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Abstract Assessing spatiotemporal water storage variability in the Great Lakes Watershed (GLW) is
critical given its transboundary status impacting both Canada and the United States. Here, we apply a novel
inversion strategy to global positioning system (GPS) vertical movements to achieve high spatial resolution total
water storage (TWS) variations in GLW through improved processing. The steps are composed of removing
load changes driven by the lake water fluctuation by forward modeling, isolating the Great Lakes grids to solve
the ill‐conditioned problem in inversion, and inverting the GPS residual series to estimate TWS variations on
land (TWSGPS). The results show that the regional dense continuous GPS observation network can successfully
resolve TWS on land at monthly timescales with 30–45 km spatial resolution. We also could effectively capture
fine‐scale TWS features than GRACE/GFO mascon products. GRACE/GFO satellites largely underestimate
seasonal and long‐term TWS spatial fluctuations, but their temporal patterns coincide with those from GPS. The
average annual amplitude of TWSGPS on land reaches 82.0 mm, greatly exceeding estimates fromGRACE/GFO
(∼48.0 mm) and composite hydrological model outputs (∼62.0 mm). The seasonal groundwater fluctuations
inferred from GPS have peak‐to‐peak amplitudes of ∼40 km3 with the maximum around September. This
coincides with that from GRACE/GFO. However, the magnitudes and phases of groundwater storage from GPS
vary markedly among the subbasins in GLW, and the different snow and soil moisture amounts measured in
each subbasin cause discrepancies among these GPS estimates. This study shows the value of GPS data in
spatially downscaling GRACE/GFO data and providing high‐resolution output at spatiotemporal scales with
low latency.

1. Introduction
The Great Lakes provide drinking water to about 34 million people and water resources is critical for economic
development, ecosystem health and weather regulation over the watershed (ELPC, 2019). Total water storage
(TWS), including snow, ice, surface water, soil moisture, and groundwater are dynamic components of the hy-
drologic cycle and play key roles in water storage change and transportation in the Great Lakes Watershed
(GLW). Studying long‐term and seasonal variations in water storage alongside its spatial distribution charac-
teristics and clarifying the main driving factors are critical for managing regional water resources under climate
change.

At present, advanced hydrological simulation and satellite remote sensing products are increasingly used to assess
water availability and sustainability. These methods are essential for understanding spatiotemporal changes in
terrestrial TWS. Global models, such as global land surface models (LSMs) and global hydrological and water
resources models, are widely used to estimate the variability in TWS (Bierkens, 2015) and provide opportunities
to assess complex interactions among and transitions in global hydrological signals (Scanlon et al., 2018).
However, quantification of TWS from satellite remote sensing are necessary.

The Gravity Recovery and Climate Experiment and GRACE Follow‐On (GRACE/GFO) missions opened a new
era of global gravity field observations in response to climate and human drivers. GRACE/GFO data are now used
globally to monitor storage changes in water cycle (Famiglietti et al., 2015; Tapley et al., 2004, 2019). Tracking
changes in TWS by observing changes in Earth's gravity over time at a spatial scale of ∼300 km is useful for
quantifying global and regional changes in the hydrosphere, cryosphere, and ocean caused by climate change and
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human impacts (Tapley et al., 2019). For example, Huang et al. (2012) used GRACE data to quantify groundwater
storage (GWS) changes within the GLWwith supplementary surface water storage (SWS) (e.g., lake water, snow,
and soil moisture) information and existing glacial isostatic adjustment (GIA) models. However, the coarse
spatial resolution of GRACE/GFO data (∼300 km), signal leakage during post‐processing, and coarse temporal
resolution (∼1 month) with large latency (∼45–60 days) as well as data gaps, make it impossible to provide
continuous fine‐scale changes in water storage following extreme hydrological events in real time (Jiang
et al., 2021; Rodell et al., 2018).

Alternatively, the GPS provides an independent tool for monitoring surface deformation related to the hydro-
logical cycle (Enzminger et al., 2018; Fu et al., 2015). According to the theory of elastic deformation, the Earth
deforms elastically in response to changes in the surface load. For example, the loading or unloading of water
caused by floods or droughts results in instantaneous vertical and horizontal surface elastic deformation (Heki &
Arief, 2022; Milliner et al., 2018). GPS accurately records the vertical motion of the Earth's surface as an elastic
response to loading of water with mm‐level accuracy (Borsa et al., 2014; Knappe et al., 2019; Young et al., 2021).

Based on the theory of solid Earth elastic loads (Farrel, 1972), an inversion method that relates high‐precision
surface deformation to hydrological loads has been established to infer daily‐to‐interannual changes in TWS
(Argus et al., 2014, 2017; Overacker et al., 2022). Because crustal deformation decreases rapidly with distance
from a surface load center, GPS measurements can naturally resolve fine‐scale spatial changes in TWS and
compensate for the lack of localized information expressed in satellite‐derived gravity observations (Hsu
et al., 2020; Jiang et al., 2020; Nahmani et al., 2012). Several kinds of other space geodetic techniques have also
been applied to investigate Earth's surface water variations. Such as interferometric synthetic aperture radar
(InSAR) and altimetry. The InSAR techniques can measure subsidence associated with water storage change and
provide a mean to study TWS on land (White et al., 2022). Satellite altimetry has been proved effective in tracking
sea level and lake level change, although it cannot be used to resolve the TWS variations on land. GNSS offers a
long‐term time series to study the TWS on land. As an additional benefit, GNSS data are, if appropriately
analyzed, not so sensitive to atmospheric delays as InSAR.

