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Highlights: 

⚫ Lake CO2 and DOM turnovers follow common biogeochemical pathways  

⚫ Subtropical lakes can be carbon sinks or sources due to varying CO2 mechanisms 

⚫ DOM biodegradation governs temporal variations in CO2 relative to terrestrial 

inputs 

⚫ Photo-mineralization of activated aromatic compounds fuels lake CO2 

⚫ CO2 levels are well modelled with 0.4%–2.1% overestimations via DOM signals  
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Abstract 

Organic carbon (C) and CO2 pools are closely interactive in aquatic environments. 

While there are strong indications linking freshwater CO2 to dissolved organic matter 

(DOM), the specific mechanisms underlying their common pathways remain unclear. 

Here, we present an extensive investigation from 20 subtropical lakes in China, 

establishing a comprehensive conceptual framework for identifying CO2 drivers and 

retrieving CO2 magnitude through co-trajectories of DOM evolution. Based on this 

framework, we show that lake CO2 during wet period is constrained by a combination 

of biogeochemical processes, while photo-mineralization of activated aromatic 

compounds fuels CO2 during dry period. We clearly determine that biological 

degradation of DOM governs temporal variations in CO2 rather than terrestrial C 

inputs within the subtropical lakes. Specifically, our results identify a shared route for 

the uptake of atmospheric polycyclic aromatic compounds and CO2 by lakes. Using 

machine learning, in-lake CO2 levels are well modelled through DOM signaling 

regardless of varying CO2 mechanisms. This study unravels the mechanistic 

underpinnings of causal links between lake CO2 and DOM, with important 

implications for understanding obscure aquatic CO2 drivers amidst the ongoing 

impacts of global climate change.  

 

Keywords: Inland water CO2, drivers and magnitude, dissolved organic matter, 

subtropical lakes, carbon cycling, biogeochemical pathways. 

  

                  



1. Introduction 

Natural lakes act as dynamic reactors, emitters and sinks for aqueous CO2 turnover, 

representing a substantial contribution to global carbon (C) cycle (Alin and Johnson, 

2007; Pi et al., 2022). Most lakes (and reservoirs) show supersaturation in relation to 

atmospheric CO2, with global CO2 evasion estimated to range from 0.06 to 0.84 Pg C 

yr-1 (Raymond et al., 2013). The emission spectrum is admittedly broad, 

demonstrating that CO2 drivers for current lakes are highly variable (Finlay et al., 

2015; Perga et al., 2016; Weyhenmeyer et al., 2015). The prevailing consensus is that 

inland water CO2 are fuelled by two main mechanisms: terrestrially-derived C inputs 

(Heathcote et al., 2015; Li et al., 2018) and actual degradation of organic C (Allesson 

et al., 2021; Begum et al., 2023). Terrestrial fluxes of CO2 and dissolved organic C 

(DOC) released from soils into surface waters, for instance, typically account for CO2 

excess: the former may rapidly escape to the atmosphere (Campeau et al., 2019), 

while the latter will participate in aquatic degradation within lakes (Maberly et al., 

2013). Biological respiration and photochemical mineralization of DOC result in the 

actual production of in-lake CO2 (Dempsey et al., 2020). Consequently, it is important 

to recognize that the evolution of CO2 and DOC likely shares common pathways. Yet 

to date, a conceptual framework for unraveling in-lake CO2 through these co-

trajectories with DOC is not well established, despite mounting evidence of their 

specific associations driven by geographical and biological processes (Hessen et al., 

2017; Lapierre and Giorgio, 2015; Lapierre et al., 2013).  

 

                  



Dissolved organic matter (DOM), refers to the specific material form of DOC, 

involving the processes that govern organic C transport and transformation in natural 

waters (Lynch et al., 2019; Ni and Li, 2022). Lakes collect large quantities of 

allochthonous organic litters from surrounding shorelines, providing an important 

source, together with soil leaching, for DOM (Nakhavali et al., 2021; Wilkinson et al., 

2013). Aquatic biology, meanwhile, functions as primary producers and contributors 

to autochthonous DOM pool in lakes (Hu et al., 2022). A large amount of natural 

DOM will undergo decomposition and eventually mineralize into CO2 via 

photochemical and biological processes (Kellerman et al., 2015; Milstead et al., 

2023). The DOM molecular composition, source and fate are interrelated within 

freshwater organic C pool and processing (Butturini et al., 2022). For example, in-

lake lignin and soil fulvic acid originate commonly from terrestrial inputs (Cory et al., 

2007; Yang et al., 2021), whereas carbohydrates, lipids and proteins are indicative of 

biological metabolism (Zhang et al., 2020). Microbial degradation and photobleaching 

alter DOM structure, and further modify molecular weight and recalcitrance (Hansen 

et al., 2016; Helms et al., 2014; Logozzo et al., 2021). All these characterizations can 

be simply extracted through DOM spectroscopy and molecular data analysis (Chen et 

al., 2019; Xu et al., 2020). From this perspective, DOM potentially serves as a 

signaling catalyst of organic C evolution.  

 

Natural DOM can be established as a nexus, encompassing data on DOC origins 

and turnover, while also decodes the allocation of CO2 via common DOC pathways 

                  



(Bodmer et al., 2016; Ni et al., 2023; Zhang et al., 2024). Specifically, the mechanistic 

underpinnings of the causal relationships between lake DOM and CO2 involves: 1) the 

co-trajectories of lake CO2 and organic C evolution (Begum et al., 2023; Lapierre et 

al., 2013); and 2) the inherent attributes of DOM that signal organic C source and fate 

(Kujawinski et al., 2009; Ni and Li, 2020). It is anticipated that dissolved CO2 drivers 

can be identified through DOM signaling, as demonstrated by previous observations 

in aquatic environments (Kang et al., 2023; Ni et al., 2020b). However, these 

connections may be decoupled by spatiotemporal shifts of organic C pathways and 

mutual interferences among drivers (Winterdahl et al., 2016), making them not 

universally present. For instance, biologically derived connections between DOM and 

CO2 could be decoupled due to inhibited respiration and strengthened geochemical 

connections e.g., terrestrial inputs and photochemical processes over space and time. 

