time scales that are shorter than the population
time scale, strains with different environmental adaptations to,
for example, temperature (Panči�c et al. 2015; Bishop et al. 2022),
nutrient resources (Thessen et al. 2009), pH (Panči�c et al. 2015),
and light (Rynearson and Armbrust 2004) may temporarily coex-
ist (Descamps-Julien and Gonzalez 2005). Environmental fluctua-
tions and incomplete mixing can create temporal or spatial
variations in temperature and resources, allowing coexistence
through niche partitioning or patchiness (Hutchinson 1961;
Richerson et al. 1970; Bracco et al. 2000). In addition, stochastic
events like storms and nutrient pulses can disrupt the competi-
tive hierarchy. In the plankton, environmental conditions
change on scales from daily, throughout a bloom, to seasonally
(Cloern 1996; Tiselius et al. 2016; Brandenburg et al. 2017).

This likely has implications not only for coexistence but also
governs the bloom and seasonal succession of strains, although
this has rarely been examined in detail. Gallagher (1982) found
differences in growth rate, cellular chlorophyll a (Chl a), and
carbon uptake among summer and winter populations of
Skeletonema marinoi isolated in Narragansett Bay (Rhode Island),
and suggested a cyclic form of natural selection influenced by
seasonal variation to be the cause of the succession between
these populations (Gallagher 1980). Rynearson et al. (2006)
found that the transition between two genetically different
populations of the diatom D. brightwellii in northwestern
United States was associated with changes in solar irradiance
and available silicic acid.

In addition to resources and temperature, variations in
predator field may also matter. Grazers not only influence
phytoplankton succession on a seasonal scale (Mariani
et al. 2013), but also likely throughout a bloom since strains
may vary in their response to grazers (Olesen et al. 2022).
Thus, at the start of a diatom-dominated spring bloom in tem-
perate ecosystems, the strains with high growth rates should
initially dominate the biomass. As the bloom progresses, the
abundance of fast-growing micrograzers increases (Tiselius and
Kuylenstierna 1996) and the strains with the highest chance
of success will be those forming long chains that prevent
ingestion from smaller, size-limited grazers (Ryderheim
et al. 2022). Toward the end of the bloom, larger grazers such
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as copepods increase in numbers, and chain formation
becomes obsolete (Ryderheim et al. 2022). Thus, the strains
responding by breaking up chains (Bergkvist et al. 2012),
increasing their stickiness, and sinking out of the photic zone
away from grazing pressure will secure a large seed population
for the next growth opportunity (Grønning and Kiørboe 2022).
In a summer bloom of dinoflagellates, the dynamics will work
differently. Here, defense may be needed for bloom initiation
since grazer biomass is initially high.

Environmental fluctuations and disturbances have frequently
been used as an explanation for phytoplankton composition,
coexistence, and biodiversity (Hutchinson 1961; Levins 1979;
Litchman and Klausmeier 2001), and likely apply also on an
intraspecific level given how different strains may exhibit varia-
tion in their competitive traits and growth optima similar to, or
even larger than, between species (Brand et al. 1981; Rynearson
and Armbrust 2004; Panči�c et al. 2015; Bishop et al. 2022). In
fact, some of the higher CVs recorded for growth rate are due to
differences in thermal niche and some strains reaching zero or
negative growth at different temperatures (Brand et al. 1981;
Bishop et al. 2022; Supporting Information Appendix A1). How-
ever, obvious from our data collection is that studies often disre-
gard this completely (i.e., only comparing growth at one or too
few temperatures) or test too narrow a range of growth condi-
tions for growth optima models to be accurately constructed
(Collins et al. 2022). This may in fact mask potential variation,
whether higher or lower, compared to if traits are quantified
across numerous temperatures (Fig. 4). In addition, such growth
performance curves may further vary if additional drivers
(e.g., nutrients) are included (Litchman and Thomas 2023).

Trade-offs among key traits
Trade-offs may allow co-existence between species and strains

(Tilman 1990, 2000). Often, trade-offs are tied to cell size
(Andersen and Visser 2023). For example, smaller phytoplankton
cells generally have higher specific affinities for nutrients, but at

