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Abstract High‐frequency monitoring of reservoir inundation and water storage changes is crucial for
reservoir functionality assessment and hydrological model calibration. Although the integration of optical data
with synthetic aperture radar (SAR) backscattering coefficients (backscatters) offers an effective approach,
conventional methods struggle to consistently provide accurate retrievals over diverse regions and seasons. In
this study, we introduce reservoir‐ and monthly‐specific classification models to enhance the integration of
Sentinel‐1 SAR backscatters with optical‐based water dynamics. Our method covers 721 reservoirs with a
capacity greater than 0.1 km3 in China during 2017–2021. Furthermore, we leverage multisource satellite
altimetry records (e.g., ICESat‐2, CryoSat‐2, and GEDI) and digital elevation models to derive hypsometry
relationship (i.e., water level–water area relationship) for reservoirs, enabling the transformation of inundated
areas into monthly water storage changes for 662 reservoirs, representing 93% of the total storage capacity of
large reservoirs. Validation against in‐situ measurements at 80 reservoirs reveals improved monthly inundated
area monitoring compared to existing data sets. Additionally, our reservoir water storage change estimates
exhibit an average R2 of 0.79 and a mean relative root mean square error (rRMSE) of 21%. Our findings
highlight reservoir water increases from May/June to November and declines in winter–spring in most regions.
However, the inter‐annual patterns vary among regions, with increases in Northeast China, the Yellow River
basin (YR), and Southwest China, contrasted by declines in Eastern and Northwest China. Inter‐ and intra‐
annual variability in reservoir water storage is mainly influenced by natural inflow in Northeast and Northwest
China, while anthropogenic factors dominate in the YR, Eastern, and Southwest China.

Plain Language Summary Reservoirs can supply water, control flood and provide electricity.
Without high temporal frequency data on inundated area and water storage over a large spatial extent, we could
not clearly understand how and to which degree numerous reservoirs have altered the natural water cycle and
provided multiple benefits to people all across the world. The development of remote sensing technology has
facilitated the long‐term monitoring of inundated areas and water levels of large quantities of reservoirs.
However, high‐temporal‐resolution monitoring remains challenging. In this study, by developing a novel
method which integrates active microwave remote sensing data with optical remote sensing observations, we
largely improved the satellite‐based monthly inundated area and water storage change monitoring at almost all
large reservoirs in China. The results reveal distinct seasonal patterns and interannual variations of reservoir
water in different regions of China. Specifically, we found that reservoirs in Northeast China, the Yellow River
basin, and Southwest China generally expanded, whereas those in Eastern and Northwest China generally
shrank during 2017–2021. The climatic and anthropogenic impacts on the inter‐ and intra‐annual variations in
reservoir water across different regions were also analyzed.

1. Introduction
Over the past six decades, humanity has witnessed an unprecedented surge in reservoir construction, reshaping
landscapes and hydrological dynamics worldwide (Lehner et al., 2011; Mulligan et al., 2020). Globally, more
than 7,320 large reservoirs with a storage capacity exceeding 0.1 km3 (Lehner et al., 2019), serve multiple
purposes, from irrigation and water supply to flood control, aquaculture, hydropower generation, and navigation
(Intralawan et al., 2018). Notably, China, steeped in a rich history of reservoir development, has built over 90,000
reservoirs since 1954, representing approximately 40% of the world's largest dams (Song et al., 2022). However,
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this prolific growth in dam infrastructure has substantially altered the natural flow of rivers, challenging eco-
systems and hydrological balance (Gou et al., 2021; Grill et al., 2019; Han et al., 2020; Zhu et al., 2020).

While hydrological models can simulate natural runoff patterns (Gou et al., 2021), they face significant limita-
tions when addressing actual river discharge in regions with sparse information on reservoir water levels and
storage changes. This scarcity hampers the accurate simulation of river flow under the influence of human‐
managed reservoirs, where traditional models often struggle to integrate complex reservoir operation rules
(Biemans et al., 2011; Dong et al., 2022; Han et al., 2020). To bridge this gap, satellite observations, encom-
passing frozen areas within reservoirs and frequent monitoring of water storage dynamics, offer a vital tool for
calibrating and refining hydrological models under human‐managed scenarios (Han et al., 2020).

Furthermore, high‐frequency monitoring of inundated areas and water storage changes emerges as a powerful
strategy for evaluating the multifaceted functionality of reservoirs, estimating evaporative and seepage losses (G.
Zhao et al., 2022), and assessing ecological health and greenhouse gas emissions in littoral zones and drawdown
areas (Keller et al., 2021; Soued et al., 2022; Yuan et al., 2013). To date, optical remote sensing stands out as the
primary tool for capturing inter‐annual dynamics in inundated areas (Pekel et al., 2016; Pickens et al., 2020).
However, the persistent challenge of cloud contamination limits its effectiveness in providing high‐frequency
data, particularly on a monthly basis. Monthly surface water maps derived from optical imagery, such as those
developed by the Joint Research Center (JRC) and the Global Land Analysis and Discovery (GLAD) group (Pekel
et al., 2016; Pickens et al., 2020), often contain large areas without information (Figure S1 in Supporting In-
formation S1). While efforts have been made to overcome these limitations, some reservoirs still suffer from data
gaps during cloudy or frozen months (G. Zhao & Gao, 2018; G. Zhao et al., 2022).

An alternative approach to high‐frequency surface water mapping is the utilization of synthetic aperture radar
(SAR) images. Microwave signals can penetrate clouds, and SAR backscatters from water and seasonally frozen
water are typically lower than those from surrounding land areas (Y. Li et al., 2020). However, inherent noise in
SAR images and the incidence angle effect (Figures S2a and S2b in Supporting Information S1) contribute to
lower accuracy in surface water identification compared to optical remote sensing (Feng et al., 2021; Y. Li
et al., 2020). In addition, freezing and snowpack can increase SAR backscatters of water bodies, while lands with
limited vegetation cover and soil moisture, such as sand dunes and mudflats could have very low SAR back-
scatters, similar to surface water. Therefore, in relatively arid regions and during cold seasons, SAR backscatters
of some water bodies can be similar to or even higher than the surrounding land, yet some other nearby water
bodies have lower SAR backscatters than their surrounding land (Figures S2c and S2d in Supporting Informa-
tion S1). These complexities render the Otsu or local thresholding method, which identifies pixels with SAR
backscatter values lower than an estimated regional threshold as surface water (Bonnema et al., 2022; Liang &
Liu, 2020; Otsu, 1979), unsuitable for all reservoirs and seasons. Although recent studies have turned to local
thresholding approaches and the integration of SAR backscatters with optical imagery through regional adaptive
machine learning models (Druce et al., 2021; Hird et al., 2017; Konapala et al., 2021; Liang & Liu, 2020; Tang
et al., 2022; Y. Wang et al., 2023). These approaches may have overlooked spatial variations in threshold
backscatter values within the same region, as well as temporal variations in threshold values caused by seasonal
changes in SAR backscatters of surface waters and surrounding terrain (Z. Jiang et al., 2021; Souza et al., 2022).
Consequently, the quality of reservoir inundated area monitoring, particularly in regions with frozen water bodies,
remains a challenge, necessitating more efforts for improvement.

Accurate estimation of water levels is vital for determining water storage changes (X. Li et al., 2019). While
satellite altimetry data obtained through radar and LiDAR altimeters are valuable, its coverage is often insuffi-
cient for most reservoirs (Cooley et al., 2021; Hou et al., 2022; Shen et al., 2022). To derive water levels in many
reservoirs, inundated areas are often combined with digital elevation model (DEM)‐based reservoir hypsometry
relationship, which is the relationship between water level and inundated area (Hou et al., 2022). Hypsometry
relationship curves are well‐fitted when DEM data above the lowest water level of the reservoir are readily
available (Avisse et al., 2017). In the absence of such data, a lower accuracy estimation of the mean depth of each
water body and subsequent hypsometry relationship can be obtained by extrapolating surrounding topography
through a geostatistical model (Khazaei et al., 2022; Messager et al., 2016). While satellite altimetry data offer
enhanced accuracy compared to DEMs (Magruder et al., 2021), further integration of high‐quality satellite
altimetry records and diverse DEM sources is still required to improve the robustness of hypsometry relationship
estimation.
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Given the strengths and limitations inherent in existing methodologies (limited temporal frequency, spatial
coverage, or data quality), this study aims to achieve high‐quality monthly monitoring of inundated areas and
water storage changes for almost all large reservoirs with total storage exceeding 0.1 km3 across China. This will
be accomplished by enhancing the integration of multisource remote sensing data, including optical remote
sensing, SAR imagery, radar, LiDAR altimetry, and diverse DEMs. For example, to improve monitoring reservoir
inundated areas, this study developed reservoir‐ and monthly‐specific supervised classification models, and
applied the optical remote sensing‐based surface water identification results as the training samples. Ultimately,
our study seeks to unveil inter‐ and intra‐annual variations in reservoir inundated areas and water storage across
different regions of China, while exploring potential drivers of these changes. The findings will provide essential
insights for assessing reservoir performance, estimating losses due to evaporation and seepage, and calibrating
hydrological models.

