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Abstract

As lake and reservoir ecosystems transition across major environmental regimes (e.g., mixing regime)
resulting from anthropogenic change, setting predictive expectations is imperative. We tested the hypothesis
that (dissolved) oxygen is more predictable in monomictic reservoirs that thermally stratify throughout the
summer (warm) season compared to polymictic reservoirs that stratify intermittently. Using two-hourly vertical
profiles of oxygen, we compared daily-aggregated errors of oxygen predictions from random forests across and
within two monomictic and two polymictic reservoirs in the south-central (subtropical) USA. Although one
monomictic reservoir was typically more predictable than the polymictic reservoirs, the hypereutrophic, small
monomictic reservoir had less predictable oxygen patterns potentially related to rapid oxygen cycling and intru-
sions of oxygenated waters in the hypolimnion without mixing. Daily mixing did not relate strongly to model
errors. Water temperature, depth, and wind were the most important predictors, but were not clearly related to
season or mixing. Lastly, we compared multiple model types (regression, neural network, and process-based) in
one polymictic reservoir to test how our interpretations of oxygen predictability were sensitive to model type,
finding that the models generally agreed; however, the process-based model poorly predicted oxygen in the
middle of the vertical profiles (5 m) where most models performed poorly due to a temporally unstable, vacillat-
ing metalimnion. Our results suggest predicting reservoir oxygen dynamics may be easier in stratified reservoirs,
but eutrophication and complex hydrodynamics may cause forecasting surprises especially for those who use or

manage water resources in mono- or dimictic reservoirs.
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Lake and reservoir mixing regimes are predicted to change
due to local and global environmental change (Woolway and
Merchant 2019). For example, some lakes will transition from
monomictic to polymictic, either by climate change or by
shallowing from sedimentation fill, and it is unknown how
this will impact the ability to make informed management
decisions (Taranu et al. 2010; Woolway and Merchant 2019;
Kornijéow 2023). With increased availability of high temporal
resolution monitoring data and more accessible software,
data-driven machine learning methods are particularly primed
to rapidly catalog and understand predictability of diverse
environmental variables. In addition, space-for-time studies of
predictability across environmental gradients now might set
expectations for future predictability when major drivers of a
system’s ecological or biogeochemical dynamics (e.g., mixing
regime) are nonstationary (Thomas et al. 2018; Rissman and
Wardropper 2021).
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Dissolved oxygen is a principal biogeochemical variable in
aquatic ecosystems, so predicting lake and reservoir oxygen
dynamics is imperative to managing aquatic ecosystem func-
tion and services, especially as oxygen patterns worldwide
become increasingly variable (Carey 2023). Causes of oxygen
patterns are relatively well understood. For example, weather
dynamics such as wind and air temperature, interacting with
lake morphology, are key drivers of oxygen dynamics such as
hypoxia duration in lakes and reservoirs via effects on lake
mixing and metabolic rates (Woolway et al. 2017; Cortés
et al. 2021; Ishikawa et al. 2021). In contrast, the predictability
(rather than causes) of oxygen dynamics is poorly quantified,
creating a problem for anticipating and managing effects of
high or, especially, low oxygen, such as metal desorption,
nutrient release, and spatial distributions of oxygen-sensitive
organisms (Miiller et al. 2012; Lofton et al. 2022; Carey 2023).
Water temperature is a key control on oxygen and is relatively
easy to predict, so a common assumption may be that oxygen
patterns follow water temperature; studies predicting water
temperature dynamics regularly point to impacts on oxygen
(e.g., Butcher et al. 2015; Mi et al. 2019; Thomas et al. 2020).
However, oxygen concentrations are additionally controlled
by biological (e.g., phytoplankton biomass) and chemical
(e.g., redox) factors that decouple patterns of oxygen from
those of temperature, adding complexity, variability, and
potentially hindering prediction over near-term timescales
(Carey 2023). Studies are needed to understand patterns and
drivers of oxygen predictability, but especially as related to
environmental gradients that are expected to be nonstationary
due to anthropogenic pressures.

Lake mixing patterns control the relative importance across
space and time of oxygenating (e.g., photosynthesis) and
deoxygenating (e.g., respiration) processes in water bodies
and may be critical for forecasting oxygen and related biogeo-
chemical or water quality patterns (Jane et al. 2021). In lakes
and reservoirs with stable (seasonal) stratification, the persis-
tence of presumably distinct hypo- and epilimnetic layers may
facilitate predictability of oxygen vertically and through time.
Therefore, epilimnetic oxygen can be expected to largely fol-
low diel rhythms of photosynthesis and hypolimnetic oxygen
generally decreases throughout the stratified period, possibly
even becoming anoxic due to the dominance of microbial
respiration. In polymictic systems, however, mixing of
oxygen-rich surface waters into deeper depths frequently
occurs, rapidly equilibrating chemically distinct epi- and
hypolimnia to oxygen concentrations largely defined by the
volumes of mixing water and the biological and chemical oxy-
gen demand of the hypolimnion (Hammond et al. 2023;
Wagner et al. 2023). Periods of stratification and mixing in
the summer can quickly alternate, sometimes on daily time-
scales (MacIntyre et al. 2002; Wilhelm and Adrian 2008;
Wagner et al. 2023), potentially worsening predictions of lake
physiochemistry in the summer compared to cooler seasons
characterized by constant holomixis (Durell et al. 2023). The
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temporality of stratification may therefore influence the
predictability of oxygen, particularly on hourly to daily time-
scales that are critical for adaptively managing activities such
as raw drinking water intake.

