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A B S T R A C T   

Landscape changes resulting from anthropogenic activities and climate changes severely impact surface water 
quality. A global perspective on understanding their relationship is a prerequisite for pursuing equity in water 
security and sustainable development. A sequent meta-analysis synthesizing 625 regional studies from 63 
countries worldwide was conducted to analyze the impacts on water quality from changing landscape compo-
sitions in the catchment and explore the moderating factors and temporal evolution. Results exhibit that total 
nitrogen (TN), total phosphorus (TP), and chemical oxygen demand (COD) in water are mostly concerned and 
highly responsive to landscape changes. Expansion of urban lands fundamentally degraded worldwide water 
quality over the past 20 years, of which the arid areas tended to suffer more harsh deterioration. Increasing forest 
cover, particularly low-latitude forests, significantly decreased the risk of water pollution, especially biological 
and heavy metal contamination, suggesting the importance of forest restoration in global urbanization. The effect 
size of agricultural land changes on water quality was spatially scale-dependent, decreasing and then increasing 
with the buffer radius expanding. Wetland coverage positively correlated with organic matter in water typified 
by COD, and the correlation coefficient peaked in the boreal areas (r=0.82, p<0.01). Overall, the global impacts 
of landscape changes on water quality have been intensifying since the 1990s. Nevertheless, knowledge gaps still 
exist in developing areas, especially in Africa and South America, where the water quality is sensitive to land-
scape changes and is expected to experience dramatic shifts in foreseeable future development. Our study 
revealed the worldwide consistency and heterogeneity between regions, thus serving as a research roadmap to 
address the quality-induced global water scarcity under landscape changes and to direct the management of land 
and water.   

1. Introduction 

The global landscape has undergone profound changes in recent 
decades due to the accelerating development of human societies, 
coupled with climate changes that, in turn, drive further alternations in 
climate and disturb the provision of ecosystem services (Pielke Sr, 2005; 
Song et al., 2018; Olsson et al., 2019). Human-induced landscape 
changes, especially brought about by agricultural production and ur-
banization, have affected nearly three-quarters of the global terrestrial 
area and the transformations continuously intensified (Winkler et al., 
2021; Zalles et al., 2021). Nevertheless, natural landscapes, particularly 
forests and wetlands, have faced pervasive loss over the past centuries 
(Mao et al., 2018a; Mao et al., 2018b; Fluet-Chouinard, 2023). Although 
land degradation has received concordant perception from international 
governments (Olsson et al., 2019), global landscape changes manifest 

substantial aggravation and unevenness resulting from regional diver-
gence in geographic and socioeconomic conditions (Sun et al., 2020; 
Radwan et al., 2021). Continuous landscape changes have now sur-
passed climate change as the primary factor influencing ecological 
processes in watersheds (Dale, 1997; Delpla & Rodriguez, 2014), 
significantly affecting regional water quality by impacting the biogeo-
chemical and hydrological cycles, posing challenges to interregional 
environmental equity and worldwide water security (Bullard et al., 
1966; Peiffer et al., 2021). 

Water security has been at the center of the world’s attention as a 
necessity for supporting lives and the well-being of humans (Vörösmarty 
et al., 2010). However, the handily available freshwater in ecosystems 
encompassing rivers, lakes, and wetlands constitutes a fraction of less 
than 1 % of the total water volume and faces continuous endangerment 
(USGS, 2019). Saving the water quality is critical for alleviating water 
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scarcity, salvaging Sustainable Development Goals, and also supporting 
food and energy security (Wang et al., 2022a). Landscape changes have 
emerged as a major contributor to the deterioration of water quality in 
the Anthropocene, marked by the reinforced contamination inputs from 
land use activities and a weakened capacity of the natural landscape for 
decontamination (Bullard, 1966; IFPRI & VEOLIA, 2015). Examples 
include excess nutrients such as nitrogen and phosphorus in water 
bodies caused by agricultural inputs, and elevated bacteria concentra-
tions discharged from urban sewage (Carpenter et al., 1998; Kang et al., 
2010). At the same time, the conversion from natural landscapes to 
anthropogenic land covers leads to soil erosion, transporting sediments 
and organic carbon into receiving water and reducing pollutant purifi-
cation capacity (Sweeney et al., 2004; Tan et al., 2022). However, 
whether the impacts of worldwide uneven landscape changes on water 
quality are consistent and whether they have become stronger in recent 
years remains unknown. 

Copious regional-scaled studies have been conducted on the effects 
of landscape changes on water quality with a wide spectrum of methods, 
indicating that landscape patterns broadly contribute to the formation, 
release, interception and decomposition of pollutants in water (Bullard, 
1966; Simpson et al., 2022; Tan et al., 2022). In the majority of these 
studies, changes in the landscape were focused on land use/land cover 
(LULC) shifts (Mehaffey et al., 2005; Flood et al., 2022). The data source 
of landscape changes experienced an evolution from rough field surveys 
or historical planning documents (Hakamata et al., 1992; Broussard, 
2009), to broadscale, dynamic and high-resolution remote sensing im-
ageries in recent years (Rimba et al., 2021; Zhang et al., 2022). The 
surface water quality could be revealed by levels of various indicators 
like pH, electric conductivity, concentrations of solids, nutrients, bac-
teria, heavy metals, etc. (Lee et al., 2009; Chiang et al., 2021; Flood 
et al., 2022) or composite water quality indices (WQI) (Zhang et al., 
2022). Commonly used quantitative methods to examine the response of 
water quality to landscape changes were correlation analysis (Chiang 
et al., 2021), principal components analysis (Galbraith & Burns, 2007), 
redundancy analysis (Sliva & Williams, 2001), and linear regression 
analysis (Mehaffey et al., 2005). As machine learning algorithms 
developed, some studies have employed them concerning complex 
environmental variables, represented by the random forest model 
(Zhang et al., 2022; Xu et al., 2023) and the support vector machine 
model (Luo et al., 2020). 