2. Data and Preprocessing
2.1. Surface Water Dynamics Data Sets Derived From Optical Imagery

Both the JRC and the GLAD group have mapped annual permanent and seasonal surface water at a 30‐m res-
olution using Landsat data (see Figure S1 in Supporting Information S1 for examples of images). The JRC data set
spans from 1984 to 2021, while the GLAD data set covers the years 1999–2021 (Pekel et al., 2016; Pickens
et al., 2020). These global surface water dynamics data sets, based on optical remote sensing, offer insights into
surface water distribution on an annual and monthly basis. However, the monthly maps are susceptible to missing
values, primarily due to factors such as low solar elevation angles, cloud contamination, and snow or ice cover. To
address this challenge, our study leveraged these optical remote sensing‐based annual and monthly surface water
maps to identify inundated and dry pixels within each reservoir for each month, a critical step detailed in Sec-
tion 3.1. These identified pixels were subsequently utilized as training samples in our analysis.

2.2. A Calibrated Geospatial Data Set of All Large Reservoirs in China

The China Reservoir Data set (CRD) was created through the amalgamation of various global and national
reservoir databases, bolstered by multisource open map data integration (Song et al., 2022). Initially, we identified
901 potentially large reservoirs within the CRD, defined either by their reported or estimated total storage
exceeding 0.1 km3 or classified as large reservoirs within the CRD itself. Subsequently, through cross‐referencing
with government reports, we identified 148 medium‐sized reservoirs that had been misclassified as large res-
ervoirs within the CRD. These were subsequently excluded from our analysis. Additionally, we incorporated the
missing data of 32 large reservoirs that were omitted in the CRD.

To determine the maximum surface water extent during our study period from 2017 to 2021, we employed a
combination of the JRC and GLAD products. By converting the raster data into shapefiles representing inland
surface water bodies and utilizing Google Earth to identify the geographical locations of the missing large res-
ervoirs within the CRD, we approximated the extents of these 32 large reservoirs. Through these efforts, we
successfully generated a comprehensive geospatial data set comprising 785 large reservoirs located across China
(Figure 2). Furthermore, we verified and corrected the information pertaining to the total storage capacity of each
reservoir. The shapefiles of 785 large reservoirs were subsequently converted into a raster file whose spatial
resolution and extent match those of the GLAD/JRC surface water percent maps.

China's diverse geographical landscape and reservoir functionality prompted us to partition the nation into five
distinct regions, considering climatic variances and the primary functions of the large reservoirs examined in our
study. These regions encompass Northeast China (NE), Eastern China (EA), the upper and middle reaches of the
Yellow River basin (YR), Southwest China (SW), and Northwest China (NW) (Figure 1). Criteria governing the
division of these regions and the predominant functions of reservoirs in each region are shown in Text S1 in
Supporting Information S1.

2.3. Sentinel‐1 SAR Data Preprocessing

The European Space Agency's (ESA) Sentinel‐1 Earth Observation Mission comprises two satellites, namely
Sentinel‐1A and Sentinel‐1B. Sentinel‐1A was successfully launched in April 2014 and continues to operate
properly. In contrast, Sentinel‐1B, launched in April 2016, ceased operations in January 2022. During the period
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spanning January 2017 to December 2021, both Sentinel‐1A and Sentinel‐1B consistently acquired high‐quality
C‐band SAR images, resulting in an impressive observation frequency of four to five times per month. Conse-
quently, we designated these 60 months as our study periods.

Vertical‐vertical (VV) and vertical‐horizontal polarized backscatters retrieved in the in the Interferometric
Wideswath mode are readily available as Ground Range Detected images through the Google Earth Engine
(GEE). These images have undergone a series of essential preprocessing steps, including thermal noise removal,
radiometric calibration, and basic terrain correction. To further refine the calibration of these images, we executed
border noise removal, mono‐temporal Lee‐Sigma speckle filtering (Lee et al., 2009), and radiometric terrain
flattening (Mullissa et al., 2021; Vollrath et al., 2020). After all these calibrations, the radar backscatter can be
provided as gamma‐naught (γ0), which has been recommended compared to the conventional sigma‐naught
(Small, 2011).

After the normalization process, the co‐polarized backscatters exhibit less disturbance from variations in
incidence angle (Shamshiri et al., 2022). In contrast, cross‐polarized backscatters still show significant var-
iations with changing incidence angles, often resulting in disruptive stripes within the imagery (Feng
et al., 2021; Shamshiri et al., 2022). Consequently, we exclusively relied on VV‐polarized backscatters for
our inundated probability predictions. Since wind or rainfall‐roughened water surfaces can be dominated by
surface scattering instead of specular reflection, leading to elevated backscatters comparable to those from
land areas (S. Li et al., 2018), we should exclude SAR observations on potential windy days to better
distinguish between water and land areas (Gulácsi & Kovács, 2020). Thus, for each pixel, encompassing both
water and land, we computed the lower quantiles (25%) of all VV backscatters in a month. Considering there
are typically four to five Sentinel‐1 observations per month, the lowest quantiles represent either the lowest or
the average between the lowest and the second lowest retrievals for each month. Examples of monthly
composites of the processed VV‐polarized backscatters (γ0) in China are shown in Figure S2 in Supporting
Information S1. These monthly composites were resampled to 30 m resolution to align with the resolution of
JRC and GLAD data.

Figure 1. Spatial distribution of 785 large reservoirs in China examined in this study (background map showsMulti‐Error‐Removed Improved‐Terrain‐Digital Elevation
Model).
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2.4. Satellite Altimetry and DEM Data Preprocessing

Obtaining accurate reservoir hypsometry relationship is pivotal for estimating water storage changes based on
monthly inundated areas. Satellite altimetry data emerge as a primary choice for this purpose. During our study
period from 2017 to 2021, active LiDARmissions in operation included ICESat‐2 (Ice, Cloud, and land Elevation
Satellite‐2) and GEDI (Global Ecosystem Dynamics Investigation), while radar altimetry data were

Figure 2. Conceptual diagram of this study (each step corresponds to a subsection). JRC, Joint Research Center (JRC)'s global surface water dynamics data set; GLAD,
Global Land Analysis and Discovery team's global surface water dynamics data set; SVM, Support Vector Machine classification model; SLM, Shape Language
Modeling fitting algorithm.
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predominantly sourced from missions such as CryoSat‐2, Jason‐2, Jason‐3, SARAL, Sentinel‐3A, and 3B.
Among these missions, CryoSat‐2, ICESat‐2, and GEDI stood out due to their distinctive advantages. CryoSat‐2,
launched by ESA in April 2010, boasts a minimal orbital gap, with an equatorial gap of only 7.5 km, allowing for
the observation of a greater number of reservoirs. However, this advantage is balanced by a longer revisit period
of 369 days (L. Jiang et al., 2017; X. Li et al., 2019). ICESat‐2, a NASA endeavor launched in September 2018, is
equipped with a single‐photon LiDAR system known as “ATLAS,” capable of emitting six laser beams with a
narrow footprint diameter of only 17 m. This configuration facilitates high‐accuracy surface water level retrieval
over numerous relatively small water bodies (Cooley et al., 2021; Markus et al., 2017). GEDI, launched in
December 2018 to the International Space Station, was primarily designed for observing forest canopy height but
can also provide high‐quality surface water level measurements (Fayad et al., 2020).