We asked how reservoir mixing conditions influence model
predictions of daily oxygen dynamics using vertical profiles of
high-frequency (~ every 2 h) oxygen concentrations across two
monomictic and two polymictic reservoirs. Specifically, we
hypothesized that frequent breakdown of stratification induces
rapid variability in oxygen that diminishes oxygen predictabil-
ity. We analyzed oxygen predictability both across and within
lakes, predicting that (1) oxygen would be more predictable in
monomictic reservoirs compared to polymictic reservoirs,
(2) oxygen in polymictic reservoirs would be less predictable
during the warm season (when stratification occurs intermit-
tently), and (3) mixing conditions, that is, days with highly var-
iable thermal stratification strength, would negatively correlate
with oxygen predictability. We targeted daily prediction errors
because this is the temporal scale at which there can be sub-
stantial variability, particularly from mixing dynamics, relevant
to management action for activities like drinking water intake
and treatment (e.g., from near-term, 1-10d forecasts; Carey
et al. 2022, Wagner et al. 2023). We used the machine learning
algorithm random forest to generate predictions with com-
monly available weather variables and water temperature pro-
files as predictor variables. In this sense, we define predictability
as a realized predictability (Pennekamp et al. 2019) in the con-
text of driver variables that (1) have known causal relationships
(either directly or indirectly) with stratification and oxygen pat-
terns, and (2) are generally accessible, especially in a true fore-
casting context via, for example, the National Oceanic and
Atmospheric Administration’s Global Ensemble Forecasting Sys-
tem (GEFS), at similar temporal scale as the high-frequency
water monitoring data. We used root mean square error (RMSE;
see Methods) as a quantitative measure. We additionally
explored how predictor variables causally associated with
mixing (wind, water temperature, depth) contributed to predic-
tion skill across reservoirs, seasons, and mixing conditions
using Shapley Additive exPlanations (SHAP). Finally, we com-
pared linear regression, machine learning, and process-based
modeling approaches in a single polymictic reservoir to test
how different modeling approaches were influenced by mixing
conditions and to better evaluate our choice of the random for-
est algorithm for the focal across- and within-reservoir compari-
sons. We highlight how increasingly available high-frequency
monitoring technology can be combined with accessible,
highly predictive machine learning methods to analyze drivers
of ecological predictability across environmental gradients
(here, lake and reservoir mixing patterns). Our results uniquely
suggest that the short-term, management relevant predictability
of biogeochemical patterns and water quality varies across
multiple environmental and even vertical gradients. Making
accurate predictions of oxygen on these short timescales
(e.g., near-term forecasts), particularly in metalimnia that are
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Table 1. Information on each reservoir in this study, including the number (N) of dissolved oxygen data points used for model training and testing, overall R?,
and distributions of model error (root mean square error, RMSE, for the testing set) for each reservoir. All model RMSE in the manuscript are based on data from
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Fig. 1. Map of study reservoirs located in Texas and Arkansas, USA. North is oriented at the top of each reservoir map except for Maumelle, where north
is toward the right of the figure. Orange circles on each reservoir mark the location of high-frequency water quality profilers.

Time series spanned April-December 2021 for Richland-
Chambers, April-October 2019 for Eagle Mountain, and April-
September 2021 for Fayetteville. At Maumelle, data were col-
lected with a buoyed chain (PME) of 10 temperature and dis-
solved oxygen sensors (In-Situ Roxygen Pro) spaced ~ 1 m
apart to 10 m depth (J. Fleming USGS pers. comm.). These
data are collected and managed by the US Geological Survey
(USGS) as monitoring location 072632995. We selected a
subset of the available Maumelle time series that spanned

dates similar to the other time series, from April to
December 2021.

Hourly local weather data were obtained from the National
Oceanographic and Atmospheric Administration (NOAA) Inte-
grated Surface Database (ISD) using the R package worldmet
(Carslaw 2023). ISD data collected at airports ranged from
10 to 30 km away from the profile locations. Weather condi-
tions can vary substantially across such distances, so we stress
that all models are learning correlative associations between
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weather variables and oxygen. Indeed, for the purpose of pre-
diction, this is a value of highly flexible, data-driven machine
learning methods. Even calibration of process-based models can
tune parameters that control the sensitivities of hydrodynamics
to weather conditions, optimizing process rate responses to
given weather conditions rather than assuming perfectly
known relationships between weather conditions and lake
behavior (see Modeling section). We acquired air temperature,
wind speed and wind direction at 10 m (transformed to north
and west wind velocities), barometric pressure, dew point tem-
perature, and cloud cover fraction. Reservoir inflow, only used
for the process-based model GOTM-WET at Richland-Chambers
(see Multi-model comparison section below) was obtained using
measured discharge at USGS gages on the two major inflows,
Richland Creek and Chambers Creek. Because these gages were
upstream from the reservoir (but below any major inflows or
impoundments), discharge was scaled to the most upstream
location of the reservoir using the drainage area method, and
then summed into a single inflow.