Within this framework, the question arises whether there is a universal determination 

for retrieving both CO2 levels and sources, in spite of dynamic CO2 drivers and 

potential interferences. Furthermore, how can we figure out other CO2 contributions 

that are unable to be gauged by explainable DOM variables.  

 

In this study, we aim to identify and allocate in-lake CO2 by linking with DOM 

signals, addressing the mechanistic underpinnings and ultimately providing a 

comprehensive conceptual framework for understanding these relationships. We 

collected 249 observations from 20 subtropical lakes in China, to quantify aqueous 

CO2 levels, and analyse DOM spectroscopy and molecular information. Our 

                  



hypothesis postulated that the common pathways involved in CO2 and DOM will vary 

at timescales attributing to biogeochemical shifts in subtropical lakes. In testing this 

hypothesis, we specifically: 1) examined the dynamics of aqueous CO2 magnitude in 

lakes; 2) characterized DOM molecular composition, origin and fate; and 3) identified 

CO2 drivers and modelled CO2 levels through DOM signaling. This study proposes a 

DOM-based path for capturing varying CO2 mechanisms in lakes, which can be 

universal and transferable for other natural waters. 

 

2. Materials and methods 

2.1. Study area and sampling 

During August to April from 2022 to 2023, we sampled 134 sites from 20 lakes in 

subtropical China, geographically extending from 23º24′ to 31º32′N in latitude and 

from 98º57′ to 106º34′E in longitude (Fig. 1). Our sampling encompassed the bulk of 

representative subtropical lakes across Yunnan-Guizhou Plateau and Sichuan Basin, 

representing a broad spectrum of lake surface areas (<10–330 km2). We realized that 

CO2 and organic C biogeochemistry is potentially constrained by sampling locations. 

For instance, terrestrial C and nutrient levels are typically higher along the shorelines 

in comparison to offshore areas (Biddanda and Cotner, 2002). Consequently, our 

investigation involved sampling from both shorelines and more distant offshore areas 

to ensure spatial representativeness of lake samples (Fig. S1). Most lakes were 

revisited to incorporate temporal patterns of wet (May–October) and dry periods 

(December–April) in the subtropical region, resulting in a total of 249 observations 

                  



being collected. We acknowledge that geographical locations can affect regional 

climate and hydrology. Therefore, we carefully distinguish the wet and dry periods 

during the investigation. Specifically, it mostly includes mountainous lakes to 

minimize potential interferences from groundwaters and human activities. Being in 

the monsoonal climate zone, sampling locations exhibit mean annual temperature and 

precipitation varying within 10–20℃ and 700–1300 mm yr-1, respectively. The terrain 

is composed largely of mountains and hills, with elevations ranging from 260 to 2700 

m. Detailed information on sampling locations see Supplement Materials (Appendix 

Table A1 and Fig. S1).  

 

Before water sampling, gas was collected in-situ from the atmosphere using gas 

sampling bag at each lake. Surface water (~10 cm) was collected at each site, and 1 L 

water samples were filtered through glass microfiber filters (GF/F 47, 0.7 μm, 

Whatman). The filtrates were refrigerated in 100 mL high-density polyethylene 

(HDPE) plastic containers at 4°C. In-situ pH and water temperature (T) were 

measured using a portable CyberScan PCD 650 multi-parameter system (Eutech, 

USA), while wind speed (U0) was determined with a Testo410-1 anemometer (Testo, 

Germany). Total alkalinity was titrated with Alkalinity Test MColortestTM (Merck, 

Germany). Subsequent UV absorbance and fluorescence spectroscopy were 

conducted for all water sample (n = 249). Given the high experimental cost, we mixed 

water samples (equal volumes) from each of the lakes as composite samples for 

Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) 

                  



characterization to acquire comprehensive insights into molecular-level DOM. While 

this approach does not result in information loss regarding the DOM molecules, it 

presents a potential limitation in analysing the temporal variations of molecular DOM. 

Two small lakes were excluded due to insufficient filtrate volumes for FT-ICR MS, 

leaving a total of 18 composite samples. The subsequent solid-phase extraction (SPE) 

and FT-ICR MS analysis were commissioned to the China National Analytical Center, 

Guangzhou. 

 

2.2. Laboratory analysis 

Gas samples were determined for atmospheric CO2 using gas chromatography-flame 

ionization detection (Fuli Analytical Instrument Co., Ltd., China). Water chemistry, 

UV absorbance and fluorescence spectroscopy were analysed for the filtered water 

samples. Lake DOC and dissolved inorganic carbon (DIC) concentrations were 

measured using a multi N/C 2100S analyzer (Analytik Jena, Germany) in triplicate. 

Chromophoric DOM was assessed using a double-beam scanning spectrophotometer 

(UV-5500 PC, Shanghai). The absorption spectra ranged from 200 to 700 nm with an 

interval of 1 nm. Fluorescence DOM was analysed using a RF-6000 

Spectrophotometer (Shimadzu, Japan). Excitation-emission matrices (EEM) were 

scanned from 200 to 450 nm with a 5-nm interval for excitation wavelengths, and 

from 250 to 600 nm with a 1-nm interval for emission wavelengths.  

