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A B S T R A C T

Despite significant reductions in phosphorus (P) loads, lakes still experience cyanobacterial blooms. Little is
known regarding cellular P regulation in response to P deficiency in widely distributed bloom causing species
such as Microcystis. In this study, we investigated changes in P containing and non-P lipids contents and their
ratios concomitantly with the determinations of expression levels of genes encoding these lipids in cultural and
field Microcystis samples. In the culture, the content of phosphatidylglycerol (PG) decreased from 2.1 μg g-1 in P
replete control to 1.2 μg g-1 in P-deficient treatment, while non-P lipids, like sulfoquinovosyldiacylglycerol
(SQDG) and monogalactosyldiacylglycerol (MGDG), increased dramatically from 13.6 μg g-1 to 142.3 μg g-1, and
from 0.9 μg g-1 to 16.74 μg g-1, respectively. The expression of the MGDG synthesis gene, mgdE, also increased
under low P conditions. Significant positive relationships between soluble reactive phosphorus (SRP) and ratios
of P-containing lipids (PG) to non-P lipids, including SQDG, MGDG and digalactosyldiacylglycerol (DGDG) (P <

0.05) were observed in the field investigations. Both cultural and field data indicated that Microcystis sp. might
increase non-P lipids proportion to lower P demand when suffering from P deficiency. Furthermore, despite lipid
remodeling, photosynthetic activity remained stable, as indicated by comparable chlorophyll fluorescence and
Fv/Fm ratios among cultural treatments. These findings suggested that Microcystis sp. may dominate in P-limited
environments by substituting glycolipids and sulfolipids for phospholipids to reduce P demand without
compromising the photosynthetic activity. This effective strategy in response to P deficiency meant a stricter P
reduction threshold is needed in terms of Microcystis bloom control.

1. Introduction

Microcystis sp. is one of the most important species responsible for
harmful algal blooms, posing serious threats to public health and the
environment (Chia et al., 2018; Jochimsen et al., 1998; Lee et al., 2018;
Pimentel and Giani, 2014; Qian et al., 2019; Su et al., 2016). Phosphorus
(P) is an essential nutrient for its growth, directly influencing the scale
and severity of algal blooms (Huang et al., 2016; Schindler et al., 2016).
In natural water bodies, dissolved phosphorus (DP) mainly consists of
dissolved inorganic phosphorus (DIP) and dissolved organic phosphorus
(DOP) (Li et al., 2015a; Zhang et al., 2018). Among them, orthophos-
phate (Pi) is the main type of DIP that can be directly utilized by algae

(Huang et al., 2019; Muscarella et al., 2014) and is the preferred form for
Microcystis sp. (Zhang et al., 2021, 2020). It is generally believed that
high concentrations of bioavailable P favor the growth ofMicrocystis sp.
(Conley et al., 2009; Ren et al., 2020; Yang et al., 2014). However,
Microcystis sp. can also survive and maintain relatively slow growth
levels in P-limited environments, sometimes even reaching exponential
growth phases (Cai and Tang, 2021; Hu and Zhang, 2019), and may lead
to Microcystis sp. blooms (Yuan et al., 2019). This indicates that Micro-
cystis sp. has a well-developed low-P adaptation mechanism that re-
quires further investigation.

Existing studies have shown that Microcystis sp. can respond to P
limitation genetically by upregulating the expression of P transport
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protein genes (Harke et al., 2012). At the same time, alkaline phos-
phatase (AP) hydrolyzes DOP into DIP for utilization by Microcystis sp.,
enabling good growth under low-P conditions (Dyhrman et al., 2007; Li
et al., 2015b). Moreover, Microcystis sp. can engage in luxury uptake to
accumulate phosphorus as polyphosphate (poly-P) (Shi et al., 2003; Wan
et al., 2019; Wang et al., 2022). Additionally, P deficiency can activate
P-independent metabolic pathways in Microcystis sp. to restore cellular
balance and alleviate metabolic stress (Peng et al., 2017, 2018).
Simultaneously, phytoplankton also have the ability to reduce their
cellular P demand by up to 50% in P-limited environments (Bertilsson
et al., 2003; Geider and La Roche, 2002; Krauk et al., 2006). Although
Microcystis sp. possesses diverse strategies for coping with low P con-
ditions, it remains unclear whetherMicrocystis sp. is capable of reducing
its intracellular P demand under P limitation and how this reduction is
achieved.