Modeling

Oxygen data were evenly split into training and testing sets
to create 10-d periods (“validation periods”) for model valida-
tion (Fig. 2). This splitting captured the general variability in
oxygen dynamics across the available data in each reservoir
while holding out ample data for testing across different reser-
voir conditions and avoiding a random split of the data that
could significantly undersample cool or warm water periods
(Supporting Information Header S1; Supporting Information
Figs. S1-S4 show data sensitivity analyses, including a down-
sampling approach to validate inter-reservoir comparisons
given Fayetteville profiling limitations in Study sites and high-
frequency data collection). Random samples of the data are
also improper tests of skill for random forests predicting time
series (Regier et al. 2023).

We compared reservoir oxygen predictability using the
machine learning algorithm random forest, which is based on
decision trees that partition the predictor space using splitting
rules. We fit, tuned, and compared random forest models
using the ranger package within the tidymodels framework
and collection of packages (Wright and Ziegler 2017; Kuhn
and Wickham 2020) in R. Models were always fit with
500 trees (James et al. 2021), but we tuned hyperparameters
m_try, which controls the number of randomly selected pre-
dictors for each tree, and min_n, which controls the mini-
mum node size for each tree. Model selection and tuning used
depth-stratified 10-fold cross-validation with the 10-fold par-
titioning repeated five times, using vfold_cv() on the training
data. Final models to predict testing set oxygen used the com-
bination of hyperparameters with the lowest root mean square
error (RMSE) during the cross-validation routine on the
training data.

We evaluated several other models to predict oxygen in
Richland-Chambers Reservoir only to test how different
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modeling approaches might influence the efficacy of our oxy-
gen predictions: (1) Linear regression, that is, ordinary least
squares regression, (2) lasso regression, which is regularized
linear regression that effectively adjusts regression coefficients
to improve out-of-sample prediction, (3) Long short-term
memory recurrent neural network (LSTM; Hochreiter and
Schmidhuber 1997), which learns how to “retain” and “forget”
potentially predictive information through time series, and
(4) GOTM-WET, a process-based model built on differential
equations representing the coupled (1-dimensional, vertical)
hydrodynamics and ecological dynamics within a water body.
The train-test split for each of these models was the same as
used for the Richland-Chambers random forest. The lasso
model was trained as the random forest models, where the
hyperparameter lambda, the regularization parameter, was
tuned via an identical 10-fold cross-validation procedure. The
LSTM hyperparameters were also tuned using 10-fold cross-
validation in Python. Tuning resulted in using a single LSTM
layer with 10 hidden nodes. GOTM-WET was calibrated to the
training data by continuously narrowing model parameters
using the differential evolution algorithm in the Parallel Sensi-
tivity and Auto-Calibration (parsac) tool in Python
(Bruggeman and Bolding 2020). GOTM-WET was run continu-
ously over the entire time series, including the test data
periods, and was therefore not restarted with updated state
parameters at the beginning of each 10-d period. See
Supporting Information Header S2 for more details on hyper-
parameter tuning, and LSTM and GOTM-WET model training.

We used the standard deviation of daily Schmidt stability to
indicate reservoir mixing. Briefly, Schmidt stability measures
the resistance of a lake to mixing, or rather the energy needed
to overcome the potential energy inherent to the lake’s vertical
thermal gradient (Idso 1973). Higher values of Schmidt stability
therefore indicate strong thermal stratification, while values
closer to zero indicate mixed conditions. We calculated stability
for each depth profile with the function schmidt_stability in the
R package rLakeAnalyzer (Winslow et al. 2019), which takes the
vertical profile of water temperature and bathymetry as its main
arguments. Higher standard deviation of the daily Schmidt sta-
bility suggests a mix between stratified and mixed conditions,
while lower standard deviation of Schmidt stability suggests sta-
ble thermal conditions.

We also explored the importance of different predictors
across and within reservoirs using Shapley Additive exPlana-
tions (SHAP). Because we assumed that our predictors (fea-
tures) were correlated, which confounds SHAP interpretation,
we used the shapr package in R that implements SHAP that
take feature correlation into account (Aas et al. 2021; Sellereite
et al. 2023). SHAP values have a theoretical basis in game the-
ory and represent the contribution of a feature to individual
model predictions. More specifically, a SHAP value is the con-
tribution of a feature to the difference between a model’s pre-
diction and the mean of the response variable across the
dataset. We scaled each feature contribution as a percentage of
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Fig. 2. Time series of Schmidt stability for each reservoir. Blue data points coincide with time periods of model training (though Schmidt stability was
not a predictor variable), and yellow coincide with the model testing set. Schmidt stability estimates the reservoir’s resistance to mixing, so higher values
indicate more strongly stratified conditions and O indicates completely mixed conditions. The gray areas denote the “warm” season when intermittent
mixing and stratification occur in polymictic reservoirs (Eagle Mountain, Richland-Chambers) and when stable stratification occurs in monomictic reser-

voirs (Fayetteville, Maumelle).

each prediction to facilitate interpreting predictor importance
across reservoirs.