In GLW, Argus et al. (2020) evaluated the elastic loading deformation driven by increasing levels of the Great
Lakes and distinguished multiple causes responsible for long‐term and seasonal vertical oscillations in the sur-
rounding land area. Xue et al. (2021) investigated relative contributions of individual hydrological components
(e.g., lakes water, snow, soil moisture, and GWS changes in GLW) to the total integrated hydrological loading
deformation. Wang et al. (2022) studied interannual fluctuations in water levels in the Great Lakes using GPS and
GRACE/GFO observations. These studies assessed the contributions of hydrological loads to the movements of
GPS stations in GLW rather than inverting for TWS changes using GPS data. In fact, accurate and high spatial
resolution water storage variations in GLW are still unknown, and these results still suffer from substantial
ambiguity regarding the magnitude and phase of GWS variations in GLW. Hence, it is critical to obtain accurate
water storage variations in GLW using an independent tool.

In this study, we aim at estimating high spatial and temporal resolution TWS changes using GPS data. Here, we
extend the approach of Argus et al. (2014) and introduce a novel inversion strategy for GPS data to achieve high
spatial resolution TWS. As the first step of our improved processing method, we remove deformation signals
caused by the lake water fluctuation by forward modeling and isolate the Great Lakes grids to regularize the ill‐
conditioned problem of the inversion equation. Then, we quantify long‐term and seasonal variations in TWS on
land within GLW by integrating data from GPS, GRACE/GFO, and a hydrological model. Finally, we assess the
long‐term and seasonal fluctuations in GWS associated with potential forcing factors in different GLW subbasins
during 2010–2020. Our results highlight the ability of dense continuous GPS network observations in capturing
fine‐scale spatial variations in TWS and quantifying GWS changes in subbasins in GLW.

2. Data and Processing
2.1. GPS Data and Processing

We collected 616 continuous daily vertical‐coordinate time series of GPS stations located in GLW spanning
2010–2020 provided by the Nevada Geodetic Laboratory (NGL, http://geodesy.unr.edu/; Blewitt et al., 2018,
2019). We omitted 225 GPS stations with ≤60% valid data percentages. Then we excluded 23 GPS stations
showing poroelastic responses to groundwater pumping, volcanic activity, or oil exploitation (Argus et al., 2020,
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2021). Finally, 368 stations were used for the inversion. Nontidal atmospheric loading (NTAL) and nontidal
oceanic loading (NTOL) effects were removed from the GPS time series (Figures S1 and S2 in Supporting In-
formation S1). The daily three‐dimensional site positions were decomposed into the following components using
Equation 1 (Li et al., 2021; Yan et al., 2019; Zhang et al., 2021):

x(t) = x0 + v(t − t0) +∑
i
[Si sin(2piωit) + Ci cos(2piωit)] +∑

k
[H(tk − te)]Fk + r (1)

where x0 is offset bias, v denotes velocity, Si and Ci represent sine and cosine terms of the annual (i = 1) and
semiannual (i = 2) components, respectively. H(tk − te) is the step function, Fk is the offset resulting from
instrumental changes or metadata changes, and r is the residual error. We did not consider coseismic steps because
GLW is in a tectonically inactive area. After removing the GIA effects (Peltier et al., 2018), subsidence of GPS
stations is primarily a response to increased water storage in GLW.We did not remove linear trends from the time
series. We show the daily vertical displacement observed from GPS for four stations from the western, central,
and eastern GLW and the corresponding post‐processing GPS vertical displacement timeseries in Figure S3 in
Supporting Information S1.

2.2. GRACE/GFO Mascon Products

The latest available GRACE/GFO mascon solutions provided by the Center for Space Research at University of
Texas, Austin (CSR) were used in this study. The spatial resolution of the CSR RL06 mascon solutions is 0.25°
(http://www2.csr.utexas.edu/grace/), and all appropriate corrections (C20, C30, degree‐1 and GIA) were applied to
the CSR GRACE mascon solutions (Save, 2019; Save et al., 2016). We removed the mean values from the
GRACE/GFO mascon solutions (spanning January 2010 through December 2020) to derive the regional TWS
anomaly, which we then compared with other water height time series. The RL06 mascon solutions use a newly
defined grid with hexagonal tiles. These tiles are split into two along the coastline to minimize leakage between
land and ocean signals. No additional Gaussian smoothing, decorrelation filtering, or scaling factors were applied
to these new CSR mascon solutions. Leakage of TWS changes into surrounding regions was also evident because
the actual dimension of the tiles used in the CSR mascon estimation was ∼330 km, accounting for the possibility
that the change within GLW may influence mascons outside its boundary. We included all mascons within
220 km (∼2°) from the boundary of GLW and reallocated the total mascons into the study region to reduce
leakage errors (Chen et al., 2016). In this study, we take the root mean square of the residual in TWS after
removing the long‐term trend, seasonal and interannual signals as the measurement uncertainty in CSR mascon.