P in phytoplankton primarily exists in nucleic acids and phospho-
lipids (Van Mooy and Devol, 2008; Van Mooy et al., 2006). Under
P-limited conditions, the lipid composition of phytoplankton thylakoid
membranes undergoes changes. The content of phospholipid phospha-
tidylglycerol (PG) decreases, while the content of non-P lipids monog-
alactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG),
and sulfoquinovosyldiacylglycerol (SQDG) increases (Awai et al., 2007;
Endo et al., 2016; Van Mooy et al., 2006). Additionally, the ratio of
MGDG to DGDG within phytoplankton cells also decreases (Xu and
Miao, 2020). However, this mechanism has not been reported in
Microcystis sp., and further investigation is needed to determine whether
changes in thylakoid lipid composition affect photosynthesis.

In this study, Microcystis sp. blooms samples were collected from
Guanqiao Pond, Qingling Lake, and Donghu Lake in Wuhan city. The P
concentration in the water and the lipid composition (PG, DGDG, SQDG,
MGDG) in the cells were measured. In addition, a cultural experiment
was conducted, and the expression levels of key lipid synthesis genes
(pgsA, sqdB, mgdE) under different P stress conditions were quantified
using real-time fluorescence quantitative PCR. An effective P response
strategy inMicrocystis sp. gave light in understanding whyMicrocystis sp.
dominates phytoplankton assemblages when levels of P are often low.
The findings of this research will provide important theoretical and
scientific evidence for understanding the formation of P-limited Micro-
cystis sp. blooms in lakes and offer new insights for the prevention and
control of Microcystis sp. blooms.

2. Materials and methods

2.1. Field sample collection and analysis

Sample collection was conducted in Wuhan City from June to
December 2021, including surface water samples (0–50 cm) of the
Guanqiao (GQ) Pond in June to December, Qingling (QL) Lake in July
and August, and Donghu (DG) Lake in August (Fig. 1). The GQ pond is an
abandoned aquaculture body of water that experiences frequent algal
blooms throughout the year, with algal densities generally between 107

and 109 Cells L-1. QL Lake and DG Lake are large shallow lakes that
experience Microcystis sp. algal blooms in the summer, with sampling
algal densities ranging between 106 and 108 Cells L-1. Each water sample
collected was 500 mL in volume and intended for biological and
biochemical analysis. Additionally, 500 mL of Microcystis sp. algal
bloom water samples were enriched using zooplankton nets. For cell
density estimation, Lugol solution was used to preserve the samples, and
cell counts were performed using an Olympus BX 41 microscope
(Olympus Corporation, Japan) following the method described by Bowe
(Bowe, 2002), aiming to determine theMicrocystis sp. algae cell density.
The enriched Microcystis sp. algal bloom samples were transported back
to the laboratory and subjected to freeze-drying. Subsequently, the lipid
content of the samples was analyzed using LC-MS/MS (Liquid
Chromatography-Tandem Mass Spectrometry) (Yoon et al., 2012b).

2.2. Microcystis aeruginosa cultures

Experiments were conducted using the Microcystis aeruginosa strain
FACHB 1322 obtained from the Freshwater Algae Culture Collection at
the Institute of Hydrobiology (FACHB-collection, Wuhan, China). Cul-
tures were cultivated in Blue Green (BG)-11 medium under a bank of
fluorescent lights delivering a light intensity of approximately 100 μmol
photons m-2 s-1, following a 12:12 light/dark cycle at 21 ◦C. Prior to the
start of the experiment, exponentially growing Microcystis aeruginosa
cells were collected by centrifugation at 3000 rpm for 10 min. The cells
were then washed three times with phosphate-free BG11 medium and
subsequently cultured in phosphate-free BG11 medium for 48 h to
deplete the cellular P stores to a low level (Wang et al., 2018). Subse-
quently, the culture was inoculated into three different phosphate con-
centrations of BG11 medium for cultivation (Rippka et al., 1979). The
phosphate concentrations were 0 mg L-1, 0.03 mg L-1, and 0.05 mg L-1.