Statistical analysis of model prediction errors

We used linear mixed effects models to assess how RMSE
(daily prediction error of oxygen) and predictor importance
(in the random forest models) differ across (1) reservoirs,
depths, and seasons, and (2) reservoirs, depths, and daily
mixing. We tested models including random intercepts for each
combination of reservoir, depth, and validation period, and
included an AR(1) autoregressive model in the residuals. We
also used variance weighting with the varldent function in the
R package nlme (Pinheiro and Bates 2000; Pinheiro et al. 2023).
Final model selection was based on visualization of residuals for
heteroscedasticity across the fitted values and by predictor vari-
ables, normality, and reduction in autocorrelation (Zuur

et al. 2009). For inference of effect sizes between levels of pre-
dictor variables, we present the 95% confidence intervals (CIs)
of the contrasts between levels, but note that in all cases where
these CIs did not contain zero the corresponding p values
(corrected for multiple comparisons via Tukey’s method) were
less than 0.05. Model estimated marginal means and contrasts
were calculated using the package emmeans (Lenth 2023).

All R modeling and analysis was done in v4.2.3 (R Core
Team 2023) and Python modeling in v3.9.0. All data, model
training, and analyses are archived in Zenodo at DOI: 10.
5281/zeno0do.10403565.

Results

Mixing, temperature, and oxygen dynamics
Temporal patterns of Schmidt stability showed Eagle
Mountain Lake and Richland-Chambers Reservoir were
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polymictic, while Lake Fayetteville and Lake Maumelle were
monomictic (Fig. 2). The warm water season where polymictic
reservoirs could occasionally stratify and monomictic reser-
voirs were stratified generally stretched from May through
September or October. Fayetteville at the end of data availabil-
ity was beginning to destratify, but the warm season at other
reservoirs was completely shouldered by cool seasons of fully
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The two polymictic reservoirs, Eagle Mountain and
Richland-Chambers, had similar temperature regimes to the
two monomictic reservoirs, Fayetteville and Maumelle (Fig. 3,
top panel). The main difference was that bottom temperatures
in the polymictic reservoirs were generally warmer and more
variable owing to the periodic mixing of warm surface waters.
Hypolimnetic temperatures in the bottom waters of the

mixed conditions. monomictic reservoirs were relatively stable, suggesting
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Fig. 3. Time series of temperature (top panel) and dissolved oxygen (DO; bottom panel) at the surface and bottom (8.5-10 m; see Methods) measure-
ment stations for each reservoir. Data were measured at approximately two-hourly intervals. Blue data points were used for model training, while yellow
data points were held as the testing set. Note that the x-axis has slightly different resolution depending on the reservoir due to differences in length of
available time series.
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limited mixing and heat exchange with surface waters that
were ~ 10-15°C warmer throughout the stratified warm
season.

Oxygen (dissolved oxygen) profiles between the two reser-
voir mixing regimes were markedly different (Fig. 3, bottom
panel). Eagle Mountain and Richland-Chambers had strong
diel swings at the surface (as did the monomictic reservoirs),
but occasional mixing of anoxic bottom water induced hyp-
oxia (<2mgL™) in the surface waters, inducing temporally
highly variable surface water oxygen. Similarly, mixing events
could oxygenate anoxic bottom waters to hypoxia or greater
(e.g., > 5 mg L™Y). Anoxia was much more stable in the hypo-
limnia of the monomictic reservoirs. At Maumelle, oxygen
decreased steadily in the hypolimnion after the reservoir strat-
ified during the warm season, until reaching a stable anoxic
state until the fall mixing event in late September. Fayetteville
hypolimnetic oxygen was generally anoxic but occasionally
oxygenated above hypoxic levels despite elevated Schmidt sta-
bility indicating a lack of a convective mixing event.

Reservoir model error comparison

Supporting Information Figs. S5-S17 show raw predicted
oxygen vs. observed oxygen in each reservoir throughout the
test set period and across the top, middle, and bottom depths.

Dissolved oxygen was fairly well-predicted in each reservoir
(Table 1), with R* on the entire testing data varying from a
minimum 0.73 for Richland-Chambers to a maximum of 0.89
for Maumelle (Table 1). RMSE on the entire testing data
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ranged from 0.89 mgL~' for Maumelle to 2.1 mgL~' for
Fayetteville, suggesting Maumelle oxygen was generally more
predictable than the other reservoirs. Mean RMSE differed by
reservoir (p < 0.0001), as well as an interaction of season and
depth (p = 0.0012). Depth-averaged oxygen concentrations in
Richland-Chambers and Eagle Mountain, the two polymictic
reservoirs, were less predictable than Maumelle oxygen in
both seasons with the estimated mean differences in RMSE
between reservoirs ranging from 0.4 (CI: 0.01-0.79) to 0.7 (CIL:
0.30-1.2). Yet, in contrast to our prediction that the pol-
ymictic reservoirs would be less predictable than the mono-
mictic reservoirs, Fayetteville oxygen RMSE was 0.85 (CI:
0.15-1.6) mg L~! greater than Maumelle oxygen during the
warm season.