the same time may experience increased predation pressure
(Edwards et al. 2012; Panči�c and Kiørboe 2018). Motile and flag-
ellated protists may use their motility and flagella to enhance
nutrient uptake, but generate fluid disturbances leading to
increased mortality risk (Nielsen and Kiørboe 2021). Thus, the
“currency” of trade-offs often manifests as growth and mortality
rates (Kiørboe et al. 2018). As such, the perhaps most prominent
trade-off in ecology is that between growth and avoiding
predation, that is, defense (Kiørboe et al. 2018; Panči�c and
Kiørboe 2018). Predation is the major source of mortality for
phytoplankton (Calbet and Landry 2004; Suttle 2007), and phy-
toplankton utilize a wide variety of strategies to negate this. The
identification and quantification of defense trade-offs in phyto-
plankton have received increasing attention in recent years
(e.g., Wang et al. 2015; Zhu et al. 2016; Kapsetaki and West 2019;
Ryderheim et al. 2021; Olesen et al. 2022). While established
growth-defense trade-offs are scarce (Panči�c and Kiørboe 2018),
theory predicts that defense must come at a cost, particularly
because many, if not most, phytoplankton defenses are induc-
ible (Van Donk et al. 2011; Selander et al. 2019). Thus, evolu-
tionary theory predicts that inducible defenses will evolve only
if costs are associated with the defense (Karban 2011). The fact
that defenses often are inducible adds complexity when looking
for trade-offs. Thus, some defense trade-offs may not be apparent
unless phytoplankton are exposed to the threat of predation
(Lundholm et al. 2018; Olesen et al. 2022).

There are just a few examples of trade-offs within species,
possibly because it has been examined only in few cases.
Trade-offs stemming from intraspecific differences in nutrient
kinetics and cell size may allow for coexistence of large and
small cells also within the same species (Ward et al. 2014).
Intraspecific differences in cell size may be significant,
suggesting that such trade-offs should be prominent (Fig. 3b).
In our trait-data compilation, traits related to defense, that is,
size, toxicity, and colony size, are some of the most variable
within populations (Fig. 3). Olesen et al. (2022) exposed eight
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strains of the toxin-producing diatom Pseudo-nitzschia seriata to
chemical cues from copepod grazers. The eight strains had very
different levels of toxicity, but they all responded by increasing
their toxin production. The more toxic cells were more fre-
quently rejected by copepods; however, this led to a reduction
in population growth rate (i.e., a cost). The absolute cost was
similar among the eight strains, suggesting that other trade-offs
or properties would be required to explain coexistence.

The experimental data generated by Ajani et al. (2021)
and Brandenburg et al. (2018) allow further exploring of
within-species trait relationships. These studies quantify a

larger number of traits than usual in six and three populations
of the diatom Leptocylindrus danicus and the dinoflagellate
Alexandrium ostenfeldii, respectively. Two out of the A. ostenfeldii
populations were sampled from the same location but during
different years, that is, we do not consider that these strains
coexist. In addition, each population contains data from more
than three strains. As an example, we explore how population
growth rate varies with three traits related to fitness (cell size,
affinity for nitrogen, and toxicity). Based on species-level
empirical data and theoretical considerations they are all
expected to have negative relationships (Marañ�on 2015;
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Blossom et al. 2019; Andersen and Visser 2023). In accordance
with expectations, all three negative correlations are found at the
species level (i.e., among populations) (Fig. 5). However, certain
trade-offs that are observed at the species level dissipate within
populations or even exhibit opposite patterns (i.e., positive rather
than negative relationships). Thus, trade-offs that emerge
between and within species may not be universal.

The world is not enough—How many strains should we
include in our studies?

The above has documented very large genetic diversity in
phytoplankton populations, and data suggest that phenotypic
variation may also be significant, but studies examining the lat-
ter in coexisting strains are rather scarce. Even fewer studies have
explored trade-offs between traits within populations. Within
population trait variation and associated trade-offs is a substrate
for evolution and hence for the possibility of phytoplankton
populations adaptation, for example, to climate change. To gain
an understanding of intraspecific trait variation and associated
trade-offs in phytoplankton, studies will have to include more
strains and quantify more traits. These strains should originate
from the same time and location, preferably be characterized
genetically (Rynearson and Armbrust 2004; Gsell et al. 2012),
and be used within a reasonable time from isolation. While we
realize this a big task, a good start would be to include strains
that are on the opposite ends of a trait-space, rather than
selecting them randomly (Violle et al. 2012). Growth rate is a rel-
atively easy trait to measure, and studies could aim to include
strains that are on the opposite ends of this trait-space, for exam-
ple, one fast-growing and one slow-growing strains and then
compare how these may differ in their other traits, particularly
those related to grazing resistance and how the expression
of defense may differ among strains. So-called “single-cell
approaches” may be of particular interest, for example, as a tool
to allow high-throughput sequencing and analysis of gene
expression (Ku and Sebé-Pedr�os 2019; Rosenwasser et al. 2019).
After all, the trait-based approach considers interactions among
individuals, and not species. Just as species-level traits shaped
our understanding of species coexistence, exploring the com-
plexities of intraspecific trait variation promises to unveil a new
dimension of ecological dynamics and challenges in the ever-
so-evolving study of phytoplankton communities.

Data availability statement
Collected data are publicly available through Figshare (10.

6084/m9.figshare.24230065).
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