2.3. Hydrological Data

In this study, we created a composite hydrological model (CHM) by aggregating snow water storage (SnWS) data
from Snow Data Assimilation System (SNODAS) and soil moisture data from the North American Land Data
Assimilation System (NLDAS) (Argus et al., 2020). NLDAS contains a series of land surface variables simulated
in the Noah land‐surface model (LSM) within NLDAS (Mitchell & Kenneth, 2004; Xia et al., 2012). The data are
represented on 0.25° × 0.25° latitude‐longitude grid (∼13.0 km) and extend from Jan 1979 to present. SNODAS
(National Operational Hydrologic Remote Sensing Center, 2004; National Snow and Ice Data Center 2019) data
incorporate snow telemetry (SNOTEL) data and provide daily SnWS at a 1‐km resolution. We resampled the
water storage estimates from both the GRACE/GFO mascon solutions and the CHM product into a 0.5° × 0.5°
grid (∼30 × 50 km) to match those inferred from GPS.

2.4. Water Levels in the Great Lakes Watershed

To accurately estimate TWS changes on land in GLW, the effects of lake volume changes must be removed from
the vertical displacement data at GPS stations. They also need to be subtracted from TWS changes from GRACE/
GFO (TWSGRACE) (Argus et al., 2020; Gronewold et al., 2015; Huang et al., 2012). Monthly water levels are
monitored on the Great Lakes by a network of uniformly distributed stations (Figure 1a); these data are provided
by Canada's Department of Fisheries and Oceans and by the U.S. National Oceanic and Atmospheric Admin-
istration (NOAA). We also confirmed these data sets with satellite altimetry data.
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Lake water levels are affected by temperature changes. When lake water levels are used to estimate SWS changes
in GLW, the effects of thermal expansion need to be determined. Here the thermal expansion equation of water
was used to estimate them (Meredith, 1975):

Vt = V0 (1 − 6.427 × 10− 5 T + 8.5053 × 10− 6 T2 − 6.79 × 10− 8 T3), (2)

where V0 is water volume at 0°C, T is water temperature, and Vt is water volume at T °C. This equation applies to
the temperature range 0–33°C, and water temperatures in the Great Lakes are within this range. Monthly lake‐
surface temperature data representing the Great Lakes were obtained from the Great Lakes Environmental
Research Laboratory (GLERL) lake level products of NOAA. Note that the changes in the surface area of these
lakes over 2010–2020 can be ignored (Khandelwal et al., 2022). Hence, we calculated the impact of temperature
on the water levels using Equation 2.

The amplitude of lake water level fluctuations caused by thermal expansion recorded the maximum of ∼70.0 mm
in Lake Erie and the minimum in Lake Superior (average value of 25.0 mm) (Figure 1b). Therefore, the tem-
perature effect on the water levels should be considered in studying seasonal changes of TWS in GLW.
Furthermore, the impact of GIA on water level gauges is significant, especially in Lake Superior and Lake Erie
(Figure 1c). Therefore, the GIA effect on water level change was removed. The corrected water levels in the Great
Lakes are shown in Figure 1a. Figure 1d shows the lake level rise affected by water temperature. Thermal
expansion of the Great Lakes needs to be accounted for when the water level is used to estimate SWS.

Following Argus et al. (2020), we applied a two‐dimensional Gaussian filter with a 300 km radius to approximate
GRACE/GFO measured spatial‐time variable gravity signal caused by lake water loading/unloading in GLW.
Then we estimated TWS on land by removing Gaussian filtered realization of SWS from TWSGRACE

3. Materials and Methods
3.1. Study Area

The Great Lakes system, including the five Great Lakes (Superior, Michigan, Huron, Erie, and Ontario), is the
world's largest unfrozen surface water system and contains ∼21% of the world's surface freshwater covering
an area of ∼766,100 km2, with maximum extents ranging from 1,110 km from north to south and ∼1,400 km

Figure 1. Water level variations in the Great Lakes. (a) Gauged water level changes in the Great Lakes after removing the temperature and glacial isostatic adjustment
(GIA) effects from Jan 2010 through Dec 2020. Lake Michigan and Lake Huron have the same water height because they are interconnected. (b) Thermal expansion
effect on lake water levels. (c) GIA effect on lake water levels. (d) The scatterplot mapping temperature to water level change.
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from the west side of Lake Superior to the east side of Lake Ontario. Overall, the GLW comprises 4% of the
world's watershed area, and is home to ∼30% of the Canadian population and ∼10% of the U.S. population
(ELPC, 2019; Michalak, 2017). Therefore, water resources management is extremely important in GLW.
However, as a result of the complex local climatic conditions, human intervention, and topographical char-
acteristics of GLW, estimating real‐time and accurate data on spatiotemporal variability in water storage is
challenging (Gronewold et al., 2015). A high‐density GPS station network, including 368 stations over GLW
area, provides an opportunity to quantify water storage variations for regional water resource management
(Figure S4 in Supporting Information S1).

3.2. Methods

3.2.1. Forward Modeling

We calculated the regional surface mass changes by using Green's function to obtain the vertical displacement
changes caused by water loading of the Great Lakes at each GPS station following the method of Farrell (1972).
Based on the Preliminary Reference Earth Model, the vertical displacement change can be estimated as follows,

U(θ, φ) = ∬Δm(θ′, φ′)G(ψ) cos (φ′) dθ′dφ′ (3)

where Δm represents surface water mass change at cell (θ′, φ′), G(ψ) is the vertical Green's function, ψ is the
angular distance between cells (θ′, φ′) and (θ, φ), and U is the GPS observation vector with coordinates (θ, φ).