 

Molecular composition of lake DOM was determined using FT-ICR MS (Bruker 

                  



Solari X, Germany). For SPE, water samples were acidified with hydrochloric acid to 

pH 2.0, and passed through a PPL column (200 mg, 3 mL). The PPL column was 

activated using 30 mL methanol, and salt was removed using 30-mL Milli-Q water 

and hydrochloric acid. The flow rate was kept at 1–2 mL min-1, and samples were 

washed with 3 mL methanol (HPLC grade). Negative electrospray ionization (ESI) 

ion source was injected into a Bruker Solarix XR 7.0T FT-ICR MS system at a flow 

rate of 120 μL h-1. The injection and extraction voltages were was set to 4.0 kV and -

500 V for capillary inlets. The mass-to-charge ratios (m/z) were within the range of 

100–1200, with an ion accumulation time of 0.02 or 0.06 s. During FT-ICR MS 

analysis, m/z = 369.119106 served as the internal reference ion for real-time mass 

calibration. It acquired 300 single transients/scans to improve the signal-to-noise ratio 

(S/N) of the target peaks. For high-quality FT-ICR MS, Suwannee River natural 

organic matter (SRNOM) was used as the standard for calibrating mass axis.  

 

2.3. Lake CO2 calculation and DOM characterization 

We defined aqueous partial pressure of CO2 (pCO2) as CO2 level in lakes, which was 

calculated from pH, water temperature, and total alkalinity or DIC using CO2SYS 

program (D.E. Pierrot et al., 2006). This program is developed on a basis of water 

chemistry or carbonate equilibria, enabling the calculation of DIC species 

concentrations, as well as pCO2 or fugacity of CO2 (fCO2). The fCO2 is about 0.3% 

lower than the pCO2 under pressures of ~1 atm due to the non-ideality of CO2. 

Carbonate equilibria are also constrained by the solubility coefficient of CO2 (K0), 

                  



first (K1) and second dissociation (K2) constants of carbonic acid in natural waters as 

follows:  

𝑓𝐶𝑂2 =
𝐷𝐼𝐶

𝐾0
×

[𝐻+]2

[𝐻+]2 + 𝐾1 × [𝐻+] + 𝐾1 × 𝐾2
  (1) 

To better understand the potential CO2 dynamics within the subtropical lakes, we 

computed the areal CO2 efflux at distinct spatial and temporal scales. We estimated 

normalized gas transfer velocity (k600, m d-1) of CO2 by relating it to wind speed, 

using previously reported empirical models (Li et al., 2016). It was converted into 

site-specific gas transfer velocity (k, m d-1) with water temperatures and Schmidt 

numbers. Henry’s constant of CO2 (Kh, mmol m-3 μatm-1) was corrected for in-situ 

temperature and pressure. The disparity between in-lake (pCO2water, μatm) and 

atmospheric pCO2 (pCO2air, μatm) drives the transfer of CO2. We noted relatively high 

CO2 concentrations (434–496 ppm, with a mean of 463 ± 20 ppm) and thus pCO2air in 

each lake (Fig. S2), potentially upscaling the baseline for assessing lake CO2 

outgassing. By measuring and compiling these parameters across sampling locations, 

we calculated water-air areal CO2 efflux (mmol m-2 d-1) using thin boundary layer 

(TBL) model as follows:  

CO2 efflux = k×Kh×(pCO
2water

− pCO
2air

)  (2) 

For detailed descriptions of estimating areal CO2 efflux in the study subtropical 

lakes see Supplementary Information S1. 

 

Chromophoric DOM was characterized by the non-normalized absorption 

coefficients of wavelengths at 254 (a254, a proxy for aromatic abundance) (Ni et al., 

                  



2020a), 350 (a350, a proxy for lignin abundance) (Derrien et al., 2019) and 420 (a420, 

an indication for photochemical mineralization of lake DOC) (Koehler et al., 2016) in 

Naperian units. Although these absorption coefficients are highly correlated, they 

have specific implications for DOM characterization, and the use of multiple 

coefficients is more conducive to accurate prediction of DOC concentration (Fichot 

and Benner, 2011). SUVA254, a proxy for DOM aromaticity (D’Andrilli et al., 2022), 

was further calculated based on a254 and DOC concentration. Spectral slope 

coefficient (S275-295), calculated from exponential fitting to the absorption spectrum of 

275–295 nm, was used as a proxy for DOM microbial degradation, photobleaching 

and molecular weight (Helms et al., 2008). Spectral slope ratio (SR), the ratio of S275-

295 to S350-400 (computed similarly to S275-295), had a negative correlation with DOM 

molecular weight. Fluorescence DOM was modelled using fluorescence regional 

integration across five EEM regions (Chen et al., 2003): region I (tyrosine-like), II 

(tryptophan-like) and IV (microbial exudates) represent biogenic DOM; region III 

(soil fulvic acid-like) links to terrestrial DOM; and region V expresses humic-like 

DOM. Fluorescence index (FI) and humification index (HIX) can indicate lake DOM 

origin and fate (Wilson and Xenopoulos, 2009). Specifically, FI was calculated from 

emission intensities of 450 to 500 nm at an excitation of 370 nm; while HIX was 

determined from total emission intensities of 435–480 nm to 300–345 nm at an 

excitation of 254 nm. We identified the main fluorophores with maximum 

fluorescence intensity (Fmax) in the 20 subtropical lakes using parallel factor analysis 

(PARAFAC). The component models were assessed and validated using residual 

                  



analysis and split half analysis. For detailed descriptions of computing chromophoric 

and fluorescence DOM see Table S1. 