In our analysis, we selected specific data sets to harness the potential of these missions, including the CryoSat‐2
Consolidated Level 2 Geophysical Data Record (GDR) (ESA, 2019), ICESat‐2 L3A Along Track Inland Surface
Water Data (ATL 13) V005 product (Jasinski et al., 2021), and the “elev_lowestmode” band from GEDI L2A
Raster Canopy Top Height Version 2, which are available on the GEE (see Figures S3a and S3b in Supporting
Information S1 for some examples of images). Our approach involved determining the monthly minimum
inundated extent within each reservoir, as detailed in Section 3.1. We then extracted all CryoSat‐2, ICESat‐2, and
GEDI measurements corresponding to these inundated pixels. For each reservoir, we applied the concentrated
Probability Density Function (PDF) methodology (Z. Liu et al., 2019) to remove outliers and compute a robust
estimate of the monthly mean water level. Subsequently, ICESat‐2 and GEDI measurements underwent analo-
gous processing. Figures S3c–S3f in Supporting Information S1 exhibit histograms of monthly ICESat‐2 and
CryoSat‐2 altimetry data acquired in the Three Gorges Reservoir before and after performing the data filtering
using the PDF method.

While other radar altimetry missions, including Jason‐2 and 3, SARAL, Sentinel‐3A, and 3B, feature larger
orbital gaps and consequently cover fewer inland water bodies, they still contribute valuable altimetry data for
certain reservoirs that CryoSat‐2, ICESat‐2, and GEDI may not have accessed. To ensure the reliability of water
level data retrieved from these missions, we employed data products compiled by external research institutes or
organizations. These data sets included the Global Reservoirs and Lakes Monitor (G‐REALM) (Birkett
et al., 2011, 2019), the Database for Hydrological Time Series of Inland Waters (DAHITI) (Schwatke
et al., 2015), Le laboratoire d'études en géophysique et océanographie spatiales (LEGOS) Hydroweb (Crétaux
et al., 2011), and the China Reservoir Water Level Data set, abbreviated as CRWLD (Shen et al., 2022). Utilizing
each of these data sets, we calculated monthly reservoir water levels as the medians of all high‐quality altimetry
records within each respective month.

In cases where satellite altimetry data lacked sufficient coverage for many reservoirs, the derivation of infor-
mation on reservoir hypsometry relationships relied on alternative data sources, notably DEMs. However, since
DEMs do not extend beneath the water surface, hypsometry relationships beneath the reservoir water level at the
time of DEM retrieval are unknown. For some reservoirs, the lowest water level during the study period may be
far below the reservoir water level at the time of DEM retrieval. To alleviate this limitation, we incorporated two
distinct DEM data sources acquired at different times to facilitate generation of reservoir hypsometry relation-
ships. The first one is the Multi‐Error‐Removed Improved‐Terrain (MERIT) DEM, an enhanced version of the
Shuttle Radar Topography Mission (SRTM) DEM referencing the year 2000 (Yamazaki et al., 2017). The second
one is the Copernicus DEMs, which is developed by ESA based on observations from twin radar satellites,
Tandem‐X and TerraSAR‐X, during the period spanning 2011–2015 (ESA, 2021).

2.5. Other Data Sources

To validate the estimated monthly inundated areas and water storage changes of large reservoirs in China, we
collected daily records of reservoir water level and storage spanning from 2017 to 2021. These data were sourced
from authoritative entities such as the Ministry of Water Resources‐National Hydrological Information Center
(MWR‐NHIC, 2023) (http://xxfb.mwr.cn/sq_dxsk.html), the Yellow River Conservancy Commission
(YRCC, 2023) (http://61.163.88.227:8006/hwsq.aspx?), and various provincial hydrological information web-
sites (http://yzt.hnswkcj.com:9090/#/, http://www.schwr.com/article/45, http://113.57.190.228:8001/web/
Report/BigMSKReport). For our validation data set, we compiled water level data for 80 reservoirs where
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monthly inundated areas could be estimated using our method. The locations of these validation reservoirs are
depicted in Figure S4 in Supporting Information S1.

For comparison, we evaluated the quality of two global‐scale data sets on monthly inundated areas of reservoirs:
the Global Lake Evaporation Volume data set (GLEV) (G. Zhao et al., 2022) and the Global Reservoir Surface
Area Data set (GRSAD) (G. Zhao & Gao, 2018). GLEV integrates annual maximum and minimum areas of water
bodies with multi‐year averaged intra‐annual variations in inundated areas. In contrast, GRSAD establishes a
threshold water occurrence based on available observations and fills missing data subsequently. Both data sets
utilize Landsat data exclusively and cover the period from 1985 to 2018.

Additionally, we assessed the Reservoir data set in China (Res‐CN), a multi‐sensor approach‐based data set
encompassing monthly inundated areas and water storage changes for most reservoirs in China (Shen
et al., 2023). Res‐CN refines the GRSAD algorithm (Donchyts et al., 2022) by incorporating improvements and
include data from both Landsat and Sentinel‐2 images from 2017 to 2021. Water storage changes in Res‐CN are
estimated using satellite altimeter data from Sentinel‐3A, Sentinel‐3B, Jason‐3, ICESat‐2, CryoSat‐2, and
SARAL/AltiKa, as well as DEM data (Shen et al., 2023).

To conduct attribution analysis on the estimated reservoir water storage changes, we utilized the Global Flood
Awareness System (GloFAS) version 4.0 data set provided by the European Center for Medium‐Range Weather
Forecasts (Grimaldi et al., 2022a) to estimate monthly natural discharge. GloFAS version 4.0 integrates 0.05°
resolution inputs with the HTESSEL land surface model and the LISFLOOD hydrological and channel routing
model (Alfieri et al., 2020; Harrigan et al., 2020). The utilization of different data sources in this study is
summarized in Figure S5 in Supporting Information S1.

3. Methods
The developed methodology can be separated into five steps (Figure 2). For the first two steps, we combined
optical remote sensing data with SAR data to retrieve monthly inundated areas in 721 out of 785 large reservoirs
in China. For the third step, we utilized multisource hypsometry relationships to transform monthly inundated
areas into water storage change estimates in 662 large reservoirs. For the last two steps, we performed data
validation, inter‐comparison as well as attribution analysis of reservoir water storage changes.

3.1. Identification of Monthly Inundated and Dry Pixels Using Optical Remote Sensing Data

We categorized all pixels within the potential extent of each reservoir as “reservoir pixels.” For a given reservoir
pixel in a specific month, it was classified as either inundated or dry based on the conditions outlined in Figure 3,
utilizing either the JRC or GLAD data sets. To establish these conditions, including determining the thresholds,
we analyzed JRC and GLAD's annual or monthly surface water maps (Figure S1 in Supporting Information S1).
For instance, we observed that due to the limitations of optical remote sensing in detecting frozen water bodies,
particularly those covered by snow, certain reservoirs (e.g., Xiangyangshan Reservoir in northeast China) showed
pixels labeled with either no information or a water percent (indicating inundation probability) of less than 25%
(mostly 0%) during winter according to GLAD's monthly maps (Figure S6a in Supporting Information S1). This
designation of all pixels as dry does not align with reality. Hence, considering the annual mean inundation fre-
quency values in GLAD's annual maps becomes crucial. Among these pixels, only those with an annual mean
inundation frequency below 5% could be reliably identified as dry pixels. These few pixels were typically located
around the boundary of the reservoir (Figure S6b in Supporting Information S1). In China, the frozen period of
reservoirs, and even lakes, rarely lasts for half a year (Ruan et al., 2020; Q. Yang et al., 2019). Assuming there is a
pixel in a reservoir that is frozen for half the year, its inundation probability is assigned a value of 0 throughout the
frozen period. Then, if the reported annual water percent is 5%, the average observed inundation probability
during non‐frozen seasons should be approximately 10%. Even if the cloud frequency during the non‐frozen
season is twice that during the frozen season, which is uncommon in China (Xiao et al., 2018), the average
observed inundation probability during non‐frozen seasons should still be 20%. Accordingly, the likelihood that
the real inundation probability in a frozen month is higher than 50% is expected to be very low.

However, relying solely on the annual water percentage is also unreliable, as some pixels may have a very low
annual water percentage according to GLAD, but during specific months of that year, the predicted inundation
probability can be considerably high (Figures S6c and S6d in Supporting Information S1). Therefore, in addition
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to the annual water percent, we have also included the monthly water percentage data reported in the GLAD data
set for consideration. For a pixel that is not covered by clouds in a specific month, only if the reported monthly
inundation probability is lower than 25% and at the same time the mean inundation frequency for that year is
below 5% can it be classified as a high‐confidence dry pixel. To sum up, this study uses both monthly inundation
probability maps and annual mean inundation frequency maps to ensure a higher accuracy and reliability of the
reference samples.