However, there is still a gap in research globally addressing the 
consistency and heterogeneity among numerous studies with divergent 
answers on how landscape changes affect surface water quality, since 
complex environmental factors moderate the results. Firstly, previous 
studies were conducted at small scales, and worldwide analyses have 
been restricted to specific landscape types or water body types. Brauns 
et al. (2022) synthesized 125 studies to reveal the human impacts on 
fresh water in streams and rivers. Qiu et al. (2023) compiled 66 studies 
from around the globe on the impacts of forest cover changes on water 
quality. Yet, so far, the responses of water quality indicators to various 
landscapes at the global scale, especially the fast-degrading wetlands, 
are still unclear. Secondly, previous literature at regional scales has not 
reached a global consensus due to the strong heterogeneity in natural 
environment and socio-economic conditions worldwide. For example, 
some studies concluded that agricultural development was largely 
responsible for increasing the total phosphorus (TP) in water (Vaighan 
et al., 2017; Wei et al., 2020), while some other studies claimed TP 
concentration had the strongest correlation with urban sprawl (Ren 
et al., 2003; Chiang et al., 2021). Additionally, some of the study results 
could even be counterintuitive. For instance, forests might contribute to 
the total suspended solid (TSS) output to water (Quinn & Stroud, 2002; 
Tromboni et al., 2021), and wetland coverage could be positively related 
to total nitrogen (TN) and TP concentrations (Giri et al., 2018). There-
fore, there is a necessity for a review that provides robust quantitative 
syntheses across prodigious studies worldwide to comprehend the ef-
fects of landscape changes on water quality and the variation pattern in 

the global context. 
In this paper, a global meta-analysis is performed to address the 

following questions: (1) What are the study trends and hotspots of the 
effects of landscape change on surface water quality until now? (2) What 
are the overall correlations between kinds of landscape changes and 
water quality? (3) What are the moderators in their correlations? And 
how do the correlations vary under different moderators? This paper 
initially identifies the worldwide consistency and heterogeneity be-
tween regions regarding the relationship between landscape changes 
and surface water quality, underpinning global knowledge and equity in 
water security. 

2. Materials and methods 

2.1. Data collection and compilation 

To collect data for analysis, over 20,000 peer-reviewed publications 
were queried until December 2022 through Web of Science, Science-
Direct and China National Knowledge Infrastructure Databases. Dupli-
cates and inaccessible articles were removed by machine screening, 
while irrelevant articles were removed from the preliminary scanning of 
titles and abstracts. Later the 625 selected studies were full-text scanned 
and compilated with their characteristic information (Fig. 1). A Detailed 
flow diagram is shown in Appendix 1. Landscape compositions of in-
terest were agricultural lands (AG), urban lands (UR), forests (FO), 
grasslands (GR), wetlands (WET), water bodies and barren lands. 
Herein, landscape changes refer to the change in proportion of each 
composition in a certain watershed. Concerned water quality parame-
ters included acidity (pH), electrical conductivity (EC), dissolved oxygen 
(DO), total suspended solids (TSS), total dissolved solids (TDS), total 
nitrogen (TN), nitrate, ammonia, total phosphorus (TP), phosphate, 
chemical oxygen demand (COD), total biological oxygen demand (BOD), 
dissolved organic carbon (DOC), coliform, metal ions (K, Ca, Na, Mg, 
etc.) and heavy metals (Cu, Zn, Mn, Pb, etc.). 

From each of the studies, we extracted the correlation coefficients of 
landscape composition changes versus water quality indicators as effect 
sizes in the meta-analysis, which emphasized the interactions between 
variations (Borenstein et al., 2009), since the absolute changes of water 
quality parameters have tremendous discrepancy worldwide due to the 
inherent geographical differences in the global water environments. A 
set of 3228 data from 179 studies was finally extracted according to the 
following criteria for studies: (i) reporting at least one correlation metric 
that could be transformed into Pearson Correlation Coefficient (r); (ii) 
only in-situ research, excluding data calculated by model simulation; (iii) 
research implemented in different catchments reported in one article 
should be considered as independent studies; (iv) water quality data 
should either be obtained through parallel sampling and measured 
following specifications, or from authorities, both should record sam-
pling locations; (v) study objects should be surface water in common 
conditions without forcing factors (e.g. mining, fire, etc.). 

To normalize the correlation metrics in the dataset, we took the 
widely used Pearson Correlation Coefficient (r) as standard, commonly 
expressed as (Rupinski and Dunlap, 1996): 

r =
∑n

i=1(Xi − X)(Yi − Y)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(Xi − X)2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n

i=1(Yi − Y)
√ (1)  

Where Xi and Yi are values of the i th independent variable and 
dependent variable, and X and Y are sample means. r takes the value 
from -1 to 1. The larger the absolute value, the stronger the correlation. 

Spearman’s Rho (ρ) and Kendall’s tau (τ) correlation coefficients 
were converted to Pearson’s r through the formula (2) and (3) (Rupinski 
and Dunlap, 1996). 

r = 2 sin
(

ρ× π
6

)
(2) 
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r = sin(0.5 π τ) (3) 

The coefficient of determination (R2) of univariate linear regression 
was equivalent to the square of r and the sign of r was the same as that of 
the regression coefficient (Zou et al., 2003). In studies conducting 
redundancy analysis (RDA) with type II scaling, the cosine of the angle 
between the response variable and the explanatory variable was calcu-
lated to represent r (Legendre and Legendre, 2012). Data exhibited in 
the figures were extracted using GetData Graph Digitizer 2.25 (GetData 
Graph Digitizer, 2013). 

To reveal the potential influencing factors for the worldwide varia-
tion in the effects of landscape changes on water quality, environmental 
information of those extracted studies was compiled, including the co-
ordinates, types of water bodies, climate zones, seasons, spatial scales, 
and year. The majority of them were directly gleaned from the primary 
studies, except for the climate zones, which were allocated by co-
ordinates in the Köppen-Geiger climate classification (Beck et al., 2018). 