Fig. 1. Distribution of sampling points for field samplesv(GQ: Guanqiao Pond, QL: Qingling Lake, DG:Donghu Lake).

Z. Liu et al.
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2.3. Determination of SRP, cell density, and specific growth rate

SRP concentrations were determined according to Murphy and Riley
(Murphy and Riley, 1962). Samples for cell density estimation were
preserved with Lugol’s solution and counted with an Olympus BX 41
microscope (Olympus Corporation, Japan) (Bowe, 2002). The specific
growth rate (μ), defined as the time required for cell density to double,
was calculated using the following equation: μ = 1/N*dN/dt, Where (t)
represents the culture duration, and (N) denotes the cell density.

2.4. Determination of intracellular P and sulfur(S)

EnrichedMicrocystis sp. cells are lyophilized, and two sets of samples
for intracellular P and S are prepared. The intracellular P content is
determined using a total phosphorus measurement method applied to
sediment (Ruban et al., 1999). Intracellular S is quantified by inciner-
ating the sample in the high-temperature combustion chamber of an
elemental analyzer (Vario macro cube), converting S into sulfur dioxide
(SO2) gas. The generated gas undergoes a series of purification and
separation steps before the pure SO2 is introduced into a detector for
concentration analysis (Jones, 2001).

2.5. The fluorescence of Chl a and photochemical efficiency of
photosystem II

Chl a fluorescence of Microcystis aeruginosa samples was conducted
using a plant efficiency analyzer (Pocket PEA, Hansatech Instruments
Ltd., UK). Prior to fluorescence measurements, each sample was accli-
mated in darkness for 30 min. After acclimation, a saturating light pulse
of 3500 μmol(quanta) m− 2 s− 1 was applied for 1 second, effectively
closing all reaction centers, and fluorescence parameters were
measured.

2.6. Lipid extraction and determination

The lipid extraction method used in this study was based on Yoon’s
protocol with some modifications. Five milligrams of freeze-dried algal
powder were weighed and mixed with 6 mL of methanol:chloroform
(20:10, v:v) solvent at room temperature (Yoon et al., 2012a). The
mixture was vigorously vortexed for 1 hour using a vortex shaker. Then,
3 mL of a mixture of 1 mol/L potassium chloride and 0.2 mol/L phos-
phoric acid solution was added to remove protein impurities. The
mixture was vortexed thoroughly. After centrifugation at 1000 × g for 5
min at 4 ◦C, the organic phase was collected, and the organic solvent was
evaporated using a nitrogen blower. The lipid content was determined
using LC-MS/MS. Chromatographic conditions were performed using an
ACQUITY Ultra Performance Liquid Chromatograph (Waters Corpora-
tion, USA) coupled with Xevo TQ-S, separated by a BEH C18 column (2.1
mm × 50 mm, 1.7 μm; Waters Corporation, USA), and analyzed using
Multiple Reaction Monitoring (MRM) scanning mode. The mobile pha-
ses in positive ion mode were A: methanol: acetonitrile: ultrapure water
(19:19:2, v/v/v) + 10 mmol/L ammonium acetate + 0.1% formic acid;
B: isopropanol + 10 mmol/L ammonium acetate + 0.1% formic acid.
The gradient elution program was set as follows: 0 min, 10% B; 1 min,
10% B; 6 min, 25% B; 10 min, 60% B; 10.1 min, 10% B; 13 min, 10% B.
In negative ion mode, the mobile phases were A: methanol: ultrapure
water (85:15, v/v) + 10 mmol/L ammonium acetate; B: isopropanol +
10mmol/L ammonium acetate. The gradient elution programwas set as:
0 min, 20% B; 1 min, 20% B; 8 min, 40% B; 9 min, 80% B; 11 min, 80%
B; 11.1 min, 20% B; 14 min, 20% B. The flow rate was 0.2 mL/min, with
an injection volume of 1 μL per sample (Li et al., 2014).