 

Molecular composition of DOM was analysed using a molecular formula 

calculator based on criteria with elemental combinations of C0-∞H0-∞O0-∞N0−1S0-1, and 

assigned to the peaks with S/N > 4. For FT-ICR MS data, the modified aromaticity 

index (AI-mod), double bond equivalent (DBE) and nominal oxidation state of carbon 

(NOSC) were calculated for each assigned molecular as follows: 

𝐴𝐼_𝑚𝑜𝑑 =
1 + C −

1
2 𝑂 − 𝑆 −

1
2

(𝑁 + 𝐻)

C −
1
2 𝑂 − 𝑁 − 𝑆

  (3) 

𝐷𝐵𝐸 = 1 +
1

2
(2𝐶 − 𝐻 + 𝑁)  (4) 

𝑁𝑂𝑆𝐶 =
4C + H − 3N − 2O − 2S

C
  (5) 

Van Krevelen analysis was used to decipher molecular composition from 7 

distinct regions based on the elemental ratios of H/C and O/C (Wang et al., 2023): 

carbohydrates (1.5 < H/C < 2.4; 0.71 < O/C < 1.2); amino-sugars (1.5 < H/C < 2.2; 

0.52 < O/C < 0.71; N > 0); saturated compounds (1.5 < H/C < 2.2; 0 < O/C < 0.52; 

N > 0); tannin (0.5 < H/C < 1.5; 0.67 < O/C < 1.2); lignin (0.7 < H/C < 1.5; 0.1 < O/C 

< 0.67); unsaturated hydrocarbons (0.7 < H/C < 1.5; 0 < O/C < 0.1); condensed 

aromatic structures (0.2 < H/C < 0.7; 0 < O/C < 0.67). We included a visual map to 

aid in understanding the classification in Fig. S3. Furthermore, molecules were 

categorized into five compound groups based on AI-mod, H/C and O/C cutoffs (Hu et 

al., 2023; Linkhorst et al., 2017): combustion-derived polycyclic aromatic structures 

(CA, AI-mod > 0.66), soil-derived polyphenols and PCAs with aliphatic chains 

                  



(SP&PCAs, 0.66 > AI-mod > 0.50), soil-derived humic and highly unsaturated 

compounds (SH&UNs, AI-mod ≤ 0.50, H/C < 1.5), unsaturated aliphatic compounds 

(UAs, 2.0 ≥ H/C ≥ 1.5), and saturated fatty and sulfonic acids, carbohydrates 

(SF&SAC, H/C ≥ 2.0 or O/C ≥ 0.9).  

 

2.4. Statistical analysis and data uncertainty 

We tested normality and homogeneity of variance using Kolmogorov-Smirnov and 

Levene’s test, respectively. Variables were log-transformed when it was statistically 

necessary to assume normality. Mann-Whitney U test was used to examine temporal 

variability of in-lake CO2 and DOM datasets. One-way analysis of variance 

(ANOVA, with Turkey HSD post hoc) allowed us to assess statistical differences in 

the abundance or proportion of DOM molecular compositions. Linear regression and 

correlation analysis were assigned to indicate the homology of distinct DOM 

compositions, and show possible associations of pCO2 with DOM variables. Given 

these linear relationships were likely impacted by mutual interactions between 

variables, we conducted an in-depth identification of how lake DOM signals CO2 

sources and forecasts CO2 levels using machine learning. Specifically, random forest 

model was performed to identify relative importance of CO2 drivers and predict CO2 

magnitude in lakes. It constructs multiple decision trees using random subsets of the 

training data, and synthesizes all predictions from each tree or node. This approach, 

handles high-dimensional and complex datasets of aqueous gas emissions (Rocher-

Ros et al., 2023), demonstrating the ability to manage irrelevant variables without 

                  



causing overfitting. We defined the weights of relative importance (%) as the 

increased errors caused by permuting variables. The minimum leaf node size and 

number of trees were set to 2 and 500, respectively. The training and testing datasets 

have a ratio of approximately 2:1, containing 162 and 85 data points, respectively. 

The optimal results with the highest R2 were selected to represent the regressions 

between observed and modelled pCO2 across multiple modeling. In this study, 

mathematical statistics were performed using OriginLab OriginPro 2024 and SPSS 

statistical package (19.0), while random forest model was developed using MATLAB 

(2021b) algorithm. 

 

Dissolved CO2 concentrations calculated from water chemistry or carbonate 

equilibria may involve systematic errors caused by potential issues with pH and 

alkalinity measurements (Liu et al., 2020). For pH calibration, the breakpoint is often 

pH 5.4 in data handling: this includes measurements with pH > 5.4 to filter out 

implausible readings and instrument errors (Hotchkiss et al., 2015). Also, a low pH 

may indicate significant interference from organic acids to DIC species computing. In 

this study, we demonstrate 95% of pH measurements > 7.0, suggesting that CO2 

calculation errors resulting from pH could be relatively minimal (Fig. S4). For total 

alkalinity calibration, we realized that non-carbonate alkalinity sourced from organic 

and inorganic acids (e.g., borate, phosphate, silicate and hydrogen sulfate) can result 

in significant errors, particularly for low-concentration total alkalinity (<1000 μmol L-

1) (Liu et al., 2020). In this context, we quantified an average uncertainty of 19% for 

                  



total alkalinity using ancillary data e.g., DOC, dissolved phosphate and nitrogen. In 

fact, carbonate alkalinity and DIC in freshwaters are conceptually interchangeable 

terms in water chemistry calculations and thus CO2SYS program (D.E. Pierrot et al., 

2006). Therefore, we constrained lake pCO2 uncertainties using total alkalinity-based 

and directly measured DIC. We show that consistent with the evaluation from 

ancillary data, DIC and pCO2 were overestimated by 19% and 23% from total 

alkalinity-based determination, respectively (Fig. S5). Therefore, we used measured 

DIC instead of total alkalinity in estimating lake pCO2 in this study, in order to 

minimize the uncertainties. This converted the systematic errors into instrument errors 

of DIC (and DOC) measurements (< 2% in triplicate). UV absorptions, spectral slopes 

and SR were analyzed in duplicates for 10% data, suggesting an uncertainty of < 2%. 

The inner filter effects of EEM data could be minimal (Ohno, 2002), with over 99% 

of the recorded absorbance at 254 nm being less than 0.3. This left us with one sample 

that was diluted with Milli-Q water to address the interference issue. Raman and 

Rayleigh scatter was collected for fluorescence data using interpolation (Bahram et 

al., 2006). Fluorescence intensities were normalized to Raman Unit (R.U.) using 

water Raman peak area (Lee et al., 2018). 