2.2. Data Analysis 

Meta-analysis accompanied by statistical and machine learning 
methods was employed in this paper. Meta-analysis parts were imple-

mented through the Meta Package in R studio (Schwarzer, 2007). Pri-
marily, the r was converted to Fisher’s z-transformed coefficients (Zr), 
which could gain better normality in distribution and calculate reliable 
confidence intervals (Borenstein, 2009; Asuero et al., 2006), through the 
following formula: 

Zr = 0.5ln
(

1 + r
1 − r

)

(4) 

And accordingly, sampling variance was also derived from (Fox 
et al., 2015): 

σ̂2
Zr
=

1
n − 3

(5)  

Where n is the sample size for r. Given that landscapes and water quality 
in global settings generally differed, Zr within individual studies was 
then accumulated by inverse variance regression and random-effects 
model, which was more appropriate for cases with heterogeneity 
among studies than the fixed effect model (Borenstein et al., 2010). Eq. 
(6) and (7) provided a general statement of the random-effects model: 

yi = β0 + εi + ξi (6)  

Fig. 1. (a) Geographic distribution of the 625 in-situ studies worldwide included in our meta-analysis. The darker the red in the background map, the more frequently 
the country is studied. All the study sites are grouped into five types according to the type of water body investigated, namely, coastal water, including coasts and 
bays; flowing water, including rivers and streams; static water, including lakes, reservoirs and small ponds; watershed by geographical boundaries; and wetlands. The 
amounts of studies on each of them are shown in the lower left corner. (b) Annual trends in the published papers studying the effects of landscape pattern changes on 
water quality. In addition to the overall trend in dark red, the trends of the USA and China, which account for the larger share of publications, are also shown 
separately from other countries. (c) Accounting for the study frequency of each water quality indicator. 
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Y =
∑n

i=0
yi ⋅wi (7)  

Where yi was the effect size of the i th study; εi represented deviation 
within study; whereas ξi represented deviation between studies, which 
obeyed the normal distribution with 0 as the mean and τ2 as the vari-
ance. We performed the restricted maximum-likelihood method (REML) 
to estimate τ2 and the Q-Profile method to calculate the confidence in-
terval. Furthermore, Y in Eq. (6) was the accumulated overall effect size, 
while wi representing the weight in the random-effects model was 
calculated from the inverse of the total variance with τ2 as part of the 
denominator. I2 was the proportion of between-study variance (τ2) in 
total model variance, and in essence, indicated the heterogeneity in the 
overall effect after pooling (Borenstein et al., 2010). I2 less than 40 % 
indicates negligible heterogeneity within the group of studies, and over 
90 % indicates considerable heterogeneity (Deeks et al., 2022). 

Above that, it was crucial to recognize the presence of publication 
bias (Nakagawa et al., 2017), which may lead to conclusions that deviate 
from the true results and therefore affect the validation. Hence, we 
generated symmetrical funnel plots and adapted Egger’s test to examine 
the risk of bias (Nakagawa et al., 2017) (Appendix 2). 

To further investigate the moderators affecting the effects of land-
scape changes on water quality, we separately established random-effect 
models within subgroups for categorical variables (e.g., water body 
types, climate zones, etc.) and adopted nonparametric statistical 
methods that greatly avoided affection by outliers and therefore reduced 
bias (Nahm, 2016). The Kruskal-Wallis test was used to inspect the 
overall heterogeneity among subgroups under each moderator and the 
Wilcoxon test suitable for non-independent samples was employed to 
further examine heterogeneity between two-by-two subgroups since 
some samples in different subgroups were from the same site. For the 
continuous variables (i.e., latitude and year), we combined the poly-
nomial regression and random-effects meta-regression (a weighted 
regression model through REML), both for demonstrating variations in 
effect sizes under moderators. 

The random forest model (RF) as a machine learning method was 
adopted to find the relative importance of moderators in impacting the 
response of water quality to landscape changes via the randomForest 
Package in R studio (Liaw and Wiener, 2002). Random forest regression 
allowed the explanation of influences and relative importance of mul-
tiple independent variables on the dependent variable, as an ensemble 
classifier encompassing multitudinous decision trees (Breiman, 2001), 
superior by reducing overfitting and the risk of synergy effect of inter-
dependent variables (Merghadi et al., 2020), herein the moderators. 
Random forests had their variable importance calculated using two 
methods, of which the per cent Increase in Mean Squared Error (% 
IncMSE) was considered more robust, widely applied and thus employed 
here (Grömping, 2009; Feng et al., 2022). A higher %IncMSE implied 
stronger importance of that moderator. 

3. Results 

3.1. Overview of landscape-water quality studies 

Based on the data compiled from 625 studies in 63 countries 
worldwide from 1976 to 2022 (Fig. 1a&b), we could be informed that 
major studies concentrated from latitude 30◦N to 60◦N, mainly in the 
Yellow River Basin and the Yangtze River Basin, China, the Mississippi 
River Basin and the Great Lake Region, USA and various basins in 
Europe (Fig. 1a). Studies on the relationship between landscape changes 
and water quality were almost in Northern America and the Europe 
before 2007. The years 2008 and 2020 witnessed rapid growth in study 
quantities, especially in China (Fig. 1b). To date, there have been large 
gaps in research in Africa and Northern Asia. 

Around half of the studies investigated flowing water bodies like 

rivers and streams (Fig. 1a). One-third studied the watersheds (herein 
defined as a geographical area including all the water bodies rather than 
a specific type), then 10 % concerned the static water bodies like lakes 
and reservoirs. As for the water quality indicators influenced by land 
changes (Fig. 1c), nutrients (e.g., TP, TN and ammonia) gained major 
attention, measured in 2/3 studies, followed by physiochemical pa-
rameters (e.g., DO and pH). Organic pollutants revealed by COD and 
BOD were studied in nearly half of the references. 

3.2. Overall effects of landscape changes on water quality 

In the global context, five of the seven categories of landscape 
compositions exhibited significant impacts on water quality indicators 
when their coverage changed, namely urban lands, agricultural lands, 
forests, wetlands, and grasslands (Fig. 2a~e, Appendix 3). The shifts in 
urban land and forest coverage significantly correlated with water 
quality (p<0.05) and showed opposite effects with each other 
(Fig. 2a&b). There were appreciably positive relationships between 
urban land coverage and contaminations, including TSS (r=0.69, 
p<0.01), COD (r=0.66, p<0.01), Coliform (r=0.68, p<0.01) and Metal 
ions (r=0.65, p<0.01) (Fig. 2a). Increased urban land use would also 
significantly reduce DO (r= -0.56, p<0.01). In contrast, increasing 
forest coverage had significantly negative correlations with those 
pollution indicators in water (p<0.05) and improved the DO level 
(r=0.50, p<0.01) (Fig. 2b). Nevertheless, the aggravating effects of 
urban lands on contaminants were more profound than the purification 
effects of forests regarding TSS (rUR=0.69, rFO= -0.54), TN (rUR=0.58, 
rFO= -0.44), TP (rUR=0.57, rFO= -0.53), Heavy metals (rUR=0.53, rFO=

-0.50) and Coliforms (rUR=0.68, rFO= -0.26) (p<0.01). 
Expanding agricultural lands positively correlated with EC, Nitrate, 

TP, and DOC levels in water environment (p<0.01) (Fig. 2c). In com-
parison, the effects of agricultural land on water quality were not as 
substantial as that of urban land (Fig. 2a&c), for instance, on levels of 
TSS (rUR=0.69, rAG=0.51), COD (rUR=0.66, rAG=0.38), TN (rUR=0.58, 
rAG=0.44) and TP (rUR=0.57, rAG=0.49) (p<0.01). 