The standards MGDG 16:3/18:3 and DGDG 18:3/18:3 were pur-
chased from Matreya LLC, USA, while PG 16:0/18:1 and SQDG 16:0/
18:3 were obtained from Avanti Polar Lipids, UK.

2.7. RNA extraction and quantitative PCR

Take 50 ml of algae solution and centrifuge at 4000 rpm at 4◦C for 10
min. Discard the supernatant and transfer the sample into a pre-cooled
mortar. Grind the sample into a powder, add an appropriate amount
of RNAex, and mix well. Centrifuge at 12,000 g at 4◦C for 5 min, then
collect the supernatant for subsequent RNA extraction. RNA extraction
is carried out using the kit with catalog number AG21101 following the
provided procedure, and reverse transcription into cDNA is performed
using the kit with catalog number AG11728 according to the steps
outlined.Triplicate reactions were performed using Applied Biosystems
Power SYBR® Green PCR Master Mix as follows: 10 μL SYBR Green
Master Mix, 0.4 μL forward and reverse primers, 1 μL 1:10 dilution of
cDNA, and nuclease-free water to achieve a final volume of 20 μL. The
quantitative PCR (qPCR) program for most gene targets consisted of an
initial denaturation step at 95 ◦C for 10 min, followed by 45 cycles of 95
◦C for 15 s, 62 ◦C for 30 s, and 72 ◦C for 30 s. This was followed by an
additional step of 95 ◦C for 15 s and 60 ◦C for 30 s in an Applied Bio-
systems 7300 Real-Time PCR System (Applied Biosystems, Carlsbad,
California, USA). However, the rpoC1 RNA polymerase gene, used as the
housekeeping gene, had a lower annealing temperature of 53 ◦C (Ginn
et al., 2010).To monitor for genomic DNA or PCR contamination, no
reverse transcriptase controls and no template controls were included
for each sample and primer pair. Additionally, dissociation curves were
performed for each reaction as a quality control measure. The fold
changes in gene expression were calculated using the Relative Expres-
sion Software Tool (REST 2009), which considers differences in reaction
efficiency during the fold change calculation (http://www.gene-quantifi
cation.de/download.html) (Pfaffl et al., 2002). For each experiment, a
single time point sample was used as the calibrator for fold change
calculations. The amplification efficiencies of the primer pairs ranged
from 95% to 105% with an r2 value of 0.98 or higher (Table 1).

2.8. Statistical analysis

In this study, correlation analyses were visualized using SigmaPlot
14.0 and the "ggplot2" package in R software v4.2.2 (including the
correlations between lipids and intracellular stoichiometry with SRP).
Bar charts and line graphs were created using Origin 2021.

3. Results

3.1. Microcystis sp. cell density in the field

Field results showed that Microcystis blooms occurred in GQ Pond
from June to November (Fig. 2a), QL Lake in July and August (Fig. 2b),
and DG Lake in August (Fig. 2c). In the GQ pond, the SRP (soluble

Table 1
Amplification primers used in PCR, RT-qPCR, and sequencing reactions.

Gene Amplification primers 5′–3′

pgsA CDP-diacylglycerol–glycerol-3-
phosphate 3-
phosphatidyltransferase

(F)
GCGACATAAAAGGGGCTAATTGGTG
(R)
GAAGGCAAGGGAGCGATTAAGAGAG

sqdB sulfolipid (UDP-sulfoquinovose)
biosynthesis protein

(F)
AGTGTACGGTAAAGGTGGTCAAACG
(R)CGGATTGAGCAGGATTGGCGATC

mgdE monogalactosyl diacylglycerol
synthase 1

(F)
CTCGCAAGGAAGTCTGGGTGAATAC
(R)
AGCATCTAAACGACGCAGGGTAATC

16S Ribosomal RNA (F)GCGATGGTCGTCCCCTAGAGG
(R)
CCTTGTTGTAAGCGTCGGATGATTC

rpoC1 RNA polymerase housekeeping
gene

(F)CCTCAGCGAAGATCAATGGT
(R)CCGTTTTTGCCCCTTACTTT

Z. Liu et al.
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reactive phosphorus concentration ranges from 0.02 to 0.96 mg L-1. In
QL Lake, the SRP concentration ranges from 0.0064 to 0.16 mg L-1, and
in DG Lake, the SRP concentration ranges from 0.04 to 0.16 mg L-1. The
Microcystis sp. density in the water ranged from 4.4 × 106 to 1.7 × 109

cells/L (S1). Despite the low P concentration in the water bodies,
Microcystis sp. algae density remains high.