3.2.2. Inversion Model

The solid Earth deforms elastically in response to mass loadings from water, snow, ice, and the atmosphere. Based
on the sensitivity of the solid Earth to the near‐field response of the mass loading effect, Green's function can be
used to solve the vertical displacement at each GPS station caused by the mass loading at each grid, so TWS
variations can be estimated using GPS‐measured loading deformation based on the appropriate inversion model
(Farrell, 1972; Wahr et al., 2013). We divided the study area into 0.5° × 0.5° grids (∼30 × 50 km; Figure S5 in
Supporting Information S1) and removed the loading impact of water level changes in the Great Lakes from the
GPS data through forward modeling to obtain the residual GPS vertical position time series. In our inversion
strategy, the grids over the Great Lakes were excluded, and the residual GPS vertical position time series were
used to infer the TWS distribution on land in the study area using the following least squares inversion:

min{∥(Ax − b)/σ∥2 + β2∥L(x)∥2} (4)

where b is the vector of GPS observations, σ is the vector of standard errors, x is the vector of the surface water
mass at each cell on land, A is the design matrix consisting of Green's functions relating the surface water mass at a
given pixel to the GPS vertical observation, and β is a regularization (damping) parameter. To ensure continuity
and smoothness between adjacent grids in the horizontal direction and suppress large and unrealistic water storage
changes between neighboring pixels, the Laplacian operator (L) was also applied in our study (Harris &
Segall, 1987). The solution for Equation 4 can be written as follows:

x = (ATA + σ2β2LTL)− 1ATb (5)

The value of the damping parameter β was determined using the cross‐validation method, resulting in a value of
0.017, as shown in Figure S6 in Supporting Information S1. We use the 2‐D discrete Laplacian with the kernels of

L2 [1 − 2 1] and L4

⎡

⎢
⎢
⎢
⎢
⎣

0 1 0

1 − 4 1

0 1 0

⎤

⎥
⎥
⎥
⎥
⎦
. To allow for direct comparisons with the other data sets, we calculated

weighted monthly averages from the daily GPS water estimates.
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3.2.3. Groundwater Storage Variability

Changes in GWS can be estimated as the residual of the following equation by subtracting changes in the other
components of TWS from TWS changes:

ΔGWS = ΔTWS − ΔSnWS − ΔSMS − ΔSWS (6)

where Δ is change, GWS is groundwater storage, SnWS is snow water storage, SMS is soil moisture storage, and
SWS is SWS (rivers, lakes, reservoirs, and wetlands). Changes in SnWS and SMS are generally estimated from
models (SnWS from SNODAS; CnWS and SMS from NLDAS), and changes in SWS are estimated from water
level gauge data.

4. Results
4.1. GIA and Lake Water Loading Effects on GPS Station Displacements

The GIA effect cannot be ignored over GLW (Figure S7 in Supporting Information S1). In the northern part of
GLW, the GIA effect leads a large uplift rate at GPS stations, reaching a maximum of 4.6 mm/yr. However, the
GIA effect shows a declining trend in the southern part of the basin. To determine long‐term trends in TWS, we
need to correct the GIA effect for all GPS stations in GLW. To allow for improved comparisons with the GRACE/
GFO mascon data, we applied the ICE6G‐D model produced by Peltier et al. (2018) to correct the GIA effect on
GPS observed displacements.

We first examined the 3‐D crustal deformation observed by GPS stations in and surrounding GLW from 2010 to
2020. During this period, most GPS stations at the edge of GLW moved 0.4–4.0 mm toward the Great Lakes
responding to the increase of TWS in GLW (Figure S8 in Supporting Information S1), except for few stations that
show directional divergence, which may be caused by combined effects of superimposition of local and distant
load change. All GPS stations in GLW showed subsidence with the maximum subsidence occurring at a station
close to Lake Huron and Lake Michigan (26.0 mm over 2010–2020; Figure 2). Then, we calculated the vertical

Figure 2. Comparison of observed and modeled vertical displacements at global positioning system (GPS) stations from Jan
2010 through Dec 2020. The circles represent the observed GPS vertical displacements after the glacial isostatic adjustment
corrections and the triangles represent the modeled displacements produced by Great Lakes surface water loading from 2010
through 2020. The models and the observations agree in the center and eastern edge of the Great LakesWatershed, where the
model (triangles) and observation (circles) vertical displacements match.
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motion of GPS stations in elastic response to lake water load variations (Lake Superior's water level rose 0.43 m,
Lake Michigan 1.01 m, Lake Huron 1.01 m, Lake Erie 0.67 m, Lake Ontario 0.12 m) from 2010 to 2020 based on
forward modeling method. The modeled results illustrate a clear migration of subsidence across the GLWwith the
maximum subsidence occurring at the edge of Lake Huron and Lake Michigan (subsidence up to 13.0 mm).
Subsidence in stations outside the basin is insignificant and subsidence in stations 200 km away from the GLW
can be ignored (<0.3 mm). Comparing observed and modeled displacements at GPS stations (Figure 2), we found
that vertical motion observed by GPS cannot be explained only by lake water loading, suggesting we need explore
contributions from additional water storage increases on land in GLW. Therefore, we removed the elastic vertical
displacements caused by the lake water loading from the GIA corrected GPS timeseries and generated the residual
GPS timeseries to infer TWS variations on land in GLW.