Wetland occupancy demonstrated a robust correlation with EC 
decreasing (r= -0.87, p<0.01) and organic matter increasing (p<0.01), 
indicated by COD(r=0.57) and DOC(r=0.56) (Fig. 2d). However, the 
overall correlation between wetland cover with nutrient concentrations 
did not reach statistical significance at the global scale. The effects of 
grassland coverage shift on water quality were more ambiguous 
worldwide (Fig. 2e), with a significant negative correlation with TN, TP 
and phosphate (p<0.05) and a positive correlation with microbial 
contamination (r=0.72, p<0.01). The overall effects of landscape 
configuration on water quality, such as the patch density changes, were 
also enquired and attached in Appendix 4. 

3.3. Moderators influencing the landscape - water quality relationship 

3.3.1. Influence of latitude and the type of water bodies 
Polynomial regression curves showed that the effects of landscape 

changes on water quality exhibited regularity along the latitude at the 
global scale (Fig. 3 a~c). The positive correlations of agricultural land 
coverage with TN and TP were gradually enhanced with increasing 
distance from the equator (p<0.01) (Fig. 3a&b). Conversely, the effects 
of forest coverage on TN and COD significantly weakened from low to 
high latitudes (p<0.01) (Fig. 3a&c), despite the restricted sample 
numbers in the southern hemisphere. Regarding the urban land 
coverage, its aggravating contribution to TP and COD levels perceptibly 
declined as the latitude rose (p<0.05 and p<0.01, respectively) 
(Fig. 3b&c). The effects of wetland coverage on TN, TP and COD levels 
were not significantly associated with latitude (p>0.05) (Fig. 3a~c). 

Significant variations across different water body types were wit-
nessed in the correlations between landscape changes and water quality 
(Fig. 3d~e). Among all the landscape compositions, the influence of 
agricultural land changes on water quality exhibited the most significant 
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heterogeneity in different water body types (p<0.05) (Fig. 3d~e), of 
which the weakest influence was always exerted on water in watersheds 
rather than a specific type (Fig. 3d~e). Remarkably, the elevating effects 
of agricultural land on TN (rsteams=0.64, rrivers=0.54) and TP 
(rsteams=0.74, rrivers=0.63) were stronger in streams than in rivers 
(p<0.05) (Fig. 3d&e). As the coverage of urban lands or forests 
changed, their weakest influences on water quality were mainly 
observed in reservoirs (p<0.05) (Fig. 3e&f). Forests exerted the most 

efficient purification effect on TP in coastal water (rcoasts= -0.68, 
p=0.02) (I2=0). Urban expansion had the most profound impact on COD 
level in lake water (rlakes= 0.87, p<0.01). When wetlands were regarded 
as a type of water body, they showed unique within-group response 
consistency globally (mostly I2=0) under landscape changes (Fig. 3d~f). 

Fig. 2. Overall effects of Individual landscape composition on each water quality indicator under the random effects model. UR= Urban lands, AG = Agricultural 
lands, FO = Forests, WET= Wetlands, GR =Grasslands. Different colors for distinguishing water quality parameters: blue for physiochemical parameters, yellow for 
solids, purple for nutrients, green for organic pollutants, orange for biological pollutants, and magenta for metal cations. Bold font represents statistically significant 
correlations at p < 0.05. ‘n’ denotes the number of sampling data. Squares with error bars denote the overall correlation coefficients (CC) (r) and the 95 % confidence 
interval (CI). The greater the CC is above 0 indicates the stronger the positive relation is, and vice versa. The size of the square symbolizes the effect size. Note: ‘*’ 
denotes p<0.05, ‘**’ denotes p<0.01, ‘***’ denotes p<0.001. 
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3.3.2. Difference between seasons and climate zones in effects of landscape 
on water quality 

Climatic conditions could influence the temperature, precipitation, 
etc., thus making the relationship between landscape and water quality 
different among seasons and climate zones. Seasonally, the effects of 
landscape changes on TN and TP concentration were more powerful in 
the dry season and the rainy season than in normal period (p<0.01) 

(Table 1, Fig. 4). The strongest effect size of forest on TN was rdry= -0.73, 
on TP was rdry=-0.70 and on COD was rdry= -0.67 (p<0.01), all 
appearing in the dry season. Similarly, the dry season witnessed the 
strongest boosting of agricultural land on TN (rdry=0.65), TP (rdry=0.72) 
and COD (rdry=0.82) (p<0.01). The influence of urban expansion on 
COD was rising as the season became moister, from rdry=0.50 to rnormal=

0.62 to rwet= 0.68 (p<0.001). While the effects of wetland coverage 
change on water were not dependent on seasons (Table 1, Fig. 4). 

Climate zone could be a pronounced moderator under the urban land 
changes (p<0.01) (Table 1). Expanding urban land coverage had the 
strongest impact on TN (rarid=0.71), TP (rarid=0.94) concentration and 
COD (rarid=0.70) in the arid area among all the climate zones (p<0.05) 
(Fig. 4). Although climatic zone was not as significant a moderator in the 
relationship between agricultural land changes and water quality as 
they were for urban land, the similar severity in arid areas also occurred 
with rarid=0.78 for TN, rarid=0.86 for TP and rarid=0.83 for COD 
(p<0.01). Besides, the elevating effects of wetlands on COD were 
significantly influenced by climate zones (p<0.01) (Table 1), peaking in 
cold areas (rcold=0.82, p<0.001). 