3.2. Relationship between SRP concentration and lipids contents in
Microcystis sp

To explore the relationship between variations in different lipids and
P stress. In terms of phospholipids, utilizing particulate P to represent
intracellular P content in Microcystis, we observed a significant positive
correlation between PG and both PP and SRP (P < 0.05) (Fig. 3a and b).
Regarding sulpholipids, there was a significant positive correlation be-
tween DIN:SRP and intracellular S and SQDG content inMicrocystis (P <

0.05) (Fig. 4a and b), along with a significant positive correlation be-
tween SRP and PG:SQDG (P < 0.05) (Fig. 4c). In the case of glycolipids,
we found a significant positive correlation between DIN:SRP and MGDG
(P< 0.05) (Fig. 5a), with a positive correlation trend observed for DGDG
but not statistically significant (P > 0.05) (Fig. 5c). Moreover, SRP
demonstrated significant positive correlations with both PG:MGDG and
PG:DGDG(P < 0.05) (Fig. 5b and d), while showing a significant nega-
tive correlation with MGDG:DGDG(P < 0.05) (Fig. 5e).

We defined the following categories based on SRP concentrations:
SRP< 0.02mg L-1 as low P, 0.02< SRP< 0.18mg L-1 as moderate P, and
SRP > 0.18 mg L-1 as high P. When dividing SRP concentrations into
low, medium, and high levels for correlation analysis, a significant
negative correlation was observed between SRP and DGDG, MGDG, and
SQDGwhen SRP concentrations were at low levels (SRP< 0.025mg L-1).
When SRP levels are moderate to high, the negative correlation between
MGDG and DGDG is not significant, and there is even a positive trend
between SQDG and SRP (Fig. 6).

3.3. Cell density, specific growth rate chlorophyll fluorescence in cultures

SRP concentrations in the three treatments (0 mg L-1 P, 0.03 mg L-1 P,

0.05 mg L-1 P) remained relatively stable during the 40-day cultivation
around the set concentrations (Fig. 7a). Higher SRP concentrations were
associated with increased cell density in the Microcystis sp. (Fig. 7b).
Furthermore, the P-deficient treatment exhibited a significantly lower
growth rate compared to the other two treatment groups (Fig. 7c).

On the final day of cultivation, the results indicate that the Fv/Fm
values were equivalent for the 0 mg L-1 P and 0.03 mg L-1 P treatment
groups, while the 0.05 mg L-1 P treatment exhibited the highest Fv/Fm
value. The chlorophyll a fluorescence rise kinetics curve (OJIP)
remained consistent across all three treatment (Fig. 8).

3.4. The lipid content and gene expression in cultures

The lipid content within the Microcystis aeruginosa cells was deter-
mined on the final day of cultivation. Among the three treatment groups,
the content of PG decreased with decreasing SRP concentration
(Fig. 9a), while the content of MGDG and SQDG increased with
decreasing SRP concentration (Fig. 9b and c). The qPCR results indicate
that as the SRP concentration decreases, the expression level of the
monogalactosyldiacylglycerol synthase gene (mgdE) increases, while the
expression levels of the phosphatidylglycerol synthase gene (pgsA) and
sulfoquinovosyldiacylglycerol synthase gene (sqdB) exhibit an initial
increase followed by a decrease. Moreover, in the 0 mg L-1P treatment
group, the expression level of the mgdE gene is significantly higher than
that of the pgsA and sqdB genes (Fig. 10).