4.2. Synthetic Tests of the Inversion Method Using Chessboard Load Mass Sources

To verify the sensitivity and robustness of our inversion strategy, we conducted a synthetic chessboard test. We
calculated the vertical crustal displacement in elastic response to a uniform disk load with a radius of 26 km and
1 m water thickness. This disk has the same area as a 0.5° × 0.5° grid (∼30 × 50 km) at 43°N in GLW. The
calculation shows that the elastic vertical displacement decreases rapidly with increasing distance from the disk
center, and is close to zero at about 200 km (∼2°) (Figure S9 in Supporting Information S1), so we extended the
study domain by 2° in our inversion process. Firstly, we did a forward computation of the vertical displacement at
GPS stations responding to the synthetic water loading (Figure 3a) and then converted the synthetic vertical
displacement to the water loading distribution on land in GLW (Figure 3b). The inversion result indicates that in
most areas of GLWwith dense GPS stations, the input water loading distribution can be restored by rates of 80%–
85% in magnitude; however, a lower recovery rate (≤40%) occurs in the northwestern region, due to the sparse
distribution of GPS stations there. Therefore, to map detailed features in TWS, more continuous GPS stations are
required in this region in the future.

To further evaluate the efficiency of our inversion method, we performed another test, firstly inverting GPS
observed seasonal amplitudes of surface deformation to the seasonal water loading, then calculating the amplitude
of vertical displacements at GPS stations in response to the inverted seasonal water loading through forward
modeling. The results indicate that in Michigan and eastern Lake Ontario, seasonal oscillations in TWS are
substantial, and maximum TWSGPS amplitude in this area is ∼180.0 mm (Figure 4a). However, seasonal os-
cillations are not obvious in southwestern Ontario, with an average amplitude of ∼30 mm. The annual amplitudes
measured by GPS agree well with the forward‐calculation (R= 0.86) and the average annual amplitude difference

Figure 3. Results of chessboard test. (a) Input water load (in EWH) distribution. (b) Inversion results derived from the synthetic global positioning system data. Pink
outline represents the boundary of the Great Lakes Watershed and the orange outline indicates the boundary extended by 2°.
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between them is only 0.18 mm (Figure 4b), indicating that the applied inversion process can recover the hy-
drological mass loading in GLW effectively.

In this study, an available dense GPS network in Michigan has an average interstation distance of ∼30 km, which
can resolve the distribution of TWS at a spatial resolution of ∼30 km. However, in other regions, reduced
coverage of GPS stations would generate TWS with coarse spatial resolution relative to Michigan, especially in
the northern GLW, the local features of TWSmay not be recovered due to sparse distribution of GPS stations. On
average, GPS can provide TWS on land in GLWwith a spatial resolution of∼45 km, almost 7× higher than that of
GRACE (∼300 km).

4.3. Long‐Term Changes in Total Water Storage in GLW

To approximately match the GRACE/GFO observed mass changes in GLW, we smoothed the SWS measured by
water level gauges with a 300‐km Gaussian filter and removed the average value from 2010 through 2020 from
both time series (Figure 5). During 2010 through 2020, TWS from GRACE/GFO increased with a rate of

Figure 4. (a) Annual amplitudes of TWSGPS on land in Great Lakes Watershed (color gradations). (b) The residuals between GPS‐observed and forward‐calculated
displacements and the white circles indicate the absolute residual less than 0.5 mm.

Figure 5. Total Water Storage (TWS) estimated by GRACE/GFO (red) and surface water storage measured by water level
gauges smoothed by 300 kmGaussian filter (blue). Left axis presents the water height change in term of EWH (mm) and right
axis indicates the corresponding water volume change (km3). Error bars represent the uncertainties in the GRACE‐
derived TWS.
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25.0 ± 2.6 mm/yr, equal to a total volume of 215.0 ± 21.9 km3; however,
SWS only increased by 169.0 ± 13.2 km3, which indicated that there was an
additional water storage increase of ∼46.0 km3 on land in GLW (Table 1).

GPS‐inferred TWS (TWSGPS) on land (hereafter, TWSGPS on land refers to
TWSGPS‐SWS, similarly applies to TWSGRACE) increased by 83.0± 17.9 km

3

from 2010 through 2020, which is significantly larger than GRACE/GFO
estimates (∼46.0 ± 12.4 km3) (Figure 6). During 2010 through 2012, both
GRACE/GFO and GPS estimates show decreasing TWS trends on land in
GLW, the TWSGRACE on land decreased by 47.0 ± 6.4 km

3, the TWSGPS on
land decreased by 41.0 ± 5.6 km3 (Table 1). Especially in 2012, a rapid decrease appeared in TWS on land in
GLW, caused by an extreme drought event with high evaporation rates due to increased temperatures and lower
annual ice coverage percentage (only 13%) (Figure 1d and Figure S9 in Supporting Information S1). From 2013
through 2020, TWSGPS on land increased by 128.0 ± 14.2 km

3 and TWSGRACE on land increased by
97.0± 15.8 km3. However, CHM estimates yielded a declining trend (− 3.7± 1.5 km3/yr), losing 41.0± 16.8 km3

of water, which suggests the CHM significantly underestimated the long‐term trend in TWS relative to GRACE
and GPS results. This discrepancy may be attributed to the contribution of GWS change which is not included in
the CHMdata. TWS increasedmarkedly in 2013–2014, attributing to significant increase snowfall and the relative
low evapotranspiration in the basin (Figure S10 in Supporting Information S1).