3.3.3. Spatial and temporal changes in the landscape - water quality 
relationship 

The effects of landscape changes on water quality were scale- 
dependent both at spatial and temporal scales. When the geographic 
scale of investigation was adjusted, the effects of agricultural land on 
nutrient concentrations experienced the most apparent variation 

Fig. 3. Correlation coefficients between landscape compositions (AG, UR, FO and WET) and water quality parameters respectively TN (a, d), TP (b, e) and COD (c, f) 
moderated by latitude (a~c), and type of water bodies (d~f). (a~c) exhibit the polynomial regression curves for the correlation coefficient (r) with 95 % CI under 
latitude changes, the adjusted R2 (R2

adj) and significance (P) of which is also reported. (d~f) shows the correlation coefficient (r) within each water body type 
subgroup and the heterogeneity between subgroups by random-effect models, in which error bars denote the 95 % CI. Percentages adjacent to error bars are the I2 

value which is less than 40 % and indicates the heterogeneity within group could be ignored (Deeks et al.,2022). P-values for Kruskal- Wallis test are also reported 
beneath and those significant figures are bolded. Note: ‘*’ denotes p<0.05, ‘**’ denotes p<0.01, ‘***’ denotes p<0.001. 

Table 1 
Kruskal-Wallis test p-value indicating the significance of the difference in the 
correlation coefficients contributed by the various moderators.  

Moderators TN TP COD 

Seasonality    
WET 0.17 0.28 0.97 
UR <0.01 ** <0.01 ** <0.01 ** 
FO <0.01 ** <0.01 ** 0.76 
AG <0.01 ** <0.01 ** 0.16 

Climate zone    
WET 0.64 0.28 <0.01 ** 
UR <0.01 ** <0.01 ** <0.01 ** 
FO 0.73 0.12 0.23 
AG 0.24 0.06 0.10 

Spatial scale    
WET 0.38 0.59 0.80 
UR 0.11 0.01 * 0.12 
FO 0.22 0.03 * 1.00 
AG <0.01 ** <0.01 ** 0.10 

Note: ‘*’ denotes p<0.05, ‘**’ denotes p<0.01. 
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(p<0.01) (Table 1). There was a tendency in Fig. 4 that as the buffer 
radius expanded outwards along the water body boundaries, the cor-
relation coefficients between agricultural land coverage and water 
quality parameters decreased until 500-1000m and then climbed to the 
maximum when the buffer was over 2000m (W-p<0.05). Similarly, 
buffer scales significantly modulated the effects of forest and urban land 
on TP concentration (p<0.05) (Table 1), in which a similar decreasing 
and then increasing tendency of effect size as the scale broadened also 
held. Further, the impacts of the above landscape changes on water 
environment at larger scales tended to witness a global consistency, i.e., 
at the catchment scale (p<0.05) or the >2000m buffer scale (p<0.001) 
(Fig. 4). In addition, responses of water quality to wetland coverage 
changes did not show significant differences across diverse spatial scales 

(Table 1). 
From the perspective of temporal evolution, the meta-regression 

lines exhibited an intensifying tendency in the impacts of all four 
landscape composition changes on water quality from pre-1990 to 2022 
(Fig. 5a~c). The correlations of agricultural land changes with TN and 
TP showed a concave trend through time, leading to a smaller effect size 
in the 2020s than in the 1990s (p<0.01) (Fig. 5a&b). Studies on water 
quality response to land changes in urban areas and forests emerged 
around 1995, later than those in agricultural uses. The temporal varia-
tion of urban land and forest effects on water quality appeared syn-
chronized, whether along the linear growth (for TN and TP) or 
fluctuating growth (for COD). In particular, all the growth rates of the 
effects of forest were higher than those of urban land (p<0.05). Their 

Fig. 4. Summary of correlation coefficients between landscape compositions (AG, UR, FO and WET) and water quality parameters respectively TN, TP and COD 
moderated by seasonality, climate zone and scale under the random effects model. ‘*’ denotes p<0.05, ‘**’ denotes p<0.01, ‘***’ denotes p<0.001. The square with 
error bar denotes the correlation coefficients (r) and 95 % CI for each subgroup. The greater the CC is above 0 indicates the stronger the positive relation is, and vice 
versa. The size of the square symbolizes the effect size. The I2 value represents the heterogeneity within individual subgroups in the random effects model. Smaller I2 

implies less heterogeneity within the subgroup. The W-p significance is from the Wilcoxon test for the disparity between each subgroup and a certain subgroup of 
their moderator (i.e., Annual of the Seasonality, Temperate of the Climate zone, and Catchment of the Scale). 
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coupled trends might result from their dominantly opposite effects 
(Fig. 2a&b), i.e., forests could perform the purification capacity to a 
greater extent as the pollution intensity of urban land rose when the 
pollutant concentrations were not saturated. As for wetland coverage 
changes worldwide, its effects on water quality were not significantly 
changed over time (p>0.05) (Fig. 5a~c). 

3.4. Importance analyses of moderators to water quality variables 

The random forest regression furnished the orders of the relative 
importance of moderating variables above (Fig. 6). Latitude most 
significantly influenced the correlation between agricultural land and 
water quality, in which scale and year were also among the critical 
moderators (Fig. 6a). It could be generally concluded that climatic 
conditions exerted less significant adjustments on how agricultural 
coverage changed water quality (Fig. 6a~c). Whereas seasonality had a 
prominent role in the response of water quality indicators to changes in 
riparian urban lands (Fig. 6d~f). Moreover, the rankings demonstrated 
that latitude was way ahead as an important explanatory factor for the 
variation of forest impacts on TN, TP and COD (Fig. 6g~i). Compared 
with the three landscape components above, the effects of wetland on 
water quality tended to be dependent on climate zone (Fig. 6h&i). 