Seasonal (cool or warm) factors generally had weak and
uncertain effects on daily-aggregated RMSE within reser-
voirs, which did not support our prediction that the pol-
ymictic reservoirs would become less predictable during the
warm stratifying season (Fig. 4). In fact, bottom RMSE
decreased by 0.61 (contrast CI: 0.14-1.1) and 0.66 (contrast
CI: 0.3-1.1) mg L™! in the warm season compared to the
cool season at Richland-Chambers and Maumelle, respec-
tively, and increased by 1.4 mg L™" (contrast CI: 0.35-2.4)
in warm season surface predictions at Fayetteville, where we
expected RMSE to stay the same or decrease. Generally, bot-
tom oxygen was better predicted than other depths during
the warm season. Maumelle bottom mean RMSE during the
warm season was only 0.32 (CI: 0.0-0.7 mg L™!) likely due
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Fig. 4. Comparison of daily root mean square error (RMSE (mg L™"); colored small points) of dissolved oxygen (DO) predictions between seasons at
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differences between seasonal means within reservoirs and depths.
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to temporally stable anoxia from approximately June 14 to
September 22 eliminating variability in oxygen. Although
anoxic conditions were present in almost all the testing
data at the bottom of Fayetteville, as well, Fayetteville
anoxic conditions were more tenuous than those observed
at Maumelle despite no evidence of strong convective
mixing (Fig. 2). Consequently, Fayetteville bottom oxygen
predictions (RMSE: 0.83mgL~!, CI: 0.19-1.5) were
less precise than Maumelle bottom oxygen during the
warm season, and more similar to warm season bottom
RMSE in the polymictic reservoirs Eagle Mountain
(0.77mgL™%, CI: 0.36-1.2) and Richland-Chambers
(0.55mg L', CI: 0.16-0.94).

Mixing (daily Schmidt stability standard deviation) had
only minimal linear influence on the mean predicted daily
RMSE at any reservoir or depth (Fig. 5). This effect was limited

Dissolved oxygen prediction in reservoirs

RMSE increased by 0.030 (CI: 0.009-0.052) and 0.026 (CI:
0.007-0.046) mg L~ ! per unit change in mixing.

Predictor importance

Across reservoirs, the most important predictors were
depth, water temperature, and day of year, which on average
respectively contributed 28%, 20%, and 19% of predictive
force (as normalized SHAP) to oxygen predictions (Supporting
Information Fig. S18). The other predictors (dew point, cloud
cover, air temperature, air pressure, south + west wind), con-
tributed 4-10% on average. Note that quantitative compari-
sons of SHAP in the following text are absolute differences of
these percentages (i.e., treating “%” like a measurement unit).

We initially expected that variables strongly associated with
mixing (wind, water temperature), as well as the importance
of depth, would vary between polymictic vs. monomictic res-
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Mountain, Richland-Chambers) and two monomictic (Fayetteville, Maumelle) reservoirs. RMSE is given for predictions at the surface, middle (5 m), and
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sion line (solid) and its 95% confidence intervals (dotted) are derived from linear mixed model with variance weighting, residual autocorrelation structure,
and random intercept. Significant slopes (*p < 0.05) were only detected at the middle and surface depths of Eagle Mountain.
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polymictic reservoirs (Fig. 6). On average, wind was a more
important predictor of oxygen concentrations in the pol-
ymictic reservoirs but this was mostly driven by depth-
dependent differences, and qualitatively, wind was much
more variably important to oxygen predictions in polymictic
reservoirs. Wind was a more important predictor in the pol-
ymictic than monomictic reservoirs only at middle depths,
where wind was ~ 9-10% (range of low to high contrast CIs:
1.4-19.2) more important to average oxygen predictions in
each of the polymictic reservoirs contrasted with each mono-
mictic reservoir. However, this difference in importance of
wind between mixing regimes was constant across the warm
and cool seasons.

During the cool season, water temperature contributed
on average 7-14% (range of Cls: 0.5-21) less to oxygen pre-
dictions in the two polymictic reservoirs compared to
Maumelle (but not Fayetteville), regardless of depth. During
the warm season, the importance of water temperature
across reservoirs was depth dependent. Water temperature
was 8.5-12% more important in the polymictic reservoirs
and Fayetteville than Maumelle at the surface (range of Cls:
1.5-19), and 7-10% less important to bottom predictions in
the polymictic reservoirs compared to Maumelle (range of
Cls: 0.08-18).

Depth was generally an important predictor of oxygen for
surface and bottom oxygen predictions, but was 16-30% less
important (regardless of season) for the middle depth oxygen

Dissolved oxygen prediction in reservoirs

predictions in FEagle Mountain, Richland-Chambers, and
Fayetteville (Fig. 6). Only at Maumelle did depth tend to be
more important to predictions during the warm season, where
the importance of depth increased 12-16% Maumelle (range
of lowest to highest contrast Cls: 7-22%) in warm compared
to cool seasons at every depth.