 

3. Results and discussion 

3.1. Subtropical lake CO2 levels and dynamics 

Our investigations encompassed mountainous lakes from the Sichuan Basin to the 

Yunnan-Guizhou Plateau in subtropical China (Fig. 1). Lake pCO2 spanned four 

                  



orders of magnitude, ranging from <10 to 9175 μatm (17–3385 μatm, 95% confidence 

intervals) with a mean of 736 ± 1289 μatm. The diverse magnitudes indicate 

substantial fluctuations in CO2 drivers within these lakes. Particularly, pCO2 in the 

wet period had a broad range (Fig. 1a), averaging much higher at 1063 ± 1691 μatm 

than the dry period of 413 ± 534 μatm (Mann-Whitney U test, p < 0.001). This is 

likely modulated by temporal rainfall and soil flushing, therefore influencing lateral 

CO2 inputs (Vachon et al., 2017). We found large spatial shifts in pCO2 levels in the 

study subtropical lakes, especially high averages > 2000 μatm for locations with 

human disturbances e.g., Dianchi, Xihu and Qinglong (Fig. S6). It should be noted 

that ~70% of the samples were undersaturated with CO2, exhibiting a high potential 

for C sequestration in subtropical lakes. Lake Chenghai, for instance, retained DIC 

concentrations of 5413–9228 μmol L-1 but yielded an unusually low pCO2 of only 163 

± 76 μatm.  

 

The modelled k values varied from 0.23 to 6.6 m d-1 (0.44–1.3 m d-1, 95% 

confidence intervals) and averaged at 0.76 ± 0.53 m d-1 (Fig. S7), which is consistent 

with the global estimates (0.74 m d-1) from similar wind speed models (Raymond et 

al., 2013). Combining paired measurements of pCO2 and k values taken at each 

sampling location, we further calculated areal CO2 efflux ranging from -66 to 231 

mmol m-2 d-1 (-15–64 mmol m-2 d-1, 95% confidence intervals) for these subtropical 

lakes (Fig. S8). The mean value, 5 ± 33 mmol m-2 d-1, was significantly different from 

the median value of -6 mmol m-2 d-1, for the CO2 fluxes. This raises a conflicting 

                  



observation as these subtropical lakes overall represent a net CO2 efflux because of 

some uniquely high values, despite most sampling locations functioning as CO2 sinks. 

Site-specific extreme events, for example particular human disturbance (Luo et al., 

2022; Raymond et al., 2008), may be responsible for this. Our areal CO2 efflux is 

lower than the previously reported mean value (27 ± 66 mmol m-2 d-1) for lakes and 

reservoirs across China (Ran et al., 2021), yet aligns with a recent real-time estimation 

(< 10 mmol m-2 d-1) for lakes in Yunnan-Guizhou Plateau (Sun et al., 2023). It is 

important to note that we excluded non-carbonate alkalinity contributions by using 

detected DIC, and employed a relatively high baseline for atmospheric CO2 based on 

in-situ measurements (Fig. S2). These calibrations avoided potential overestimations 

and resulted in relatively low magnitudes of lake CO2 evasion estimated. Our findings 

suggest that the study lakes emitted CO2 in the wet period (14 ± 42 mmol m-2 d-1), but 

switched to uptake CO2 in the dry period (-3 ± 15 mmol m-2 d-1, Fig. S8). This implies 

that C turnover, along with CO2 drivers, may differ substantially at timescales in these 

lake ecosystems.  

 

3.2. Subtropical lake DOM characterizing 

Lake DOC concentrations varied from 1.0 to 50.4 mg L-1 (1.9–23.0 mg L-1, 95% 

confidence intervals), averaging ~2-fold higher in the wet period (11.4 ± 7.63 mg L-1) 

than the dry season (5.9 ± 4.88 mg L-1, p < 0.001) (Fig. 2a). Aromatic and lignin 

abundance, as well as photo-mineralization potentials of lake DOM, were greater in 

the wet period, as evidenced by absorption coefficients a254, a350 and a420 (p < 0.001). 

                  



DOM aromaticity (SUVA254), however, was higher in the dry period (p < 0.001, Fig. 

2a). This demonstrates concentrating effect of aromatic compounds during periods of 

drought stress. Alternatively, biological degradation of DOM can also modulate its 

aromaticity over time (Ni and Li, 2020). We suggest that photobleaching and 

microbial degradation drove DOM decay, resulting in large accumulation of photo- 

and bio-metabolites, as well as alterations in DOM relative molecular weight in the 

dry period, as indicated by spectral slope coefficient S275-295 (Fig. 2a). As a result, 

seasonality can alter DOM photochemical and metabolic pathways in lakes, 

governing complete (mineralization) or incomplete (biolysis and photobleaching) 

degradation of organic C. Shifting sunlight and DOM composition over seasons may 

straightforwardly account for these effects (Cory et al., 2014; Gonsior et al., 2013). It 

further combined with S350-400 to compute SR, demonstrating that DOM relative 

molecular weight was statistically similar across time periods (p > 0.05, Fig. 2a).  