4. Discussion 

4.1. Study trends and hotspots 

Our global review revealed that the shifting of research centers of the 
landscape-induced water quality changes, as shown in Fig. 1a, was fully 
correlated with the regional socioeconomic development and urbani-
zation process through time (Sun et al., 2020; Radwan et al., 2021). The 
quantitative research on the correlation between agricultural occupa-
tion and water quality started earlier than the other landscape types as 
shown in Fig. 5, echoing a series of policies such as the Clean Water Act 
in the USA in 1972 to control NonPoint Source pollution (NPS) (Haith, 
1976; Mansaray et al., 2018). As demonstrated in Fig. 1, chemical, 
bacterial, and sediment loadings from NPS, mostly resulting from land 
runoff and hard to detect, had subsequently been a sustained academic 
concern and the USA dominated the studies (Wilkin and Jackson, 1984; 
Dauer et al., 2000; Mehaffey et al., 2005). The Pollution Prevention Act 
launched in the USA in 1990 and the Law of the People’s Republic of 
China on the Prevention and Control of Water Pollution in 1996 might 
be part of the drivers of emerging studies on the effects of urban lands 
and forests on water quality around 1996 as shown in Fig. 5, matching 
the upward trend of study amounts. With the increasing worries about 
water quality changes under human activities and climate changes after 
2000, the research on their dynamic relationship was universally 
enriched (Fig. 1), integrating methods such as the Better Assessment of 
Integrating Point and Non-point Sources (BASINS) framework (Bhat-
tarai et al., 2008), ArcView Generalized Watershed Loading Function 
(AVGWLF) model (Tu, 2009), and other conceptual models for simu-
lating future changes under different scenarios (Erol and Randhir, 
2013). The emphasis in the Chinese Government’s 11th Five-Year Plan 
(2006-2010) on mitigating climate change and strengthening pro-
jections for pollutant additions could have stimulated the exponential 
growth of China’s research in 2008 (Xu et al., 2019), as illustrated in 
Fig. 1b. Attention to relevant issues globally spiked again around 2020, 
of which studies about the impacts of LULC changes on water quality 
reached new levels in developing countries in Africa and South America, 
for instance, Bolivia (Gossweiler et al., 2019), Cameroon (Ewane, 2020), 
Ethiopia (Woldeab et al, 2019), Ghana (Gyimah et al, 2020), Uruguay 
(Gorgoglione et al, 2020), and Zambia (Winton et al, 2021). Nonethe-
less, as revealed in our map (Fig. 1a), some places were still vacant 
without studies, even if facing the intensifying water quality challenges 
caused by landscape changes (Fig. 5). 

Fig. 5. Temporal changes of the correlation coefficients between landscape 
compositions (AG, UR, FO and WET) and water quality parameters respectively 
(a) TN, (b) TP and (c) COD. The solid line with 95 %CI denotes the relation 
curve fitted by polynomial regression, and the adjusted R2 (R2

adj) and signifi-
cance (P) of which are also reported. The dotted line denotes the relation curve 
fitted by random-effects meta-regression with the circle representing sample 
data, whose size is proportional to the weight of effect size. Note: ‘*’ denotes 
p<0.05, ‘**’ denotes p<0.01, ‘***’ denotes p<0.001. 
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4.2. Effects of agricultural lands on water quality 

Our meta-analysis results substantiated that increasing agricultural 
land coverage in the catchment actively contributed to nutrient pollu-
tion and solids concentration in water worldwide (Fig. 2c). A consid-
erable amount of nutrients that were not fully utilized in fertilizer and 
feed inputs in modern intensive farming and livestock farming entered 
the water with irrigation water and surface runoff, enriching N and P in 
the water and causing harmful eutrophication (Woli et al., 2004; Khan 
and Mohammad, 2014). Additionally, agricultural activities such as 
ploughing and irrigation undeniably caused water erosion and increased 
both suspended and dissolved solids in water (Chen et al., 2017). At the 
same time, the nutrients in particulate matter, especially phosphorus, 
would be further released into the aquatic environment (Horppila, 
2019). 

The spatial-scale effect was witnessed in the nonpoint-source pollu-
tion exported from agricultural land (Table 1, Fig. 6) since distance 
greatly affected the transport and transformation processes of the 
abovementioned pollutants (Sliva and Williams, 2001; Tu and Xia, 
2008). Our global meta-analysis settled the long-term dispute and 
informed that the most powerful influencing scales of agricultural land 
for water quality were the whole catchment and over 2000m buffer scale 
since they had no statistical differences (Fig. 4). Before our study, the 
200m buffer scale (Tran et al., 2010), 500m buffer scale (Gove et al., 
2001) and catchment scale (Sliva and Williams, 2001; Zhang et al., 
2019) were previously identified as the most significant scales in 
influencing water quality when landscape changed within watersheds. 
Further, our results indicated that study results worldwide held the 
largest consistency at the catchment scale compared with other buffer 

radiuses (Fig. 4). 
Apart from the changes in effect size, we found that agricultural land 

could show opposite effects on water quality at different scales at the 
first time (Fig. 4), which universally presented a negative correlation 
within 500-1000m proximity riparian. A possible explanation was that 
other landscape compositions might cause compelling impacts that 
overpower the positive effect of agricultural land on water pollution. For 
instance, when urbanized spaces increased faster or in highly urbanized 
areas as in studies by Tu and Xia (2008) and Zhao et al. (2015), the 
existence of agricultural land might be obscured and presented a nega-
tive correlation with water quality deterioration. Another factor we 
could take into interpretation was the endogenous characteristics of the 
agricultural lands. It has been reported in several studies that paddy, 
instead of other cropland, might have a capacity for pollution reduction 
by strong plant absorption stimulated by appropriate environmental 
conditions in growth (Jung et al., 2008; Zhang et al., 2010). However, 
due to the substantial heterogeneity in geographical environment be-
tween watersheds, any future study on a single scale should be cautious 
and the threshold effects in the impacts of agricultural land coverage on 
water quality are expected for further investigation. 

4.3. Response of water quality to urbanization 

Our synthesized analysis proclaimed that contaminant increase and 
DO decrease in surface water caused by urban expansion have persisted 
worldwide for decades (Fig. 2a). Continuous impervious lands caused 
massive nonpoint-source pollution by surface runoff exporting solids, 
nutrients, and particularly, organic, bacterial, and heavy metal pollut-
ants (Miller and Hutchins, 2017; Viau et al., 2011; Kang et al., 2010). 

Fig. 6. Relative importance rank of various factors on variation in effects of changes in the landscape (AG, UR, FO and WET) on water quality, represented by the 
impacts on TN (a,d,g,j), TP (b,e,h,k), and COD (c,f,i,l). Importance decreases from top to bottom. The R2 of random forest model is also reported separately in the 
figure. Fig. 6 Relative importance rank of various factors on variation in effects of changes in the landscape (AG, UR, FO and WET) on water quality, represented by 
the impacts on TN (a,d,g,j), TP (b,e,h,k), and COD (c,f,i,l). Importance decreases from top to bottom. The R2 of random forest model is also reported separately in 
the figure. 
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Concentrated pollution from urban lands could alter the processes of 
regional biogeochemical cycling and consume DO in water (Tong et al., 
2020). Further, compared with agricultural landscapes, the urban 
environment could increase regional rainfall and thus boost the washing 
and leaching of contaminants from dust, food remnants and maintained 
greenspaces (Liu and Niyogi, 2019; Morée et al., 2013; Simpson et al., 
2022). Considering that, our meta-analysis indicated that nutrients like 
TN and TP related more strongly to urban lands than agricultural pro-
ductions (Fig. 2aandc). 