Mixing was occasionally linearly related to variable impor-
tance (Supporting Information Fig. S19). Water temperature
SHAP (%) increased with mixing at the surface (slope = 0.23,
CI: 0.13-0.34) and middle (slope =0.12, CI: 0.005-0.23)
depths of Richland-Chambers, but decreased with mixing at
the surface of Maumelle (slope = —0.25, CI: —0.46 to —0.05).
Wind SHAP was negatively related to mixing at the surface
(slope=-0.14, CI. -0.25 to —0.04) and middle
(slope = —0.25, CI: —0.37 to —0.14) depths of Richland-
Chambers.

Multi-model comparison at Richland-Chambers Reservoir
No one model always outperformed the others, but differ-
ences in model performance depended on the season and
depth of the predictions (three-way interaction of season,
model type, and depth category p < 0.0001; Fig. 7). At the sur-
face, mean daily RMSE was not discernibly different across
any model regardless of season. The linear regression-based
methods performed comparatively to the machine learning
methods, excepting lasso RMSE was ~ 1.3 (both CI: 0.3-2.4)
mg L~ greater than the same predictions made with random
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Fig. 6. Shapley Additive exPlanations (SHAP), normalized as a percent contribution to the model dissolved oxygen (DO) prediction, for three primary
variables (depth, top; water temperature, middle; wind speed, bottom) we expected to be important across monomictic (Maumelle, Fayetteville) and pol-
ymictic (Eagle Mountain, Richland-Chambers) reservoirs. SHAP was calculated for model predictions made at the surface (0 m), middle (5 m), and bot-
tom (8.5-10 m; see Methods). The warm season was the period during which the polymictic reservoirs would intermittently mix and stratify. Lettering
indicates differences across reservoirs but within season. Asterisks represent a significant seasonal change within depth and within a reservoir from the

corresponding cool season SHAP value.
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Fig. 7. Daily prediction errors (root mean square error [RMSE]) for Richland-Chambers dissolved oxygen (DO) profiles at the surface, middle (5 m) and
bottom (10 m). Models are lasso regression, ordinary least squares regression (LM), long short-term memory neural network (LSTM), random forest, and
GOTM-WET (process-based model). The warm season was the period during which the reservoir would intermittently mix and stratify. Different letters

indicate significant (p < 0.05) differences across models within seasons.

forest. While differences in mean daily RMSE were often indis-
cernible across models, the bottom and middle predictions
from GOTM-WET were poor during the warm season. Daily
RMSE was 0.9-1.5mg L' higher for GOTM-WET than all
other models at bottom predictions during the cool season.
Moreover, while most model predictions at the middle depth
were worse during the warm season, RMSE from the process-
based model GOTM-WET was 3.5-4.9 (range of CI: 2.4-5.5)
mg L' higher than the other models.

There was little consistent pattern suggesting any particular
model errors were directly influenced by mixing conditions.
Only middle depth RMSE for GOTM-WET and surface RMSE
for LSTM were influenced by daily mixing (Supporting Infor-
mation Fig. $20).

Discussion

Thermal stratification of lakes and reservoirs can largely iso-
late photosynthetically active surface waters (epilimnion)
from bottom water (hypolimnion) that gradually loses oxy-
gen. We therefore hypothesized that this stratification creates
relatively predictable patterns of oxygen; conversely, that the
frequent breakdown of this stratification yields less predictable
oxygen. Specifically, we predicted that oxygen would be less
predictable (1) in polymictic reservoirs compared to mono-
mictic, (2) within polymictic reservoirs during the warm sea-
son, and (3) during polymictic (intermittently stratified)
conditions. None of these predictions were strictly true
because lake categories based on thermal stratification did not
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clearly delineate predictability and instability rarely influenced
daily RMSE. In fact, models were generally skilled at using
weather variables to predict oxygen across a broad variety of
conditions.

Our results suggest that reservoir mixing regime (specifi-
cally, poly vs. monomictic) in a strict sense poorly determines
oxygen predictability, and other factors such as eutrophica-
tion and lake morphology should be more broadly explored to
understand oxygen predictability. However, our results do
indicate that thermal stratification increases the predictability
of oxygen depending on the specific environmental context,
congruent with our main hypothesis. Maumelle, a mono-
mictic reservoir, was generally more predictable than the other
three reservoirs. During the warm season when the reservoir
was fully stratified, predictability increased only at the bottom.
Maumelle bottom mean RMSE during the warm season was
only 0.32 due to temporally stable anoxia from approximately
June 14 to September 22 eliminating variability in oxygen.
Although Fayetteville was consistently thermally stratified
(Fig. 2), hypolimnetic oxygen was not consistently anoxic like
at Maumelle. Fayetteville is by a wide margin the smallest res-
ervoir in this study, and rapid hydrodynamic changes over
these small spatial scales might bring oxygenated waters to
the profiler. Lake morphology can influence the predictability
of water temperature (Thomas et al. 2023). Morphology may
similarly relate to complex hydrodynamic patterns that could
drive oxygen predictability on different time scales than the
random forest models here could identify, for example, as
lagged effects of river inflows or cumulative effects of wind-
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driven water circulation. Hydrodynamically driven oxygen
dynamics that are rarer in the data and poorly correlated with
some function of the predictors will be less predictable.