As illustrated in Figure 3, the identification based on GLAD is independent from that based on JRC, implying that
certain pixels may be classified as inundated pixels by GLAD but as dry by JRC, and vice versa.

3.2. Monitoring Monthly Inundated Areas of Reservoirs Using SAR Data

The discrepancies in SAR backscatters between water and land can vary significantly among different reservoirs
and seasons (Z. Jiang et al., 2021). To address this issue, we gathered information on inundated or dry reservoir
pixels identified by the GLAD or JRC data sets for each reservoir and specific month. We then collected VV‐
polarized backscatters corresponding to these identified pixels. While optical remote sensing‐based surface
water identifications are generally more accurate, SAR backscatters are available across a broader range of lo-
cations and times. Consequently, we employed the optical remote sensing‐based inundated and dry status as the
training targets and VV backscatters as predictors. Given the 785 large reservoirs, 12 months, and two optical
remote sensing‐based training targets (GLAD‐based identification results and JRC‐based identification results),
we compiled 18,840 (785 × 12 × 2) sets of training samples.

To ensure unbiased predictions (refer to Text S2 in Supporting Information S1 for detailed explanations), we
maintained an equal number of inundated and dry pixels in each set of training samples. Specifically, for a given
reservoir and month, if the count of inundated pixels identified by GLAD or JRC (referred to as No.inu) was lower
than the count of dry pixels (No.dry), we randomly selected No.inu dry pixels from all dry pixels and combined
them with all the inundated pixels to form the training sample set.

In instances where the minimum count between monthly No.inu and No.dry within a reservoir dropped below 50,
we refrained from predicting the inundated or dry status for the reservoir's pixels during the corresponding month
each year. Otherwise, we trained ten‐fold support vector machine (SVM) models to predict the inundation

Figure 3. Identification of monthly inundated or dry reservoir pixels by using the Joint Research Center (JRC) and Global
Land Analysis and Discovery (GLAD) data sets, respectively.
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probability for each reservoir pixel, computed as the mean value of the 10 models' simulated results. Here, SVM
serves as a supervised classification model, adept at identifying the best thresholds or a hyper‐plane to separate
two classes by maximizing the functional margin between the decision plane and the neighboring training data
points (C.‐C. Chang & Lin, 2011). SVM has been widely used in SAR‐based surface inundation mapping
(Aristizabal et al., 2020; Mountrakis et al., 2011).

The term “ten‐fold” means that we partitioned the training data into 10 subsets, employing nine for training while
reserving one‐tenth for testing each time, and repeated this procedure 10 times to derive 10 distinct models. Ten‐
fold cross‐validation stands as a dependable method for assessing machine learning model accuracy (Wong &
Yeh, 2020). However, if the sample size for a class falls below 50, during ten‐fold cross‐validation, the average
number of data points available for testing the omission or commission error of each model will be less than five,
resulting in high uncertainty in the model's accuracy assessment. By setting this threshold to 50, we could
generate 9,379 sets of ten‐fold SVMmodels when using GLAD‐based identification results as training targets, as
well as 9,378 sets of ten‐fold SVM models when using JRC‐based identifications as training targets. Each set
corresponds to a specific month and a reservoir. The total number accounts for 99.6% of the potential number,
which is 18,840. Hence, setting the threshold at this level minimizes the number of reservoirs whose monthly
inundated areas remain irretrievable compared to higher values.

After calculating the producer's accuracy (PA) and user's accuracy (UA) for each set of models based on the mean
omission and commission errors of 10 individual models, SVM model sets were deemed of high quality if they
met the following criteria: (a) PA + UA ≥ 180% and (b) |PA − UA| ≤ 10% (Bastarrika et al., 2011; Y. Wang
et al., 2023). Conversely, lower quality model sets were discarded.

For each reservoir, in months with available inundation probability predictions, we calculated the inundated area
by summing the inundation probabilities of reservoir pixels. We applied the “3σ principle” to detect and remove
outliers in the resulting time series of inundated areas. Subsequently, we employed a Gaussian filter with a 5‐
month window size to smooth the time series. These steps were tailored for reservoirs where the simulation
accuracy of inundation probability in certain months was limited. For a small subset of reservoirs with at least
three consecutive months lacking valid predictions, the Gaussian smoother applied in this study could not produce
a complete time series of monthly inundated areas.

To sum up, by separating SVM model training and simulations by month, screening for high‐quality SVM
models, and performing temporal filtering, we can alleviate the issue of low‐quality inundation area simulations
in some specific months (e.g., frozen months) caused by inaccurate optical‐based reference samples.

The next step involved calibrating the maximum and minimum inundated areas of each reservoir. We intro-
duced a 300 m buffer around each reservoir's extent (refer to Text S3 in Supporting Information S1 for detailed
explanations) and determined the annual permanent and seasonal surface water areas within the entire extent
using optical images (from the GLAD and JRC data sets). After calculating the minimum and maximum
inundated areas for each reservoir, we used this information to linearly adjust the fluctuations in monthly
reservoir inundated areas. Notably, we did not apply the buffer before this step (i.e., in the simulation of pixel‐
scale inundated probability using SAR backscatters), as the presence of wetlands and paddy fields within the
additional buffer areas could disrupt the seasonal variation of reservoir inundated area estimates retrieved from
SAR backscatters. However, this calibration is also essential because the shapefiles of some reservoirs reported
in the CRD are likely too small to cover all the inundated pixels in these reservoirs when the water level is high.
For example, the actual maximum inundated area of the Nuozhadu Reservoir in SW China is approximately
320 km2 (Do et al., 2020; Y. Wang et al., 2023). However, the total area of the shapefile for this reservoir in the
CRD is only 300 km2.

Subsequently, we computed the R2 values between each reservoir's monthly inundated area estimates over the
period 2017–2021 when the GLAD data set was used as the training target and when the JRC data set was
employed as the reference. If the R2 reached 0.5, we calculated the mean of these two estimates (abbreviated as
“SAR + JRC” and “SAR + GLAD”) as the final estimate. Otherwise, we selected the better estimate by
comparing the numbers of valid monthly SVM models when using GLAD and JRC data as training targets,
along with the mean overall accuracy of all 12 models if the numbers of valid models were equal. Uncertainties
in the monthly inundated areas were computed following the method outlined in Text S4 in Supporting
Information S1.
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3.3. Monitoring Monthly Storage Changes of Reservoirs by Incorporating Multisource Hypsometry
Relationships

Initially, we conducted regression analyses using monthly water levels derived from diverse satellite altimetry
data sources, that is, G‐REALM, DAHITI, Hydroweb (collectively abbreviated as GDH), ICESat‐2, CryoSat‐2,
GEDI, and CRWLD, against estimated monthly inundated areas. Utilizing the Shape Language Modeling (SLM)
algorithm (D'Errico, 2023), we fitted the hypsometry relationship, incorporating values beneath the lowest
satellite‐observed water level and above the highest satellite‐observed water level, subject to specific conditions.
These conditions comprised: (a) the variation range of inundated areas in months with altimetry data exceeding
half of the total variation range of the inundated area during 2017–2021; (b) the presence of a significant cor-
relation (p < 0.05, sample size ≥5) between available monthly water level data and corresponding inundated area
estimates. We opted for the SLM fitting algorithm due to its utilization of least squares splines, facilitating the
imposition of monotonic constraints on the fitted hypsometry relationship (D'Errico, 2023). SLM fitting
encompassed both a monotonous cubic function (without knots) and a model featuring a knot in the middle, with
preference given to the model exhibiting the higher R2 value. To ensure the reliability of hypsometry relation-
ships, we retained only the SLM fittings with an R2 exceeding 0.5.

Subsequently, we employed Copernicus DEM data to derive reservoir hypsometry relationships. This process
entailed extracting DEM values within the reservoir's extent to estimate the reservoir water level at the time of
DEM retrieval, identified as the mode of these elevation values (referred to as the reference water level). If the
fraction of pixels with elevations below the reference water level was less than 10%, indicating satisfactory DEM
data quality (confidence ≥90%), we calculated the reservoir's reference inundated area as the total area of pixels
with elevations equal to or below the reference water level. We then utilized the SLM algorithm to fit the cu-
mulative area curve of elevation values above the reference water level. The fitted curve represents the cumulative
land area as elevation increases, and corresponds to the cumulative inundated area as the water level rises. If the
difference between the reference inundated area and the minimummonthly inundated area during 2017–2021 was
smaller than that between the maximum monthly inundated area and the reference area, the fitting model was
anticipated to effectively predict variations in water level when the inundated area fluctuated between the
minimum monthly inundated area and the reference inundated area. Thus, the hypsometry relationship could be
established.