Our study further demonstrated that the worldwide correlation 
variation of water quality with urban land coverage was dramatically 
related to climate conditions, especially seasons (Table 1, Fig. 6e~f). 
The overall impacts of urban lands on water quality in both wet and dry 
seasons were more severe than those in normal seasons with distinct 
mechanisms (Fig. 4). The wet season represented greater surface runoff 
and thus more pollutants washed into water (Regier et al., 2020), the 
peak of which in extreme precipitation could be even worse than point 
source pollution according to Pak et al. (2021). Thus, the pollutant 
discharge from urban areas could exceed the self-purification capacity of 
water bodies and deteriorate water quality (Lai et al., 2013). In the dry 
season, declining water volumes would diminish the dilution towards 
contaminants and the self-purification capacity of water environment, 
leading to water quality decline (Xiao et al., 2016; Bussi et al., 2017). 
Regarding TP, our result showed the dry season could amplify its cor-
relation with urban land than the wet season (Fig. 4), which might result 
from the concentration of point-source pollutants and the release of 
particulate phosphorus from sediment when water levels decreasing 
(Bussi et al., 2017; Record et al., 2016). In addition, our study found that 
globally, dry and wet seasons amplified TN output from urban area to a 
similar extent (Fig. 4), answering the divergent in regional studies. Some 
believed that nitrogen tended to be deposited in surface soils in the dry 
season with poor hydrological connectivity, reducing N export from 
urban lands into receiving water (Ferrier et al., 1995; Wu et al., 2022). 
However, other scholars demonstrated that the dry season could amplify 
the pollution from urban lands upon TN (Ding et al., 2015; Zhang et al., 
2019). Additionally, our result witnessed an increasing effect of urban 
lands on COD as precipitation rose (Fig. 4), considered to be related to 
increasing runoff, especially in slightly urbanized catchments without 
complete drainage systems (Liu et al., 2017; Nafi’Shehab et al., 2021), 
and as comparison highly-urbanize catchment might observe higher 
COD in dry seasons (Chen et al., 2016; Liu et al., 2017). 

Furthermore, as demonstrated in Fig. 4, arid areas tend to suffer 
more harsh deterioration in water quality as urban land sprawl world-
wide, taking New Mexico in the USA (Regier et al., 2020) and Xinjiang in 
China (Wang et al., 2022b) as examples. Low quality and quantity of 
water availability would exacerbate water scarcity in arid regions, 
exacerbating inequalities in global water scarcity and requiring urgent 
attention (Wang et al., 2024). 

Combined with spreading hotspots on the impacts of urban sprawl on 
the water environment in recent years (Fig. 1), we found that rapid 
urbanization in developing regions in arid and tropic areas, especially 
those without sound drainage and sewage treatment systems and prone 
to stormwater flooding hazards from concentrated precipitation, could 
lead to severe pathogens contamination (mainly fecal coliform) and take 
thousands of lives through infectious disease spread (Ashbolt,2004). 
Examples include the pollution in the Mun River watershed in Thailand 
(Yadav,2019), the Mekong tributary watersheds in Lao P.D.R (Ribolzi 
et al.,2011) and the Intag area in Ecualor (Knee and Encalada, 2014). As 
a comparison, the water quality had improved through industrial 
restructuring and water management in some developed regions, taking 
Lake Ontario in Canada (Croft-White et al., 2017) and North Canal River 
in China as examples (Zhu et al., 2023). The imbalance in 
socio-economic development aggravated the inequity in global water 
security. 

4.4. Correlation of forest with water quality 

Our meta-analysis concluded that forest cover significantly 
decreased the risk of water pollution (Fig. 2b), especially the biological 
and heavy metal contamination, suggesting the importance of forest 
restoration in global urbanization for water security. Forests could cool 
water flow and therefore increase the solubility of oxygen in water 
(Garner et al., 2014), which was necessary for the aquatic organism 
respiration and the biological and biochemical decomposition of organic 
matter (Ansa-Asare, 2000). Moreover, given that (i) tree canopy was key 
to stormwater management and soil erosion regulation, (ii) the inter-
ception by tree roots and litters, (iii) the absorption of bioavailable 
contaminants by robust roots, the forest could cogently prevent the 
solids and nutrients from transporting into water (Lowrance et al., 1997; 
Quinn and Stroud, 2002; Harris, 2001). 

Latitude ranked top as the contributing factor in changes in the 
correlation of forest with water quality (Fig. 6). The low-latitude forests 
were the most efficient at water purification (Figs. 3 and 6). The benefits 
of forest cover for water quality seemed to gradually decrease as the 
latitude increases (Fig. 3). The biomass of forest was considered as an 
underlying contributor in this pattern since observations demonstrated 
that the highest aboveground biomass of forests occurred in tropical 
forests and then the northern temperate forests (Schepaschenko et al., 
2019). Another potential explanation was that the high temperature and 
evapotranspiration increased the solubility of bioavailable contaminants 
in water (such as phosphorus) ((Yang et al., 2023; Cheng et al., 2020) 
and accelerated chemical and biochemical processes (such as denitrifi-
cation and carbon released from organic matter decomposition) (Daw-
son and Murphy, 1972; Aerts, 1997). However, the tropical forests have 
been suffering from deforestation, particularly in those underdeveloped 
countries relying the trade (Hoang and Kanemoto, 2021; Zhang and Wei, 
2021), which called on global sharing sustainable development and 
water security responsibility. 

Additionally, hinted by outliers in our global analysis, some excep-
tions need attention in the water purification functions of forests. Firstly, 
hilly areas and flooded areas seemed to promote the probability of forest 
TSS, TN and TP output owing to the erosion of topsoils (Quinn and 
Stroud, 2002; Tram et al., 2022; Tromboni, 2021). Secondly, the nega-
tive connection between forest coverage and DO observed in the outliers 
might be elucidated by two reasons: excess organic matter input from 
litter, especially in low-flow periods (Abdul-Aziz and Ahmed, 2017); and 
the static wind and sequent still water status caused by enclosed forest, 
which was not conducive for oxygen exchange (Scully, 2010; Chen et al., 
2021a). Additionally, unfragmented forest patches with complex edge 
shapes could increase the benefits of water purification, as supported by 
studies in Brazil (de Mello et al., 2020), Malaysia (Nafi’Shehab et al., 
2021), China (Yu et al., 2013), Korea (Lee et al., 2009), and the United 
States (Carey et al., 2011). 