4. Discussion

Freshwater blooms caused by the cyanobacteriumMicrocystis sp., are
the most widespread harmful algal blooms globally (Ho et al., 2019). P is
an essential nutrient for living organisms and is often a limiting nutrient
in freshwater ecosystems (Conley et al., 2009; Ho et al., 2019; Huang
et al., 2019; Muscarella et al., 2014; Ren et al., 2020). The P utilization
strategies of Microcystis sp. have been extensively studied, but the un-
derlying biochemical and molecular mechanism ofMicrocystis sp. bloom
under low ambient P condition is still unclear. In current studies, field
observations have shown thatMicrocystis sp. blooms occurred under low

Fig. 2. Microcystis sp. cell density in the field.

Fig. 3. Correlation of PG with SRP(a) and PP(b).

Z. Liu et al.
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Fig. 4. The correlation between DIN:SRP and intracellular S(a) and SQDG content(b), as well as the correlation between SRP and PG:SQDG(c).

Fig. 5. The correlation between DIN:SRP and the content of MGDG(a) and DGDG(c), as well as the correlation between SRP and PG:MGDG(b), PG:DGDG(d) and
MGDG:DGDG(e).

Z. Liu et al.
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P conditions. Here, we found a previously unrecognized response of
Microcystis sp. to low P supply, such as the utilization of non-P lipids as a
substitute for phospholipids, thereby reducing cellular P demand. Most
notably, when this substitution occurs, Microcystis sp. maintained com-
parable photosynthetic activity inspite a reduction in specific growth
rate. These findings was further supported by biochemical and molec-
ular studies conducted in Microcystis sp. cultures. These results collec-
tively indicated thatMicrocystis sp. employed a non-P lipids substitution
strategy, allowing it to cope with low Pconditions without sacrificing its
activity.

Our research reveals thatMicrocystis sp. can substitute phospholipids
with non-P lipids, reducing cellular P demand without compromising
photosynthetic activity, even when SRP levels drop below 0.02 mg L-1

and specific growth rates decline. This adaptation is corroborated by the
consistent findings of decreased cellular P quotas and phospholipid PG
content in both lab cultures and field samples of Microcystis sp., as P
concentrations diminish (Fig. 9d). Cyanobacteria, including Microcystis
sp., commonly increase inorganic P uptake and transport, produce
extracellular phosphatases for organic P hydrolysis, and reduce P-con-
taining biochemicals as part of their response to P scarcity (Harke et al.,
2012; Van Mooy et al., 2006; Wan et al., 2019). Additionally, these
organisms modulate membrane transport protein expression and
enzyme activities to lower intracellular P quotas (Saxton et al., 2012;
Wan et al., 2019), with variations observed among individual cells (Wei
et al., 2022). Thus, Microcystis sp. maintains robust cell densities in
P-depleted waters by effectively managing their intracellular P re-
sources, indicating a sophisticated survival strategy that contributes to
their resilience and bloom formation capability.

PG is an indispensable phospholipid with photosynthetic functions in
plants and cyanobacteria (Weier et al., 2005). Both PG and SQDG serve
as the two negatively charged membrane lipids in microalgae, sug-
gesting potential functional similarities within the cell (Kobayashi,
2016). Further previous investigations have revealed the crucial role of
SQDG in substituting PG, especially under PG deficiency conditions,
such as P starvation, in Arabidopsis (Yoshihara et al., 2021). Similarly,

the marine microalga Prochlorococcus has been found to substitute SQDG
for PG under P-limited conditions (Van Mooy et al., 2006). In this study,
a similar strategy was identified in Microcystis sp.. Field experiments
demonstrated that as P concentrations decreased, cellular sulfur (S)
content increased (Fig. 4a). Furthermore, the positive correlation be-
tween PG and SRP while negative relationship between SQDG and SRP
indicated the potential of Microcystis sp. to replace PG with SQDG. Our
culture experiments supported this observation, showing a decrease in
PG content and an increase in SQDG content as P concentrations
decreased.