To better understand TWS trends on land in GLW, we compared the spatial patterns of TWSGPS trends with those
estimated from GRACE (TWSGRACE; Figure 7). Results show that TWSGPS can capture the fine‐scale local
features of TWS trends on land in GLW (Figures 7a1 and 7a2). GPS derived decreasing TWS trends in the
southeast Lower Peninsula of Michigan are attributed to increasing water consumption, especially during the
drought period from 2010 to 2012, with depletion reaching 125.0 mm/yr. However, in northern and eastern Lake
Huron, water storage increased greatly during 2010–2012 and 2013–2020 due to high snowfall. In contrast,
GRACE failed to capture land water storage trends in this region during 2013–2020 and even showed the opposite
trend relative to GPS results, mainly attributed to its coarse spatial resolution and signal leakage from surrounding
areas. In the eastern GLW, although both GPS and GRACE show declining TWS, GRACE/GFO underestimated
TWS trends relative to GPS (Figures 7a1 and 7a2 vs. 7c1 and 7c2).

To explain the discrepancy between GPS and GRACE/FO, we reprojected the 0.5° × 0.5° (∼30 × 50 km) gridded
TWSGPS data into fully normalized spherical harmonics, truncated at degree and order 90, and applied the 300‐km
Gaussian smoothing filter (Figures 7b1 and 7b2). The spatial patterns of TWS trends from GPS after filtering are
similar to those from GRACE/GFO estimates overall, slight differences exist in some areas (e.g., northwest and

Table 1
Long Term Change in TWSGRACE, TWSGPS and TWSCHM Simulated Water
Storage on Land in GLW Over Different Time Spans, Unit in km3

2010–2020 2010–2012 2012–2020

TWSGRACE 46.0 − 47.0 97.0

TWSGPS 83.0 − 41.0 128.0

TWSCHM − 41.0

Figure 6. Monthly changes in TWSGPS (blue curve), TWSGRACE (after removing Great Lakes surface water via smoothing
with a 300 km Gaussian filter) (red dots) and the TWSCHM (cyan curve) time series. For clarity, the model data are offset to
the bottom (cyan axis). The error bars represent the uncertainties in TWSGRACE.
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Figure 7. Left panels are long‐term trends in TWSGPS (a1), filtered TWSGPS (b1), TWSGRACE (c1) and the difference between
(b1) and (c1) from 2010 through 2012. Right panels are similar to left, but for period of 2013 through 2020.
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eastern GLW) (Figures 7d1 and 7d2). The possible reason for the discrepancy is that detailed water load features
cannot be recovered in the northwest GLW due to the sparse distribution of GPS stations (Figures 3 and 4). In
contrast, the discrepancy in eastern GLW between the TWSGPS and TWSGRACE on land are mainly due to
GRACE/GFO largely underestimating the decreasing TWS trends; however, dense GPS station network show
fully recovered TWS variations. The results confirm that dense GPS stations can show TWS variations on land in
GLW with high spatial resolution and may complement the GRACE/GFO data.

4.4. Seasonal Total Water Storage Variations on Land in GLW

We first investigated annual amplitudes and phases in GPS observed vertical land motion related to seasonal
oscillations in water loading in GLW. Annual amplitudes of these GPS vertical observations varied from 1.0 to
7.0 mm with a mean value of ∼2.1 mm, suggesting that seasonal behavior is a dominant feature in vertical
displacement in GLW (Figure 8a). In the eastern GLW, vertical displacements recorded at GPS stations peaked
from July to August, while in the western region, the GPS vertical observations peaked from September to
October, lagging behind those in the eastern area (Figure 8b). Some GPS stations located in the eastern GLW
show phase outliers relative to nearby stations, which may be forced by strong local loading. GPS recorded
vertical displacement is tightly correlated with local water storage changes, for example, vertical displacement
reaches its maximum value at the time of minimum water storage. Therefore, GPS vertical position time series
may provide additional insights for understanding local hydrological dynamics.

We examined the spatial distribution of seasonal water oscillations on land inferred fromGPS and compared them
with estimates from GRACE/GFO and CHM outputs in equivalent water thickness (Figures 8c–8g). The results
indicate that spatial distribution of TWS on land from different water products generally agree with each other, all
patterns show larger annual amplitudes in Michigan and in the northern area of Lake Huron than elsewhere;
however, some obvious differences are found in seasonal amplitudes among these maps.

The seasonal amplitudes in TWSGPS on land are substantially larger than those in TWSGRACE and CHM outputs
(Figures 8d and 8e) in most parts of GLW and show more fine‐scale local mass change features. The average
annual amplitude of TWSGPS on land is ∼82.0 mm (Figure 8c), which exceeds those derived from GRACE/GFO
(∼48.0 mm) and CHM (∼62.0 mm) data sets. The maximum amplitude in the TWSGPS on land was ∼180 mm in
the eastern GLW, greatly exceeding the amplitudes (∼90.0 mm) provided by the GRACE/GFO (Figures 6c and
6d). In the northern GLW, the annual amplitude of TWSCHM is similar to that from the SnWS in SNODAS
(Figures 8e and 8g), which indicates that the snow mass change is a significant source of water storage, and
contributes more to water storage than soil moisture (Figure 8f). One exception to these general differences is that
TWSCHM shows larger annual amplitudes in the northern GLW than TWSGRACE and TWSGPS. This discrepancy
mainly arises from insufficient spatial coverage of the continuous GPS network in this area (Figures 3 and 4),
which reduces its ability to adequately constrain water storage variations, and the coarse spatial resolution of
GRACE/GFO data.