 

The PARAFAC modeling identified four fluorescent components in the 

subtropical lakes (Fig. 2b), which were closely associated with terrestrial (C1) and 

biogenic humic-like (C2), as well as tryptophan-like DOM (C3 and C4). The 

accumulation of C1 and C3 in particular, sourced from soil leaching and algal 

metabolism, was intensified by the drought conditions (Fig. S9). Specifically, the 

coexisting C3 and C4 during the wet period, two alternative tryptophan-like 

components, represented a changeable relationship in Fmax (Fig. S10), which likely 

resulted from a transition state caused by biological degradation of DOM (Ni and Li, 

                  



2023). We realized that PARAFAC modeling may omit individualized components, 

and thus it employed fluorescence regional integrations for a comprehensive 

understanding of fluorescence DOM (Fig. 2c). Our results suggest that humic-like 

DOM (region Ⅴ) had the highest proportion of 13%–81% across the five EEM 

regions (ANOVA, p < 0.001). Biogenic (region I + II + IV) and terrigenous DOM 

(region III) showed no significant temporal variations (Mann-Whitney U test, p > 

0.05), contributing 12%–85% and 2%–17% to the EEM regions, respectively. This 

demonstrates a robust buffer capacity within the subtropical lakes, able to withstand 

seasonal fluctuations in DOM evolution. FI varied between 1.5–2.1 with a mean of 

1.8 ± 0.10 (Fig. 2d), indicating that autochthonous and allochthonous sources can be 

equally significant for these fluorophores (implications of FI see Table S1 for more 

details). We found that soil fulvic acid-like component largely contributed to DOM 

humification in the lakes, as evidenced by the associations between region III and 

HIX (Fig. S11).  

 

The DOM molecular formulae were highly consistent across the lakes, as 

shown by H/C and O/C distributions in van Krevelen Diagram (Fig. S12). 

Terrestrially derived lignin compounds (or carboxy-rich acyclic molecules) were 

predominated, contributing 77%–86% of molecular DOM (Fig. 3a). Amino-sugars 

and saturated compounds, in particular, also exhibited the significant proportions of 

2%–4% and 8%-18%, respectively. These DOM molecules, can be preferentially 

biodegraded in aerobic environments with high H/C >1.5 (Sleighter et al., 2014; 

                  



Spencer et al., 2015). We thus suggest that terrestrial inputs and aquatic metabolism, 

as well as their potential interactions (Hotchkiss et al., 2015), may act as substantial 

pathways for organic C evolution in the lakes. We further classified DOM into five 

compound groups, demonstrating that SH&UNs were highly prevalent, with 

proportions of 71%–83% (Fig. 3b). This aligns with terrigenous signals from 

fluorescence DOM characterizing (Fig. 2). By contrast, DOM hydrogenation 

increased relative abundance of UAs (13%–26%), along with low O/C (< 0.5, Fig. 

S12) and NOSC (< 0, Fig. 3c), resulting in the accumulation of photo-labile 

compounds (McDonough et al., 2022) within the subtropical lakes. It is especially the 

case for lake Qinglong, of which DOM had higher AI-mod and DBE (Fig. 3c). Here, 

photo-produced aromatics may interact with DOM biodegradation, as proposed by a 

recent study (Hu et al., 2023). Therefore, it is anticipated that biotic processes also 

concatenate photochemical pathways of DOM, constraining organic C turnover in the 

study lakes.  

 

3.3. Lake DOM signaling CO2 drivers and magnitudes 

Organic C shares common pathways with CO2, establishing their causal links in 

aquatic environments. This supports previously documented associations between 

DOM and dissolved CO2 (Li et al., 2024; Luo and Li, 2021). However, these 

relationships are typically particular at timescales. By linking pCO2 to DOM 

variables, for instance, we found that a combination of biogeochemical drivers i.e., 

terrestrial inputs, photo-mineralization and biological metabolism, governed lake CO2 

                  



during wet period. In contrast, photochemical processes likely modulated aquatic CO2 

during dry period (see Fig. S13). This was in agreement with temporal shifts of pCO2 

levels (Fig. 1), given that photo-mineralization of organic C corresponds only a small 

fraction of CO2 evasion (Allesson et al., 2021) relative to more diverse sources. It 

should be noted that from the perspective of DOM molecules, aromaticity or aromatic 

structures were strongly associated with pCO2, serving as an important indicator for 

lake CO2 levels (Fig. S14).  

 

Nevertheless, this effort to elucidate lake CO2 cannot rank the drivers and predict 

CO2 levels. Here, we performed machine learning to identify and allocate in-lake CO2 

(Fig. 4). The reliable results from linear regression analysis (Fig. S13) were 

complemented by random forest modeling, further showing that microbial 

degradation of DOM (with the relative high importance of biogenic signals i.e., region 

Ⅱ, Ⅳ and FI) dominantly explained lake pCO2 among multifaceted CO2 drivers in 

the wet period (Fig. 4a). Moreover, the modeling additionally identified significant 

importance of the terrigenous (a350) and photochemical signals (a420 and an ancillary 

signal S275-295) in the dry period (Fig. 4b), which reveals that terrestrial inputs, 

together with photolytic degradation of DOM, constrained lake pCO2. This supports 

our hypothesis, suggesting the biogeochemical co-trajectories involved in lake CO2 

and DOM evolution can greatly differ over time. We highlight that these CO2 

mechanisms function not only independently but also interact within organic C 

processing. By examining the interactions of DOM variables, we can determine that 

                  



aquatic metabolism of terrestrial DOM and photo-mineralization of activated aromatic 

compounds emerged as two potential pathways for CO2 production in the subtropical 

lakes (see Fig. S15).  