Similar results were observed for glycolipids substitution in Micro-
cystis sp.. For example, MGDG showed a positive correlation with DIN:
SRP ratio (P < 0.01), and DGDG displayed a positive correlation trend
(not significant) in field blooming samples. Moreover, the significant
positive correlations between lipids ratio and SRP concen-
trationssuggested MGDG and DGDG substitution for PG inMicrocystis sp.
under P deficiency. This observations aligns with previous observations
in plant cells and marine phytoplankton where DGDG and MGDG levels
increased under P-deficient conditions (Bertilsson et al., 2003; Shemi
et al., 2016). The induction of key gene expression involved in glycolipid
conversion during P deficiency further supported the substitution
mechanism (Dörmann and Benning, 2002). In our culture experiments,
the expression of the glycolipid synthesis gene mgdE was enhanced in
Microcystis sp. when the P concentration in the medium was low.
Interestingly, DGDG and its synthesis key ecoding gene were not iden-
tified. A possible explanation for these observations might be that
Microcystis sp. could overcome P stress by using glycolipid to replace PG
and predominantly utilize SQDG or MGDG rather than DGDG, which
have rarely been reported in Microcystis sp. so far.

PG is a critical photosynthetic phospholipid in both plants and cya-
nobacteria, essential to the photosynthetic apparatus (Domonkos et al.,
2008; Weier et al., 2005). The lipid triumvirate of MGDG, DGDG, and
SQDG forms the backbone of the thylakoid membranes, underpinning
chloroplast functionality (Domonkos et al., 2008). sp.It was reported
that despite an increase in SQDG compensating for reduced PG in

Fig. 6. Correlation of SRP with MGDG (a), DGDG (b), and SQDG (c).
(low: SRP < 0.02 mg L-1; mid: 0.02 < SRP < 0.18 mg L-1; high: SRP > 0.18 mg L-1)

Z. Liu et al.
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Synechococcus sp., photosynthetic efficiency did not recover (Bogos
et al., 2010). Our research painted a different picture forMicrocystis sp..
Varied treatments seemed to exert no discernible effect on the OJIP
curves or photosynthetic activity. This observation coincided with an
increase in theMGDG:DGDG ratio as SRP levels declined, hinting at lipid
remodeling mechanisms. The balance between MGDG and DGDG is
documented as being vital for photosynthetic stability and efficiency
(Dörmann and Benning, 2002), where a heightened MGDG:DGDG ratio
correlates with improved light utilization (Peng et al., 2019) and confers
environmental stress resilience, linked to salt tolerance and cold resis-
tance (Hirayama and Mihara, 1987; Nishida and Murata, 1996).

Therefore, wehypothesized that the escalated MGDG:DGDG ratio was a
compensatory mechanism that preserved photosynthetic efficiency and
enhanced the survival prospects of Microcystis sp.. Furthermore, our
controlled experiments indicated that a deficiency in P led to a
decreased specific growth rate when compared with other treatments.
This suggests that while lipid remodeling may preserve cellular photo-
synthetic activity, it does not mitigate the reduction in cell proliferation
rate.

Fig. 7. SRP concentration (a), algal cell density (b), and specific growth rate (c) of FACHB 1322.

Fig. 8. The PSII photochemical efficiency (a) and chlorophyll fluorescence induction kinetics (OJIP) curve (b) of FACHB 1322.

Z. Liu et al.
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5. Conclusion

In conclusion, our research has demonstrated a strong correlation
between the gene regulation of phospholipids and non-P lipids in
Microcystis sp. and the ambient phosphorus levels. We observed a
decrease in phospholipid content and a corresponding increase in non-P
lipids as environmental phosphorus concentrations declined. This
adaptive response, where non-P lipids substitute for phospholipids, en-
sures the maintenance of biological functions and photosynthetic ac-
tivity under phosphorus scarcity. The consistency of our findings across
both field and laboratory settings underscores the robustness of this
adaptation strategy. Future studies should aim to explore the intricacies
of this mechanism and identify the critical thresholds at which it oper-
ates, possibly extending the research to include other dominant

freshwater algal species. Our findings suggest that Microcystis sp. may
leverage its effective low-phosphorus response to gain a competitive
edge, which could explain the limited success in controlling cyano-
bacterial blooms through phosphorus reduction. Therefore, we advocate
for a more stringent phosphorus reduction threshold to effectively
manage Microcystis sp. blooms.
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