We hypothesize that eutrophication may also decrease oxy-
gen predictability by increasing rates of change of oxygen over
short time scales. Similar to hypolimnetic model predictions,
Maumelle surface oxygen was highly predictable compared to
oxygen at the other three reservoirs, likely due to Maumelle
surface oxygen varying by only a few mg L' across most
training and testing splits. In contrast, oxygen at other reser-
voirs was considerably more variable. In the most extreme
case at Eagle Mountain, surface oxygen ranged from
14 mg L™! to nearly anoxic within days, driven by both strati-
fication dynamics and eutrophication (Wagner et al. 2023).
Future studies should elucidate mechanisms of biogeochemi-
cal predictability across eutrophic reservoirs.

Vertically, middle depths (5 m in this study) were the worst
predicted, in line with observations in other predictive studies
(Saber et al. 2020; Lin et al. 2023). This is not particularly
unexpected as a metalimnion is often located there when
lakes and reservoirs are stratified, representing the interface
where downward convective mixing and upward biological
oxygen demand interact. Although many predictions in the
literature are concerned with surface and bottom oxygen
dynamics, many raw water intakes are located at intermediate
depths (e.g., 3-7 m), such as at Richland-Chambers. Water
quality can vary tremendously depending on depth. For exam-
ple, managers may be sensitive to intake of anoxic water
because it contains desorbed metal contaminants that require
expensive chemical pretreatment. Forecasting oxygen at
depths around which a metalimnion temporally vacillates
above and below (e.g., “thermocline deepening”; Lofton
et al. 2022), exacerbated by eutrophic conditions that rapidly
change oxygen concentrations, may be particularly difficult
but be of particular importance to the utility of lake forecast-
ing for management-focused end-users.

Mixing regime (across-reservoir comparisons) and mixing
(within-reservoir) inconsistently related to the importance
(SHAP) of wind or water temperature, indicating complex rela-
tionships among the predictor variables drove oxygen predic-
tions during mixing. Although temporally variable, wind was
qualitatively more important in predicting oxygen in pol-
ymictic reservoirs, suggesting the importance of capturing
wind patterns to predict frequent convective mixing. In partic-
ular, wind was most important at the middle depths of the
polymictic reservoirs, suggesting the importance of wind as
driving a highly variable mixed layer depth where epilimnetic
and hypolimnetic waters meet when the reservoirs are not
mixed. In contrast to the importance of wind between mixing
regimes, mixing (within-reservoir) was inconsistently corre-
lated with SHAP values; for instance, mixing was positively
correlated with the importance of water temperature at the
surface and middle of polymictic Richland-Chambers and not
for any depth at the other polymictic reservoir, Eagle
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Mountain. This illustrates that data-driven ML methods can
identify different correlations between oxygen and driver vari-
ables depending on the data, even in similar systems. The dif-
ferent correlations (and SHAP variable importance) across
reservoirs could be attributed, at least partially, to differences
in (1) weather data accuracy and (2) differential influences of
weather on lake hydrodynamics and oxygen production/
consumption at the exact spatial locations of the sensors. Flex-
ible methods such as random forest are potentially less sensi-
tive to these data biases than simple linear models or complex
process-based models precisely because they are parameteriz-
ing a high number of correlations found in the data, provid-
ing predictive accuracy at the expense of interpretability.
Nevertheless, tools like SHAP (and tools not used here such as
partial dependence plots) can help scientists and managers
explore, understand, and communicate patterns in their spe-
cific systems, being careful to separate correlation from
causation.

Despite being one of the most important variables to our
models according to SHAP, knowing water temperature did
not always lead to accurate daily oxygen predictions. Lake and
reservoir water quality predictions often very reasonably focus
on water temperature (e.g., Thomas et al. 2020). Water tem-
perature directly controls oxygen solubility, directly controls
biogeochemical rates, and vertical profiles of temperature indi-
cate mixing. Oxygen is often less predictable than temperature
and near-term forecasts of oxygen are less skilled than those
of temperature (Arhonditsis and Brett 2004; Saber et al. 2020).
Oxygen may become even less predictable as the climate con-
tinues to change, driving oxygen patterns in lakes and reser-
voirs further away from historical trends (Pilla et al. 2020; Jane
et al. 2021; Carey 2023). Water temperature profiles indicate
stratification, which should reliably suggest, for example, that
anoxic hypolimnia will remain hypoxic if temperature profiles
are predicted to remain stratified. However, as seen for oxygen
dynamics at Fayetteville, oxic conditions can occur in the
hypolimnion without evidence of mixing. This underscores
the possibility that oxygen forecasts may be complicated not
only by temporally complex interactions between physical
mixing and environmental conditions, but also variables that
are less easily forecastable like horizontal hydrodynamics
(Carey 2023). Our results suggest that future studies should
increasingly study the predictability of oxygen in addition to
water temperature, for example, to better understand when
and where investments in oxygen forecasting can be valuable,
or where temperature will be an acceptably accurate indicator
of oxygen patterns for specific management applications.