4.5. Connection of wetlands with water quality 

Although numerous ecological experiments in small scales proved 
the role of wetlands in removing pollutants from water, our global meta- 
analysis showed that changes in wetland coverage in watershed did not 
have a significant impact on water quality, which might be because the 
coverage of wetland was rather small in the whole landscape (Fig. 2d). 
For mechanism, wetlands achieved water purification mainly through 
physicochemical processes represented by sedimentation and adsorp-
tion and biochemical processes represented by wetland plants’ uptake 
and soil microorganisms’ degradation (Verhoeven et al., 2006). In 
anaerobic wetland environments, denitrifying bacteria sequentially 
converted inorganic nitrogen into nitrogen gas, thus removing nitrogen 
from the water (Gersberg, 1986; Verhoeven et al., 2006; Morrissy et al., 
2021). Apart from being directly absorbed by wetland plants (Vymazal, 
2007), phosphorus was easily bound and deposited in the wetland soil 
through a series of complex reactions with metal ions in the sediments 
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(Records et al., 2016). The decreasing effects on TN, nitrate and TP could 
be partly observed in the overall effects of wetlands in Fig. 2d but were 
very ambiguous (cross the 0 line). The mist came from some references 
reflecting the wetland coverage positively correlated with nutrient 
concentration (Rothenberger, 2009; Giri et al., 2018; Bu et al., 2014). 
We surmised that one reason could be the nitrogen fixation by wetland 
plants converting airborne nitrogen to reactive nitrogen in water (Jor-
dan, 2011). Additionally, an explanatory phenomenon was that the 
wetland could absorb or release nutrients in water depending on how 
much the concentration was and whether it was saturated or not (Day 
et al., 2004; Verhoeven et al., 2006). Previous studies indicated the 
existence of critical loads, whereby both community structure and 
ecological functions, including water purification, would be shifted 
upon reaching a certain level of nutrient concentrations in wetland 
aquatic environments (Verhoeven et al., 2006). Hence, intense nitrogen 
and phosphorus inputs from surrounding urban and agricultural lands 
exceeding the loads would lead the wetland to behave as a nutrient 
exporter. 

Our meta-analysis revealed COD and DOC in water significantly 
positively responded to wetland coverage worldwide (Fig. 2d), typically 
observed in studies in Canada (Chen et al., 2021b), the USA (Tu, 2011), 
and China (Bu et al., 2014). Owing to the flooded and oxygen-deficient 
state of the wetland, the proportion of organic carbon decomposition 
was always limited (Chen, 2023). Coupled with captured incoming 
biomass and organic matter, wetlands could sequester and store carbon 
in soil (Yu et al., 2021), performing as a carbon sink (Freeman et al., 
2004). Increasing temperature and future warming would enhance the 
correlation between wetlands and carbon concentration in water by 
accelerating the organic carbon leaching from soil texture and 
increasing the organic matter in water (Freeman et al., 2004; Evans 
et al., 2005). 

The correlation of wetland coverage with COD levels in water 
significantly differed among climatic zones and latitudes (Table 1, 
Fig. 6). Cold areas and high-latitude regions witnessed a distinctively 
high effect size (Fig. 4), which was highly coherent with the previous 
findings in boreal peatlands by Pastor et al. (2003) and the global 
variation patterns of nitrogen revealed by Jordan (2011). That could 
result from the long freezing period and long water residence in the cold 
high-latitude environment. Besides, low temperatures generally 
restricted microbial activity and chemical reaction rates, reducing 
organic matter decomposition efficiency (Andersson, 2000), DOC 
catabolism efficiency, and nitrification and denitrification efficiency etc. 
(Evans et al., 2005; Morrissy et al., 2021), and thus increased the total 
concentration of organic carbon in water. Other moderators (season-
ality, spatial scale, year, etc.) hardly showed influence on the effects of 
wetland coverage changes on water quality in our analysis (Table 1, 
Figs. 4-6), perhaps related to their self-regulating capacity. 

4.5. Limitations and future directions 

Although this study revealed the global effects of landscape changes 
on surface water quality based on extensive studies, sample size and 
distribution still majorly restricted this data-driven meta-analysis. 
Wetlands did not receive that much attention in the compositive land-
scape studies compared with other landscape compositions (Fig. 2a~e). 
The previous studies in the developing countries around the equator and 
the southern hemisphere were relatively sparse (Fig. 3), calling for more 
stakeholders caring for the existing and potential water quality issues 
under the landscape changes in those distribution gaps. 

Future research should follow technological and methodological 
developments. High-frequency in-situ water quality monitoring tech-
nology such as the Online-monitoring Systems (Ministry of Ecology and 
Environment, 2019) can effectively improve the temporal continuity in 
water sampling and the standardization of water quality measurement. 
Hyperspectral remote sensing technology combined with machine 
learning algorithms contributes to water quality data with high spatial 

and temporal resolution at more ambitious research scales at low cost 
(Ramadas and Samantaray, 2018). As monitoring and prediction models 
of climate changes and hydroclimatic extremes continue to be refined, 
future research is expected to integrate the drivers of water quality 
changes considering changes in climate and landscape patterns and 
other factors such as hydrological processes and human activities (van 
Vliet et al., 2023). 

5. Conclusions 

Taking advantage of meta-analysis and a fusion of various statistical 
and machine learning methods, our study compiled the global effects of 
landscape changes on water quality. Results revealed the expansion of 
urban land was most responsible for the deterioration of water quality, 
more so than agricultural land even in nutrient pollution. Forest 
coverage in watersheds generally exerts improvement in water quality. 
The intuitive water purification function of wetlands is obscured in 
mixed landscape studies, but wetlands are significantly and positively 
correlated with organic matter-related indicators. The effects of those 
landscape changes on water quality are moderated to varying degrees by 
factors such as latitude, water body type, seasonality, climatic zone, and 
spatial scale, and gradually increase over time. The impacts of surface 
land change on water environment quality are such a universal and 
growing problem that sustainable LULC management and enhanced 
water protection through nature-based solutions are urgently needed. 
This paper also revealed the regional unevenness in the studies and 
appealed to further attention to global water equity and environmental 
justice under intensified climate changes. 
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