We further explored potential drivers of seasonal water storage variations. Due to the humid continental climate in
the study area, monthly rainfall is uniformly distributed and precipitation accumulates steadily each year (Argus
et al., 2020). Relationships between precipitation and TWS products from different sources (GPS, GRACE/GFO,
and CHM) are relatively weak (correlation coefficients: 0.03 to 0.21). However, strong correlations (0.60–0.85)
exist between monthly TWS variations from multiple water products and SnWS. Snow accumulates in autumn
and winter and melts in spring, which results in SnWS peaks in March. In addition, with the relatively low
temperature in these months, evaporation of the Great Lakes is significantly reduced, leading to a gradual increase
in TWS on land, and consequently TWS peaks in March or April with a lag of 1–2 months w.r.t the SnWS peak
(Table 2). In late spring and summer, as temperatures rise and snow melts, a portion of the water returns to the
atmosphere through evapotranspiration (ET); a portion is used to supply groundwater; and the remainder dis-
charges into the Great Lakes through runoff. Therefore, TWS on land gradually decreases and reaches to a
minimum in August.

4.5. Groundwater Storage Changes in GLW

As mentioned in Section 1, the GWS is an important contributor to the TWS, but it is still not well presented
quantitatively. Here following Equation 6, we calculated the GWS variations based on TWS on land from GPS,
GRACE/GFO and CHM consisting of SnWS in SNODAS and SMS in NLDAS. As shown in Figure 9, the GPS
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Figure 8.
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based GWS estimates are in good agreement with that from GRACE/GFO at
long term and seasonal time scales. GPS based GWS increased with a steady
rate of 8.4 ± 1.1 km3/yr (eqs. to 16.5 mm/yr in EWH), slightly larger than the
GRACE/GFO estimated GWS trend (5.7 ± 1.2 km3/yr, eqs. to 10.9 mm/yr in
EWH) over the 2010–2020. The GWS seasonal fluctuations have peak to
peak amplitude of ∼40 km3 with the minimum and maximum appears in
March and September, respectively.

We further investigated the spatiotemporal variations of GWS inferred from
GPS in four subbasins of GLW associated with other water components from
2010 through 2020 (Figure 10). The results indicate that the distribution of the

trends in GWS is highly heterogeneous in the four subbasins. GWS variations in subbasins A and B were
dominated by long term trends, with an increasing rate of 54.9 ± 2.3 mm/yr and 51.51 ± 2.0 mm/yr, respectively
(Figures 10A1 and 10B1), and GWS changes in subbasin D show large interannual variations with a slight in-
crease of 11.8 ± 3.2 mm/yr (Figure 10D1). However, GWS in subbasin C showed a declining trend with
− 5.4 ± 1.6 mm/yr (Figure 10C1). On land in GLW, seasonal GWS peaks in September and has a minimum in
March, and the timing of the peak behaves differently in various subbasins. In subbasins A, B, and C, GWS peaks
around September (Figures 10A2 and 10B2). In subbasin D, the GWS and TWS showed good phase alignment,
peaking in March (Figure 10D2). These data indicate dynamic processes in groundwater and its connection with
other water components, such as snow and soil moisture.

SnWS and SMS exhibit consistency in phase across different subbasins but yet demonstrate differences in
magnitude (Figures 10A2, 10B2, 10C2, and 10D2). Thick snow covers subbasins A, B, and C in winter, peaking
in March, especially in subbasin A, with an annual amplitude of SnWS excess of 150.0 mm. In subbasin D, the
maximum seasonal amplitude of SnWS is less than 20.0 mm and can be neglected. However, SMS has the largest
amplitude in subbasin D with 120.0 mm, nearly 2 × larger than that in subbasins A, B or C.

5. Discussion and Conclusion
5.1. Assessment of Groundwater Storage Changes on Land

Based on GRACE/GFO data, Huang et al. (2012) and Argus et al. (2020) detected GWS variations on land in
GLW. Huang et al. (2012) reported that a declining trend in GWS varied from 2.3 to 9.3 km3/yr and annual
amplitude varied from 14.2 to 47.6 km3 during the 2002 to 2009 period. This discrepancy is mainly caused by the
large uncertainty in SMS and SnWS outputs from different hydrological models combined with the coarse
resolution of GRACE data. Argus et al. (2020) estimated that GWS increased by ∼50.0 ± 50 km3 from 2013 to
2019 and groundwater reached a maximum with a peak‐to‐peak amplitude of ∼60 km3 around March, 6 months
before the lake water peaked in September. Our estimates show that during 2013–2019, GWS on land increased
substantially with a total amount of 70.0 ± 22 km3 from GPS and 63 ± 42 km3 from GRACE/GFO. In terms of
seasonal fluctuation, we found that groundwater storage increased by ∼40 km3 in summer and fall, and decreased
by an approximately equivalent amount in winter and spring. Additionally, GWS on land peaked in September
with about 1 month lag behind the lake water peak, which is different to the peak time (March) given by Argus
et al. (2020).