The inter-model comparison at Richland-Chambers showed
that random forest was the best performing model alongside
the LSTM. We expected the complex mixing and oxygen
dynamics at Richland-Chambers to be better predicted by the
LSTM as a complex deep learning approach incorporating
explicit time series dynamics. No model is perfectly predictive,
but we argue random forest was a robust modeling choice to
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provide estimates of realized predictability that reflect usable
information from the predictors at each reservoir. Random for-
ests are well known as highly flexible and skillful predictive
algorithms, with the added benefit that they are computation-
ally light to train compared to deep learning (Tyralis
et al. 2019). In addition, predictability as conceptualized and
estimated in this study also incorporates an aspect of ease—
finding a significantly better predicting model at each reser-
voir would likely require obtaining much more data volume
(likely multiyear) or exploring more difficult-to-obtain predic-
tor variables that additionally may be less applicable in a true
forecasting context. In support of this argument, first, our sen-
sitivity analysis (Supporting Information Header S1) showed
that random forest performance on the test set was not data
limited at any reservoir. Second, as predictors we used
(1) weather variables that are often available via weather agen-
cies such as NOAA or by local weather monitoring stations,
and (2) water temperature which is usually measured simulta-
neously with oxygen and could be well-predicted such that
the temperature predictions could be incorporated as driver
variables in oxygen forecasting models. Other forecastable pre-
dictors (e.g., reservoir inflow, if inflow is gaged) are more diffi-
cult to incorporate at relevant temporal scales, but should be
explored in future water quality prediction studies.

Although random forests and LSTM outperformed the
other model types, we were somewhat surprised by the consis-
tency of model errors across all model types in the inter-model
comparison more generally. We especially might have
expected that models incorporating temporally lagged effects
of predictors would perform better by using temporally
autocorrelated information naturally found in many time
series. As noted in the previous paragraph, LSTM performed
essentially as well as the random forest model. The process-
based model GOTM-WET, based on time-explicit differential
equations, generally also performed well, but at certain times
produced some of the largest model errors in the Richland-
Chambers inter-model comparison. This does not necessarily
imply that GOTM-WET poorly predicts oxygen dynamics in a
general sense. In a time series context, GOTM-WET and other
process models can strongly benefit from data assimilation
involving reinitializing the model with updated states of tem-
perature and oxygen (Moore 2020; Wander et al. 2024). Incor-
poration of temporal information implicitly occurred to
varying extents for the other models, for example with a day-
of-year predictor included in the regression, lasso, and random
forests (even though lagged oxygen observations were not
explicit predictors in these models). Furthermore, we trained
random forest configurations at all reservoirs with lagged pre-
dictors; cross-validation at each lake consistently selected the
predictor set with non-time lagged predictors. It was also
somewhat surprising that, despite their relatively inflexible
functional form, linear regression and lasso methods only per-
formed significantly worse than any other methods during
the warm season for middle and bottom predictions.
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Increasingly complex correlations that simpler linear methods
cannot capture might exist between weather drivers and oxy-
gen dynamics when they are spatially and temporally discon-
nected from processes at the air-water interface (e.g., during
polymictic periods). In these cases, more complex ML model-
ing such as random forests or deep learning can be powerful.

Predictive science builds an important basis for the man-
agement of the environment and our resources, including res-
ervoirs (Houlahan et al. 2017; Carey et al. 2022). Our results
suggest that differences in predictability of biogeochemical
dynamics and water quality exist across reservoirs. Specifically,
our results imply that predicting oxygen can be easier in less
nutrient rich, monomictic (or dimictic) reservoirs that have
summer-long stable periods of thermal stratification. Our
study furthermore shows that even stratified reservoirs can
exhibit complex oxygen dynamics. We hypothesize that
eutrophication, reservoir morphology, and horizontal hydro-
dynamics strongly determine the ease of predictability of oxy-
gen time series. Accurately predicting oxygen in such water
bodies may require multiple years of data and/or more com-
plex modeling approaches that incorporate machine learning
with 3D hydrodynamics or other process-based models (Read
et al. 2019; Lin et al. 2023). Accuracy is also relative, defined
by values and management objectives that should drive what
level of predictability is worth improving through more com-
plex modeling or data collection (Elliott-Graves 2020). As lake
and reservoir processes in the Anthropocene become increas-
ingly nonstationary and transition across fundamental
regimes such as mixing, trophic status, and climate, water
quality may become more predictable or less predictable on
short timescales (e.g., near-term forecasts of 1-10d). In a
space-for-time approach, benchmarking predictive models of
biogeochemical and ecological time series across these regimes
may develop management expectations and forecasting priori-
ties (Brookes et al. 2014).

Data availability statement

Data and analyses are archived in Zenodo at https://zenodo.
org/records/11412820 (DOI: 10.5281/zenodo.10403565).
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