We also incorporated the SRTM DEM‐based MERIT DEM to estimate reservoir hypsometry relationships. This
process entailed segregating elevation data for inundated and dry pixels using the SRTM Water Body Data
Shapefiles and Raster Files (SRTMSWBD v003) (NASA, 2013), and then removing elevation values that are
lower than or equal to the elevation of the water surface. An example of MERIT‐DEM data with inundated pixels
removed around the Three Gorges Reservoir is shown in Figure S7 in Supporting Information S1. Following this,
we conducted quality checks and applied a similar algorithm as used with the Copernicus DEM to fit the reservoir
hypsometry relationship based on the MERIT DEM.

Using hypsometry relationships derived from various sources, we converted monthly reservoir inundated areas
into water level changes. The water storage change (∆Vr,m) in reservoir r from the previous month (m − 1) to the

current month (m) was calculated using the formula: ∆Vr,m = (Hr,m − Hr,m− 1) ×
Ar,m− 1+Ar,m+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Ar,m− 1×Ar,m

√

3 , where A
represents the inundated area, and H represents the water level (Taube, 2000). Estimates where the range of the
estimated water storage variation in a reservoir exceeded 110% of its total storage were considered unconvincing,
and the corresponding hypsometry relationship estimates were discarded.

Validation against in‐situ measurements of reservoir water storage changes (see Section 3.4 for methods)
indicated that the satellite altimetry‐based hypsometry relationships generally outperformed DEM‐derived
hypsometry relationships, with the MERIT DEM being more accurate than the Copernicus DEM (Sec-
tion 4.2 provides the comparison results). To generate a robust estimate of reservoir water storage changes,
we employed the following approach: if we had at least two hypsometry relationships derived from various
satellite altimetry data, we adopted the median of the corresponding water storage change estimates. If a
MERIT DEM‐based hypsometry relationship was also unavailable, we incorporated the estimate derived
using the Copernicus DEM. Uncertainties of monthly water storage changes were calculated following Text
S4 in Supporting Information S1.
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3.4. Validation and Inter‐Comparison

To validate the estimated inundated areas, we calculated the Spearman Correlation Coefficient (CC) between the
estimated inundated areas and the in‐situ water levels at 80 large reservoirs. Among these reservoirs, 78 also had
water storage data available. Thus, we assessed the accuracy of the estimated reservoir water storage changes by
comparing them to the in‐situ water storages at these 78 reservoirs. For this comparison, we used both the co-
efficient of determination (R2) and the relative root mean square error (rRMSE), which is the ratio of RMSE to the
mean reservoir water storage.

For inter‐comparison, we also validated the inundated area estimates of Chinese large reservoirs in both the
GLEV and GRSAD data sets, as well as the reservoir inundated area and water storage change estimates in the
Res‐CN data set.

3.5. Attribution Analysis of Reservoir Water Storage Changes

Reservoir water storage changes primarily stem from two key factors: natural inflow and anthropogenic in-
fluences such as outflow control, water withdrawal, and water diversion. Natural inflow is influenced by several
factors, including precipitation, snow or ice melt, evapotranspiration, and seepage within the upstream watershed
of the reservoir. Our method involved extracting the maximum discharge value reported by the GloFAS data set
within each reservoir's extent to represent the natural inflow into the reservoir. Subsequently, we aggregated daily
inflow data to compute monthly totals. The variation in reservoir total water storage in each region (refer to
regional classification in Figure 1) that cannot be explained by natural inflow changes could be mainly attributed
to anthropogenic impacts. Although currently, there are no data providing detailed water management and
withdrawal information for various large reservoirs throughout China (Dong et al., 2022; Qi et al., 2021), we
attempted to justify our inferences by referring to published literature documenting basic characteristics (e.g.,
impoundment time and major functions) of some typical large reservoirs in different regions. See Section 5.2 and
Text S1 in Supporting Information S1.

4. Results
4.1. Quantity and Quality of Estimated Reservoir Monthly Inundated Areas and Water Storage Changes

Variations in the producer' accuracy (PA) and UA metrics across all SVM models for estimating monthly
inundated areas in reservoirs (Figure 4) reveal that when employing SAR backscatters in combination with the
GLAD data set, the medians of PA consistently ranged from 0.97 to 0.98. These values were notably higher
during the summer months but exhibited a slight decrease in the winter season. Concurrently, the medians of UA
consistently surpassed 0.99 throughout the entire year. Conversely, when using surface water identifications
based on the JRC data set as the training target, the medians of both PA and UA for all large reservoirs were
marginally lower. Median PA values ranged from 0.93 to 0.95, depending on the season, while median UA values
ranged from 0.96 to 0.97. These results underscore the overall high accuracy achieved by SVMmodels, indicative
of the reliability of inundated area estimation, particularly during non‐frozen seasons.

Among the 785 large reservoirs in China, our method successfully obtained monthly inundated area estimates for
719 and 678 reservoirs when utilizing the GLAD and JRC data sets as references, respectively. In total, we
estimated monthly inundated areas for 721 large reservoirs in this study, representing 95% of the combined
storage capacity of all 785 reservoirs. Notably, 628 reservoirs exhibited an R2 value exceeding 0.5 when
comparing estimates derived from SAR + GLAD with those from SAR + JRC, indicating higher‐quality
inundated area estimates for these reservoirs, which collectively account for 82% of the total storage capacity
of all large reservoirs.

Out of the 721 large reservoirs under monthly inundated area monitoring, hypsometry relationship information
was successfully obtained for 662 reservoirs. The sources of hypsometry relationship data included the GDH data
set, ICESat‐2, CryoSat‐2, GEDI, CRWLD, MERIT DEM, and Copernicus DEM, providing hypsometry rela-
tionship estimates for 26, 148, 68, 54, 94, 627, and 270 reservoirs, respectively. As illustrated in Figures 6c and
6d, satellite altimetry data‐derived hypsometry relationships generally outperformed DEM‐based hypsometry
relationships. Among different DEM‐based hypsometry relationships, estimates derived from the MERIT DEM
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generally exhibited higher reliability compared to those derived from Copernicus DEM data. Therefore, based on
the origin of the hypsometry relationship data, we categorized the quality of reservoir hypsometry relationship
estimates into seven levels (Table 1). Notably, Q1 represents the highest quality level, while Q1 through Q4 are
designated as high quality. Reservoirs classified under Q5 through Q7 are associated with just one hypsometry
relationship estimate, consequently considered to have lower‐quality estimates.

As shown in Table 1, we successfully acquired high‐quality hypsometry relationship estimates for 395 reservoirs,
while 267 reservoirs were associated with lower‐quality hypsometry relationship data. Remarkably, 360 reser-
voirs boasted high‐quality estimates for both monthly inundated areas and reservoir hypsometry relationships
(Figure 5). While the proportion of reservoirs benefiting from high‐quality water storage change monitoring was
relatively modest (46%), these reservoirs collectively represent a substantial 70% of the total storage capacity
across all large reservoirs in China.

4.2. Validation of Monthly Inundated Areas and Water Storage Changes in Reservoirs

Among the 80 validation sites illustrated in Figure S4 in Supporting Information S1, the Spearman CC between
the estimated monthly inundated areas and the measured water levels exceeded 0.7 for 72 reservoirs. As shown in
Figure 6a, the Spearman CC for the monthly inundated areas estimated in this study reached 0.85± 0.13 (median:
0.89). Moreover, our approach consistently achieves high‐accuracy monthly inundated area monitoring
(CC > 0.8) across reservoirs of varying sizes (Figure 6b).

Figure 4. Producer's and User's Accuracy (PA and UA) of monthly support vector machine models for all 785 reservoirs
when an equal amount of inundation and dry status identifications were included as training targets. These accuracy
estimates were derived from the testing data during the 10‐fold cross validation. Synthetic aperture radar (SAR) + Joint
Research Center (JRC) and SAR + Global Land Analysis and Discovery (GLAD) denote scenarios in which surface water
identifications based on the JRC and GLAD data sets were utilized, respectively.