The GWS seasonal variations are driven by various seasonal factors. Precipitation in GLW is uniformly
distributed over time and accumulates steadily throughout the year; however, ∼90% of snow occurs in winter and
spring, accumulating on the ground in GLW and rapidly melts in April and May and remains absent until
December (Figure 6 and Figure S10 in Supporting Information S1). In late spring, runoff increases with snow
melting, ET in the basin is still low due to the relatively low temperatures, so a large amount of water flows into

Figure 8. Annual amplitudes (a) and phases (b) of vertical displacements recorded by 368 continuous global positioning system (GPS) stations and spatial distribution of
annual Total Water Storage variations on land inferred from GPS (c), GRACE/GFO (d), composite hydrological model (e), SMS in NLDAS (f), and snow water storage
in SNODAS (g) from 2010 through 2020. The annual phase presented by the day of year (doy) refers to the time of vertical deformation reaching its seasonal maximum
value. Annual amplitudes of GNSS vertical displacements are low generally with an average ∼2.1 mm, the phase varies with displacements later in the year in the west
and earlier in the east.

Table 2
Maximum Correlation Coefficients and Corresponding Phase Lags Among
TWS on Land From GPS, GRACE/GFO, CHM and Precipitation (PRECI)
and SnWS in GLW

TWSGPS TWSGRACE TWSCHM PRECI SnWS

TWSGPS 0.86/1 0.76/0 0.21/− 1 0.65/− 1

TWSGRACE 0.58/− 1 0.12/− 1 0.60/− 1

TWSCHM 0.03/0 0.85/0
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Figure 9. Temporal variations in GWS on land derived from GRACE/GFO and global positioning system (GPS). Left axis
shows EWH in mm and the right axis shows the corresponding water volume change in km3. For clarity, the seasonal term of
GWS is offset to the bottom (blue axis). The vertical bars represent the uncertainties in the GWSGRACE. GWS on land derived
from GRACE/GFO and GPS show good agreement in the temporal pattern, reaching a maximum around September with a
peak‐to‐peak amplitude of 40 km3 and GWS inferred from GPS increased at a rate of 8.4 ± 1.1 km3/yr from 2010 to 2020,
slightly greater than GRACE/GFO estimates (5.7 ± 1.2 km3/yr).

Figure 10. Monthly (A1, B1, C1, and D1) and seasonal changes (A2, B2, C2, and D2) in TWSGPS (red curves), GWSGPS (blue curves), SMS (pink curves) and snow
water storage (SnWS) (orange curves) from 2010 through 2020 for subbasins A, B, C, and D in glw. For clarity, monthly timeseries of SMS in NLDAS and SnWS in
SNODAS are offset to the base of the graphs (cyan axis).
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the lakes through rivers, and the remaining water percolates through the deep soil, reaching the water table and
replenishing the groundwater. Since then the GWS continually increases until reaching a maximum in September.

Due to variable snowfall patterns, runoff, soil saturation, infiltration rate and capacity, the dynamic process of
GWS and transport is complex, and behaves differently in various regions of GLW. In subbasins A, B and C, the
amplitudes of seasonal TWSGPS on land were close to those of SnWS (Figures 10A2, 10B2, and 10C2), sug-
gesting that snow change dominated annual TWS, resulting in a phase shift of about half a year between GWS
estimates and TWSGPS on land in these three basins, the GWS peaked around September. However, in subbasin
D, with thinner snowpack in winter and early spring, resulting in lower snow contributions to TWSGPS on land,
GWS and TWS exhibited good phase alignment (Figure 10D2).

5.2. Conclusions

Based on the inversion method designed herein, the vertical displacement in the GPS data can successfully
resolve spatiotemporal variations in water storage on land in GLW at monthly timescales and at 30–45 km spatial
resolutions, and can effectively capture the fine‐scale temporal feature of TWS on land in GLW relative to the grid
spatial resolutions of GRACE/GFO mascon data (∼100–300 km). GRACE/GFO largely underestimates spatial
patterns of long‐term trends and seasonal amplitudes in TWS on land due to its intrinsic coarse spatial resolution
(∼300 km) and signal leakage issues. The average annual amplitude of TWSGPS on land inferred from GPS data is
∼82.0 mm with a maximum amplitude of ∼180.0 mm in the northeast portion of the watershed, exceeding the
results estimated by CHM by 62.0 mm and GRACE/GFO by 48.0 mm. From 2010 to 2020, TWS on land inferred
from GPS increased by (83.0 ± 17.9 km3/yr) exceeded increasing TWS trends from GRACE/GFO
(46.0 ± 12.4 km3/yr). GWS changes derived from GPS are spatially heterogeneous in terms of trends in the four
subbasins of the GLW, coinciding with long‐term variations of TWS on land. GWS seasonal variations exhibit a
half‐year phase shift relative to TWS on land in the snow dominated regions (subbasins A, B and C), and have in
phase change with TWS controlled by soil moisture variations (subbasin D). High‐density GPS networks, where
available, may serve as an independent tool to estimate high‐resolution TWS variations in near real time and
provide critical insights for understanding terrestrial water movement.

Data Availability Statement
The GPS daily coordinates used in this study are available from Blewitt et al. (2018). The CSR GRACE products
used in the study can be publicly obtained from Save et al. (2016). The operational environmental loading
products are available from (Dill & Dobslaw, 2013). Hydrologic data were downloaded from the Great Lakes
Environmental Research Laboratory (GLERL) lake level products of NOAA. The NLDAS Noah LSM is
available from Xia et al. (2012). ICE‐6G_D (VM5a) data can be publicly obtained from Peltier et al. (2018). The
SNODAS data are available from the National Operational Hydrologic Remote Sensing Center (2004).
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