 

On the basis of these biogeochemical co-trajectories, we clearly show robust 

correlations between observed and modelled pCO2 across time periods (Fig. 4c). This 

indicates there is a generic way to retrieve CO2 levels from DOM signaling, despite 

temporal variations in CO2 mechanisms. Particularly, the modelled mean pCO2 levels 

showed good agreement with the measured values, with overestimations of only 0.4% 

and 2.1% in the wet and dry periods, respectively (Fig. 4d). However, regarding high 

pCO2 (> 2500 μatm), the modelled values had significant uncertainties. This may 

arise from the contributions not fully gauged by the “explainable DOM variables” 

(Please refer to Fig. 5 for the definition of this term). For instance, our study identified 

a shared pathway for the uptake of atmospheric polycyclic aromatic compounds and 

CO2 by lakes from a molecular perspective (Fig. S14), which could not be simply 

omitted particularly in subtropical lakes. Photosynthetic consumption of pCO2 also 

complicated predictions of lake CO2 levels (Fig. S16). Particulate organic C typically 

accounts for 7%–38% of the total organic C pool (Ostapenia et al., 2009; Rouillard et 

al., 2011) and transforms into DOC through fragmentation (Kiuru et al., 2018), which 

potentially contributes 51–280 μatm to lake CO2 levels on average. We note that 

China’s subtropical lakes are susceptible to eutrophication and algal blooms, 

depending on temporal temperature changes (Yindong et al., 2021) and spatial 

                  



locations e.g., eutrophication-induced algal blooms often emerge along the shoreline 

rather than in the relative central areas (Stadig et al., 2020; Wang et al., 2018). This 

potentially shapes spatiotemporal patterns of CO2 levels in these subtropical lake 

ecosystems (Fig. S17). Mounting evidence that human activities and groundwater can 

regulate aquatic DOM and CO2 (Connolly et al., 2020; Duvert et al., 2018; Kang et 

al., 2023; McDonough et al., 2022). Yet, there is still a lack of the specific explainable 

DOM variables to correspond with these inputs.  

 

In this study, we propose a DOM-based path for understanding CO2 drivers and 

magnitudes in lakes (Fig. 5). The mechanistic basis relies on the ubiquitous 

biogeochemical co-evolution of aquatic CO2 with DOM. It develops a comprehensive 

conceptual framework to unveil coupling relationships between diverse DOM 

indicators and aquatic CO2, showing clearly how to differentiate and identify CO2 

sources. Furthermore, we suggest that machine learning can unravel the intrinsic 

connections between various drivers despite potential interferences, and thus establish 

a universal determination for retrieving CO2 in most natural waters. However, it 

should be noted that the specific CO2 drivers and associated DOM-based models may 

vary between distinct aquatic environments e.g., arid regions and saline lakes. 

Regardless of predictable levels and identifiable sources of lake CO2 and organic C, 

this determination can provide significant implications for C turnover in aquatic 

ecosystems. We realize that biological degradation of organic C apparently governs 

lake CO2 magnitude. For example, microbial metabolism acting as a determinant 

                  



drove much higher CO2 levels during wet period rather than terrestrial inputs during 

dry period (Fig. 4). This understanding deviates from the prevailing view (Drake et 

al., 2018; Einarsdottir et al., 2017; Lapierre et al., 2013), yet aligns with the 

observations in shallow lakes (Bogard et al., 2019), suggesting that terrestrial C inputs 

may not be the fundamental hotspots of CO2 emissions in subtropical lakes. 

Subtropical lakes sequester a significant amount of dissolved C but emit less CO2 into 

the atmosphere (Raymond et al., 2013) due to biogenic constraints, demonstrating the 

significance in C capture and subsequent C neutrality. Our efforts to signal aqueous 

CO2 through DOM, are thus anticipated to provide new insights into C cycling in 

subtropical lakes amidst the ongoing impacts of global climate change.  

 

4. Conclusion 

Natural DOM shares specific biogeochemical pathways with CO2 in aquatic 

environments, establishing mechanistic underpinnings of their causal links. Based on 

these associations, we present a comprehensive conceptual framework to identify and 

allocate CO2 through DOM signals in China’s subtropical lakes. We demonstrate that 

lake CO2 was constrained by terrestrial inputs, photo-mineralization and biological 

metabolism during the wet period, while photochemical processes largely fuelled CO2 

during the dry period. The interacting mechanisms involving aquatic metabolism of 

terrestrial DOM and photo-mineralization of activated aromatic compounds were 

specifically identified as key drivers of lake CO2. Our findings highlight the crucial 

role of aquatic biology in regulating CO2 dynamics relative to terrestrial C inputs 

                  



within subtropical lakes. Using machine learning, aqueous pCO2 levels were well 

modelled through DOM signaling, achieving average overestimations of 0.4% and 

2.1% in the wet and dry periods, respectively. This study proposes a generalizable 

approach for unraveling aquatic CO2, which may provide important insights into C 

cycling from inland waters amidst ongoing climate change.  
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Figure captions: 

Fig. 1. Spatiotemporal distributions of aqueous pCO2 across the study lakes in 

subtropical China. Dots show the mean pCO2 in each lake during the wet period (a) 

and dry period (b). Blue lines describe drainage networks across the study area. 

Detailed information of sampling locations is provided in Fig. S1. 

Fig. 2. Spectroscopic characteristics of DOM in the subtropical lakes. (a) Temporal 

pattern of DOC and chromophoric DOM in the lakes. The boxes with whiskers 

represent 25%–75% range within 1.5IQR. White and black lines show median and 

mean, respectively. Dots correspond to all data of UV parameters. (b) Three-

dimensional view of primary fluorophores identified by PARAFAC modeling. (c) 

Fluorescence regional integration across five excitation-emission matrix regions. The 

waves display Kernel Smooth distributions of proportions for each region. (d) 

Distributions of FI and HIX across the time periods. The red line and grey area 

indicate linear regression and 95% confidence band, respectively. Dots correspond to 

all data of fluorescent parameters. The waves show Kernel Smooth distributions of 

the data. 

Fig. 3. Molecular information of DOM across the subtropical lakes. (a) Proportions of 

DOM molecular compounds in each lake, (b) Proportions of compound groups 

include combustion-derived polycyclic aromatic structures (CA), soil-derived 

polyphenols and PCAs with aliphatic chains (SP&PCAs), soil-derived humic and 

highly unsaturated compounds (SH&UNs), unsaturated aliphatic compounds (UAs), 

and saturated fatty and sulfonic acids, carbohydrates (SF&SAC). (c) The modified 

                  



aromaticity index (AI-mod), double bond equivalent (DBE) and nominal oxidation 

state of carbon (NOSC) across the lakes. 