Water Resources Research 10.1029/2023WR036450

CHEN ET AL. 12 of 28

 19447973, 2024, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
036450 by N

anjing Institution O
f G

eo, W
iley O

nline L
ibrary on [14/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Regarding the data comparison in Figures 6c and 6d, satellite altimetry data emerge as superior to DEM data in
estimating reservoir hypsometry relationships. However, the availability of adequate altimetry records during the
study period is limited. On the other hand, hypsometry relationships derived from the MERIT DEM generally
exhibits higher reliability than estimates based on the Copernicus DEM. After combining hypsometry relationship

Figure 5. Quality assessment of monthly inundated areas and water storage changes across 785 large reservoirs in China. The numbers in the legend represent the count
of reservoirs falling into each category.

Table 1
Quality Category of Hypsometry Relationships for 662 Reservoirs

Quality category Description Number of reservoirs

Q1 Hypsometry relationships can be derived from at least two different satellite altimetry
data sources

101

Q2 Hypsometry relationships were derived from one satellite altimetry data source and
MERIT‐DEM

112

Q3 Hypsometry relationships were derived from one satellite altimetry data source and
Copernicus‐DEM

6

Q4 Hypsometry relationships were derived from both MERIT‐DEM and Copernicus‐DEM 176

Q5 Hypsometry relationships were derived from only one satellite altimetry data source 16

Q6 Hypsometry relationships were derived only from MERIT‐DEM 244

Q7 Hypsometry relationships were derived only from Copernicus DEM 7
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data from different sources, our final estimates of monthly reservoir water storage changes achieve an R2 of
0.79 ± 0.18 (median: 0.86) and a rRMSE of 21% ± 14% (median: 18%).

4.3. Monthly Inundated Areas and Water Storage Changes of Large Reservoirs Across China

In Figures 7a and 7b and Figures S8a and S8b in Supporting Information S1, it is evident that the total inundated
area of the 721 large reservoirs in China exhibited a significant decrease (p < 0.01) at a rate of 153 ± 86 km2 per
year (0.6± 0.3% of the total reservoir area) during 2017–2019. Subsequently, it rebounded by 290± 197 km2 per
year (1.1± 0.7% per year, p< 0.01). The overall change over the entire study period is statistically non‐significant
(p= 0.06). Conversely, the total water storage of large reservoirs reduced by 14± 10 km3 (1.9± 1.4% of the total
storage capacity) in 2017, followed by a significant rise of 3.5± 2.6 km3 per year (1.5± 0.4% per year, p < 0.01).
Consequently, the total water storage increased at a rate of 2.3 ± 1.7 km3 per year (0.3 ± 0.2% per year, p = 0.01)

Figure 6. Validation results for monthly inundated area and water storage changes estimated in this study, alongside some
previous studies, at 80 reservoirs in China. (a, b) Spearman correlation coefficient (CC) for estimated monthly inundated
areas in relation to reservoir total storage capacity, including comparisons with the Global Lake Evaporation Volume data set
(GLEV), Global Reservoir Surface Area Data set (GRSAD), and Reservoir data set in China (Res‐CN) data sets. (c, d)
Coefficient of determination (R2) and relative root mean square errors (rRMSEs) for our monthly water storage change
estimates using various hypsometry relationship data sources and the monthly water storage change estimates in the Res‐CN
data set. In figure legends, “Combined” denotes the final result in this study by integrating all sources of reservoir
hypsometry relationships, with numbers in brackets indicating the validation set sizes.
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Figure 7.
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during the entire study period. There exists a discrepancy between the overall trend of inundated area and the trend
of water storage for all large reservoirs in China. However, for each individual reservoir, an expansion of the
inundated area must be accompanied by an increase in water storage. Therefore, these observations indicate that
shallower reservoirs in China were generally shrinking, while deeper ones were expanding. The increase in water
storage of deeper reservoirs exceeded the water storage decline in shallower reservoirs, while the inundated area
gains of deeper reservoirs were unable to offset the area shrinkage of shallower reservoirs. In each year, both the
inundated area and water storage of large reservoirs increase from May/June to October and then decline during
winter and spring.

In Northeast China (NE), large reservoirs witnessed an expansion in both inundated area and water storage, with
rates of 113 ± 20 km2 per year (2.9 ± 0.5% per year) and 3.2 ± 0.6 km3 per year (4.0 ± 0.8% per year) over the
entire study period. During 2018–2021, this expansion was particularly pronounced, reaching rates of
124 ± 26 km2 per year (3.1 ± 0.7% per year) and 3.6 ± 0.7 km3 per year (4.4 ± 0.9% per year). In each year, the
total water storage peaked in October, although the peak's prominence was much weaker in 2017 and 2021.
Conversely, the lowest reservoir water storage was often observed in February, except for 2019, when noticeable
water storage loss occurred between April and June (Figures 7c and 7d and Figures S8c and S8d in Supporting
Information S1).

In Eastern China (EA), the total inundated area exhibited a continuous reduction of 120 ± 45 km2 per year
(1.1 ± 0.4% per year) throughout the study period. Concurrently, total water storage decreased at a rate of
2.9 ± 0.9 km3 per year (1.3 ± 0.4% per year), largely offsetting the reservoir expansion observed in NE. In EA,
both the total inundated area and water storage reached their highest levels in October. However, during the first 3
years, a small peak was observed in March or April, which disappeared in 2020 and 2021 (Figures 7e and 7f and
Figures S8e and S8f in Supporting Information S1).

In the YR, large reservoirs experienced increases in both inundated area and water storage at rates of 50± 10 km2

per year (3.3 ± 0.6% per year) and 4.6 ± 0.9 km3 per year (6.9 ± 1.3% per year), respectively, during 2017–2018.
These trends remained stable thereafter (p ≥ 0.3). Over the entire study period, changes in reservoir inundated
area were statistically non‐significant (p = 0.7), while total reservoir water storage increased at a rate of
0.9 ± 0.4 km3 per year (1.3± 0.5% per year, p < 0.01). Intra‐annually, reservoir inundated area and water storage
exhibited two peaks, one in November and another in March–April, with the lowest values observed in July–
August (Figures 7g and 7h and Figures S8g and S8h in Supporting Information S1).

In Southwest China (SW), the total water storage of large reservoirs showed slight increases at rates of
1.5 ± 1.3 km3 per year (0.4 ± 0.4% per year, p = 0.03) during 2017–2021, while the inundated area remained
relatively stable (p = 0.39). However, in 2019, both the inundated area in June–September and water storage in
July–October were significantly lower than the multi‐year averages. In this region, the seasonal variations of
inundated area and water storage were consistent among different years, with peak values occurring in October–
November and trough values in May–June (Figures 7i and 7j and Figures S8i and S8j in Supporting Informa-
tion S1). Given that the storage capacity of local reservoirs accounts for 49% of the national total, the regional
seasonal variation pattern significantly influences that of the entire country.

Northwest China (NW) experienced continuous reservoir shrinkage over the study period (p < 0.01), with
declining rates of reservoir inundated area and water storage at 30 ± 6 km2 per year (2.3 ± 0.5% per year) and
0.4 ± 0.1 km3 per year (2.7 ± 0.7% per year), respectively. In each year, regional total water storage peaked in
October, while the valleys occurred in different months, ranging from January–February in 2017, 2018, and 2021
to June in 2020. Similarly, the total reservoir inundated area was highest in October but was typically at its lowest
from May–July (Figures 7k and 7l and Figures S8k and S8l in Supporting Information S1).

Additionally, monthly variations in inundated area and water storage for one typical large reservoir representing
each region (i.e., the Shuifeng Reservoir in NE, the Xinfengjiang Reservoir in EA, the Liujiaxia Reservoir in YR,

Figure 7. Monthly calculated (a, c, e, g, i, k) inundated area and (b, d, f, h, j, l) water storage changes of large reservoirs (a, b) in China and (c–l) in different regions of
China. Regions are classified as in Figure 1. The titles of each subfigure include the number and total inundated area or storage capacity of all regional large reservoirs,
with the numbers before the slashes indicating the number and total inundated area or storage capacity of the reservoirs for which inundated area or water storage
changes were calculated in this study. The shaded areas represent result uncertainties, with yellow, green, red, and blue indicating spring (March–May), summer (June–
August), autumn (September–November), and winter (December–February), respectively.
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the Wudongde Reservoir in SW, and the Xiaohaizi Reservoir in NW) are displayed in Figure S9 in Supporting
Information S1.

5. Discussion
5.1. Comparison With Existing Data Sets

The Spearman CC for the monthly inundated areas estimated in this study (0.85 ± 0.13, median: 0.89) is higher
than those of GLEV (0.39 ± 0.37, median: 0.44) and GRSAD data sets (0.69 ± 0.27, median: 0.81), and the
differences are both very significant (p < 0.01, Figure 6a). Our inundated area estimates are also significantly
(p = 0.04) superior to those in the Res‐CN data set, whose Spearman CC is 0.81 ± 0.16 (median: 0.85). While
GRSAD demonstrates relatively reliable estimates for very large reservoirs, its accuracy diminishes significantly
as reservoir size decreases (Figure 6b). Conversely, although Res‐CN predicts inundated area variations in res-
ervoirs smaller than 1 km3 with similar accuracy as this study, its accuracy over very large reservoirs are lower
compared to our data set (Figure 6b).

As shown in Figures 6c and 6d, the R2 values of reservoir monthly water storage changes predicted by Res‐CN
(0.64 ± 0.26, median: 0.68) are lower than this study (0.79 ± 0.18, median: 0.86), and the difference is very
significant (p< 0.01). The rRMSE of Res‐CNwater storage change data (0.19± 0.15, median: 0.14) is somewhat
lower than that of our estimates (0.21± 0.14, median: 0.18), yet the difference is not significant (p= 0.27). These
results suggest that our estimates of reservoir water storage changes are generally improved compared to Res‐CN,
although the incorporation of more satellite altimetry data (e.g., Sentinel‐3 and SARAL/AltiKa) and the manual
selection of altimetry records that are the most approximate to in‐situ measurements (Shen et al., 2023) have
probably ensured a better estimate of reservoir hypsometry relationships in Res‐CN. In addition, while Res‐CN
involves some medium/small‐sized reservoirs in China, 262 out of 785 large reservoirs in China are missing in
this data set, which are mainly distributed in northeast and western China (see Figure S10 in Supporting Infor-
mation S1). Water storage changes in only 462 large reservoirs have been provided by Res‐CN, compared to 662
large reservoirs in this study.

In general, the comparison with existing data sets suggests that our monthly inundated area retrieval achieved an
unprecedented accuracy. In terms of hypsometry relationship estimation, more high‐quality satellite altimetry
data sets (e.g., Sentinel‐3) should be included because DEM‐based hypsometry relationships often contain higher
uncertainty.

5.2. Potential Drivers of Reservoir Water Storage Changes Across China

This study has unveiled the monthly water storage changes in large reservoirs across China for the period 2017–
2021. As Figure 7 illustrates, both the inter‐annual and intra‐annual fluctuations of reservoir water storage exhibit
significant regional disparities within China. In this section, we delve into investigating the potential driving
factors behind the observed variations in reservoir water storage across different regions.

First, as indicated by the anomalies in natural inflow, illustrated in Figure S11 in Supporting Information S1, the
significant expansion of reservoirs in NE during 2017–2020 can be largely attributed to the lowest natural inflow
in 2017 and the subsequent surge in inflow during the summer of 2020. In NW, the inter‐annual variation in
natural inflow correlated well with changes in reservoir water storage. Therefore, the decrease in natural inflow in
NW was a major factor contributing to the decline in water storage in local reservoirs (Table 2). Notably, in NE
the fluctuations in reservoir water storage between July and October are significantly influenced by the cumu-
lative natural inflow during these months (Figure 8a). In NW it is the inflow from January to August that pre-
dominantly shapes regional reservoir water gains during this period (Figure 8e). It is important to acknowledge
that NW, characterized as the driest region in China, primarily relies on its reservoirs to supply irrigation water (S.
Li et al., 2024; Yu et al., 2017). Additionally, inflow rates into NE reservoirs are relatively modest, averaging
approximately 3 km3/year per reservoir, as opposed to the higher inflow rates estimated in southern regions
ranging from 6 to 25 km3/year per reservoir. Consequently, reservoirs in NW and NE were mainly built for water
storage and supply or hydropower production rather than flood control (see Text S1 in Supporting Informa-
tion S1), resulting in lower anthropogenic water releases to downstream rivers before rainy seasons (Dong
et al., 2022). The intra‐annual fluctuations in reservoir water storage in NE and NW are also significantly
influenced by natural inflow. In NE, the reduced seasonal variability in water storage during 2017 and 2021 can be

Water Resources Research 10.1029/2023WR036450

CHEN ET AL. 17 of 28

 19447973, 2024, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
036450 by N

anjing Institution O
f G

eo, W
iley O

nline L
ibrary on [14/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



attributed to lower inflow in summers and higher inflow in spring or fall. Notably, the spring drought in 2019
contributed to the lowest local reservoir water storage observed in June (Figure 9b). Similarly, in NW, the
continuous reservoir water storage loss from January to June in 2020 was primarily due to low natural inflow
(Figures 9i and 9j).

The natural inflow in EA did not experience significant changes (Table 2), suggesting that anthropogenic
factors (e.g., more water abstraction and impoundment of upstream reservoirs (X. Yang & Lu, 2014; X. Yang
et al., 2020)) played a dominant role in the significant decline in reservoir water storage in EA during 2017–
2021. In the YR, although both natural inflow and reservoir water storage exhibited significant trends over the
entire study period, water storage primarily increased during 2017–2018 when natural inflow was relatively
low. The impoundment completion of the Longyangxia Reservoir over this period (S. Zhao et al., 2022) is
presumed to be the primary cause. In both EA and the YR, the reservoir water storage changes from June to
September and from March to June exhibit negative correlations with the corresponding variations in natural
inflow (p < 0.05, Figures 8b and 8c). These correlations suggest that the outflow from reservoirs during
or before the rainy season is properly adjusted based on the inflow data to mitigate downstream flooding risks
and ensure the structural integrity of the dams (refer to Text S1 in Supporting Information S1)
(Dong et al., 2022; P. Liu et al., 2015; X. Wang et al., 2011; L. Yang et al., 2021). Intriguingly, following the
rainy season, due to restricted outflow, a significant positive impact of natural inflow re‐emerges in EA
(Figure 8b). Additionally, we observed that during 2017–2019, the spring natural inflow in EA largely
contributed to the height of the reservoir water storage peak in March–May (Figures 8b, 9c, and 9d). However,
this peak disappeared after 2019, suggesting an intensified anthropogenic water release before the rainy season.
Finally, the double peak pattern in the seasonal variation of YR reservoirs is likely due to human control
measures for ice‐jam prevention (J. Chang et al., 2016).

The significant increase in reservoir water storage in SW during 2017–2021 (Table 2) could be mainly
attributed to the impoundment of large hydropower stations (Dai et al., 2023). In addition, the reservoir water
storage changes during different seasons are not significantly correlated with the corresponding variations in
natural inflow (Figure 8d). This phenomenon suggests that reservoirs in the southwest region are subject to
rigorous management practices, potentially oriented toward power generation and flood control purposes
(Dong et al., 2022; Fang & Deng, 2011; P. Liu et al., 2015; X. Wang et al., 2011). However, a summer
drought in 2019 led to a significant decline in reservoir water storage in SW from July to October. This
decline was offset by the high natural inflow in 2020. Obviously, in addition to anthropogenic factors,
variations in meteorological conditions also play a significant role in the interannual variation in reservoir
water storage in SW.

In conclusion, natural inflow significantly impacts both the inter‐annual and intra‐annual variations of reservoir
water storage in NE and NW. However, anthropogenic factors such as outflow control and water withdrawal for
multiple purposes dominate the reservoir water storage changes in EA, YR, and SW, particularly during or before
rainy seasons. Our findings underscore the intricate interplay between natural and anthropogenic factors in
shaping the reservoir water storage dynamics across China's diverse regions during the study period.