Fig. 4. Lake DOM signaling CO2 drivers and magnitudes using machine learning. (a) 

Random forest modeling assigning the relative importance of DOM variable in 

evaluating lake CO2. The x axis with whisker shows the mean importance with 

standard deviation (s.d.). (b) The visual flows of relative importance from DOM 

variable to temporal pCO2 in the lakes. The red and blue flows represent the most 

variables with weights > 0.2. (c) The relationships between observed and modelled 

pCO2 across the time periods. The waves show Kernel Smooth distributions of the 

data. (d) Comparison of observed and modelled pCO2 in the lakes. The boxes with 

whiskers represent 25th–75th percentiles with s.d. White and black lines show median 

and mean, respectively. Dots correspond to all data of observed and modelled pCO2. 

Fig. 5 A comprehensive conceptual framework for signaling in-lake CO2 through 

DOM. We suggest that lake organic C or DOM follows the shared biogeochemical 

pathways with lake CO2. It includes the common drivers 1) e.g., photochemical 

drivers, aquatic metabolism, terrestrial inputs and atmospheric uptake that are directly 

signalled by explainable DOM variables; and 2) e.g., groundwater inputs, human 

activities and photosynthesis that co-vary with lake CO2 although explainable 

variables signaling these relationships are lacking. The term “explainable DOM 

variables” refers to DOM variables that can specifically indicate certain sources or 

pathways regarding biogenic, terrigenous, and photochemical processes. By contrast, 

ancillary signals may interact with various pathways but are not specifically indicative 

                  



of any single explainable process. The causal relationships can be visualized through 

linear regression analysis, correlation analysis or machine learning. This helps to 

identify CO2 drivers, rank contributions to lake CO2, and particularly discover 

interactive trajectories in modulating lake CO2 (e.g., aquatic metabolism of terrestrial 

DOM, and photo-mineralization of activated aromatic compounds). By compiling and 

analysing these common pathways, it allows us to predict lake CO2 levels using 

machine learning. We highlight that this conceptual framework could be generic and 

transferable for other natural waters.  
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Fig. 1. Spatiotemporal distributions of aqueous pCO2 across the study lakes in 

subtropical China. Dots show the mean pCO2 in each lake during the wet period (a) 

and dry period (b). Blue and black lines describe drainage networks and boundaries 

across the study area, respectively. Detailed information of sampling locations is 

provided in Fig. S1.  
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Fig. 2. Spectroscopic characteristics of DOM in the subtropical lakes. (a) Temporal 

pattern of DOC and chromophoric DOM in the lakes. The boxes with whiskers 

represent 25%–75% range within 1.5IQR. White and black lines show median and 

mean, respectively. Dots correspond to all data of UV parameters. (b) Three-

dimensional view of primary fluorophores identified by PARAFAC modeling. (c) 

Fluorescence regional integration across five excitation-emission matrix regions. The 

waves display Kernel Smooth distributions of proportions for each region. (d) 

Distributions of FI and HIX across the time periods. The red line and grey area 

indicate linear regression and 95% confidence band, respectively. Dots correspond to 

all data of fluorescent parameters. The waves show Kernel Smooth distributions of 

the data. 
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Fig. 3. Molecular information of DOM across the subtropical lakes. (a) Proportions of 

DOM molecular compounds in each lake, (b) Proportions of compound groups 

include combustion-derived polycyclic aromatic structures (CA), soil-derived 

polyphenols and PCAs with aliphatic chains (SP&PCAs), soil-derived humic and 

highly unsaturated compounds (SH&UNs), unsaturated aliphatic compounds (UAs), 

and saturated fatty and sulfonic acids, carbohydrates (SF&SAC). (c) The modified 

aromaticity index (AI-mod), double bond equivalent (DBE) and nominal oxidation 

state of carbon (NOSC) across the lakes. 
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Fig. 4. Lake DOM signaling CO2 drivers and magnitudes using machine learning. (a) Random forest modeling assigning the relative importance 

of DOM variable in evaluating lake CO2. The x axis with whisker shows the mean importance with standard deviation (s.d.). (b) The visual 

flows of relative importance from DOM variable to temporal pCO2 in the lakes. The red and blue flows represent the most variables with 

weights > 0.2. (c) The relationships between observed and modelled pCO2 across the time periods. The waves show Kernel Smooth distributions 

                  



of the data. (d) Comparison of observed and modelled pCO2 in the lakes. The boxes with whiskers represent 25th–75th percentiles with s.d. 

White and black lines show median and mean, respectively. Dots correspond to all data of observed and modelled pCO2. 
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Fig. 5. A comprehensive conceptual framework for signaling in-lake CO2 through 

DOM. We suggest that lake organic C or DOM follows the shared biogeochemical 

pathways with lake CO2. It includes the common drivers 1) e.g., photochemical 

drivers, aquatic metabolism, terrestrial inputs and atmospheric uptake that are directly 

signalled by explainable DOM variables; and 2) e.g., groundwater inputs, human 

activities and photosynthesis that co-vary with lake CO2 although explainable 

variables signaling these relationships are lacking. The term “explainable DOM 

variables” refers to DOM variables that can specifically indicate certain sources or 

pathways regarding biogenic, terrigenous, and photochemical processes. By contrast, 

ancillary signals may interact with various pathways but are not specifically indicative 

of any single explainable process. The causal relationships can be visualized through 

linear regression analysis, correlation analysis or machine learning. This helps to 

identify CO2 drivers, rank contributions to lake CO2, and particularly discover 
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interactive trajectories in modulating lake CO2 (e.g., aquatic metabolism of terrestrial 

DOM, and photo-mineralization of activated aromatic compounds). By compiling and 

analysing these common pathways, it allows us to predict lake CO2 levels using 

machine learning. We highlight that this conceptual framework could be generic and 

transferable for other natural waters.  
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