Table 2
Trends in Reservoir Water Storage Anomalies and Natural Inflow Anomalies Across Various Regions of China From 2017 to
2021

Region Trend in water storage anomalies Trend in natural inflow anomalies

NE 3.2 ± 0.6 km3/year (4.0 ± 0.8%/year)** 24.4 ± 16.2 km3/year (11.6 ± 7.7%/year)**

EA − 2.9 ± 0.9 km3/year (− 1.3 ± 0.4%/year)** − 5.0 ± 91.2 km3/year (− 0.3 ± 4.7%/year)

YR 0.9 ± 0.4 km3/year (1.3 ± 0.5%/year)** 46.2 ± 18.7 km3/year (11.1 ± 4.5%/year)**

SW 1.5 ± 1.3 km3/year (0.4 ± 0.4%/year)* 123.2 ± 132.0 km3/year (2.6 ± 2.8%/year)

NW − 0.4 ± 0.1 km3/year (− 2.7 ± 0.7%/year)** − 7.8 ± 4.8 km3/year (− 6.3 ± 3.9%/year)**

China 2.3 ± 1.7 km3/year (0.3 ± 0.2%/year)* 181.0 ± 204.4 km3/year (2.5 ± 2.8%/year)

Note. Trends with one and two asterisks are statistically significant at the 95% and 99% confidence level, respectively.
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Figure 8.
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5.3. Spatiotemporal Heterogeneity of the Threshold SAR Backscatter for Identifying Inundated/Dry
Status in Reservoirs

Here, we present the seasonal variation of the relationship between the estimated inundation probability and the
Sentinel‐1 VV‐polarized backscatter (γ0) across the largest reservoirs in different regions of China. As shown in
Figure 10, there are significant spatial and temporal variations in the threshold VV backscatter, and the seasonal
variation pattern of the threshold VV backscatter differs among different reservoirs. This result reveals high
spatiotemporal heterogeneity in the threshold Sentinel‐1 SAR backscatter for identifying inundated or dry status
in reservoirs, highlighting the importance of developing regional/reservoir‐ and monthly‐specific machine
learning models. Additionally, according to Figure 10, whether the JRC or GLAD‐based inundation status
identifications are used as the training target will only slightly alter the monthly VV backscatter thresholds in most
reservoirs, suggesting that our method is generally robust and that the estimated threshold VV backscatter values
are reliable.

5.4. Limitations and Prospects

While the integration of SAR with optical remote sensing in this study has facilitated the monthly monitoring of
inundated areas at 721 large reservoirs across China, it is essential to acknowledge certain limitations. The quality
of reservoir inundated area estimates can be influenced by the following factors: (a) Ice cover: freezing can
increase SAR backscatters in reservoirs, leading to lower accuracies in the SVM models during cooler seasons,
particularly in high‐altitude or high‐latitude regions like Northeast China (Figure 5); (b) Dry bare soil: dry and
bare soils show low SAR backscatters, which are similar to those of surface water (Liang & Liu, 2020),
contributing to lower accuracies in the SVM models during non‐growing seasons, typically cooler seasons in
China; and (c) Aquatic vegetation: the presence of emergent or floating aquatic vegetation in some reservoirs can
also affect the accuracy of inundated area identifications, particularly in warmer seasons (Pu et al., 2022). Ac-
cording to Figure S12 in Supporting Information S1, when the GLAD and JRC data sets are respectively used as
the training targets, approximately 4% and 7% of all 785 reservoirs have more than 1 month lacking high‐accuracy
SVMmodels during warmer seasons (May–October). In cooler seasons, the corresponding fractions are 10% and
16%, respectively. This result indicates that more reservoirs in China experience disturbances due to ice cover and
dry bare soil compared to disturbances caused by aquatic vegetation.

To improve the quantity and quality of monthly inundated area retrieval, the integration of optical remote sensing
data with higher temporal resolution (e.g., Moderate Resolution Imaging Spectroradiometer and Sentinel‐2) can
help distinguish between barren land and surface water on a monthly scale (Khandelwal et al., 2017; Tulbure
et al., 2022). However, accurately differentiating frozen waters and near‐shore aquatic vegetation from sur-
rounding ice/snow and vegetation remains a challenge (Alsdorf et al., 2007). Utilizing more advanced machine
learning techniques such as contextual complex Wishart classification (Goumehei et al., 2019) and deep con-
volutional neural networks (B. Liu et al., 2019) could be promising avenues for further enhancement.

On another note, the hypsometry relationship estimation in this study introduced more errors into the water
storage change estimates compared to the inundated area retrieval (Figure 6 and Figure S9 in Supporting In-
formation S1), primarily due to the limited availability of high‐quality satellite altimetry records over most
reservoirs. Notably, the hypsometry relationships of 59 out of 721 large reservoirs were not obtained. To reduce
the rRMSE of reservoir water storage to below 20%, it is crucial to have adequate satellite altimetry data for nearly
every reservoir (Figure 6d). Fortunately, this would be addressed by the newly launched Surface Water Ocean
Topography (SWOT) mission.

SWOT carries the Ka‐band interferometric SAR system “KaRIn,” which can provide 2D swath observations of
surface water level at approximately 50 m resolution, a significant improvement over the nadir‐pointing altimetry
sensors (Durand et al., 2010; Morrow et al., 2019; Munier et al., 2015). SWOT enables frequent visits to surface

Figure 8. Correlation coefficients (CC) between reservoir water storage and accumulated natural inflow. This figure presents CC matrices representing the relationships
between estimated reservoir water storage and accumulated natural inflow during different time periods, ranging from the “first month” to the “last month” within each
year. The matrices are divided into five subfigures, each corresponding to a distinct region in China (see Figure 1). Significant positive correlations (colored in red) at the
95% confidence level are denoted by one asterisk, while highly significant positive correlations (colored in red) at the 99% confidence level are indicated by two
asterisks. Similarly, significant negative correlations (colored in blue) at the 95% confidence level are marked with one asterisk, and highly significant negative
correlations (colored in blue) at the 99% confidence level are represented by two asterisks.
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Figure 9. Seasonal variations of (a, c, e, g, i) natural inflow and (b, d, f, h, j) reservoir water storage in each year during 2017–
2021 across different regions of China. The dashed lines represent the multi‐year averaged seasonal variations. Regional
classification in China is shown in Figure 1.
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Figure 10. Seasonal variation of the relationship between the estimated inundation probability and the Vertical‐vertical (VV)‐polarized backscatter (γ0) across the largest
reservoirs in different regions of China. Synthetic aperture radar (SAR)+ Joint Research Center (JRC) and SAR+Global Land Analysis and Discovery (GLAD) denote
scenarios in which inundation status identifications based on the JRC and GLAD data sets were utilized as training targets, respectively.
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water bodies on Earth, typically every 2–4 days, with a measurement error limited to only 10 cm (Biancamaria
et al., 2010). Moreover, SWOT's capability to capture inundated extents from its images will be less affected by
aquatic vegetation (Durand et al., 2010). Therefore, the integration of SWOT data in the near future promises to
significantly enhance hypsometry relationship estimation and water storage change monitoring for lakes and
reservoirs at large spatial scales.

Finally, some reservoirs, particularly those in the YR, may undergo silting and desilting processes (Zhang
et al., 2021), causing changes in reservoir hypsometry relationships. Future studies should pay particular attention
to hypsometry relationship estimation during different periods for these reservoirs to provide a more accurate
understanding of water storage changes.

6. Conclusion
In this study, we have significantly enhanced the monthly monitoring of inundated areas and water storage
changes in large reservoirs across China for the period 2017–2021, leveraging the potential of multisource remote
sensing data. We derived monthly inundated areas for 721 out of 785 large reservoirs in China, and estimated
monthly water storage changes at 662 reservoirs, encompassing a remarkable 93% of the total storage capacity of
all large reservoirs in China.

The Spearman CC between our estimated monthly inundated areas and the measured monthly mean water levels
at 80 large reservoirs reached 0.85 (mean) ± 0.13 (standard deviation), improved compared to existing studies.
Furthermore, we scrutinized the validation against in‐situ reservoir water storage, revealing an impressive R2 of
0.79 ± 0.18 and rRMSE of 21% ± 14% for our estimates of monthly reservoir water storage changes.

Our findings unveiled compelling insights into the seasonal dynamics of reservoir water storage across diverse
regions of China. We observed a consistent pattern of increasing water storage from May/June to November,
followed by a decline in winter and spring, primarily influenced by the stable seasonal variations in Southwest
China. However, other geographical regions displayed notably distinct seasonal variation patterns, which could
also undergo significant year‐to‐year variations. Our analysis further revealed that shallower reservoirs in China
were experiencing a decline, while deeper reservoirs exhibited expansion trends, leading to divergent trajectories
in the inundated area and water storage of large reservoirs. Specifically, Northeast China, the YR, and Southwest
China, where deeper reservoirs predominate, witnessed a significant rise in total water storage, whereas the
shallower reservoir‐dominated Eastern China and Northwest China reported declining water storage.

Our investigation into the influences on reservoir water storage dynamics illuminated distinct drivers across
different regions. In Northeast and Northwest China, variations in natural inflow were found to exert substantial
influence on both inter‐annual and intra‐annual reservoir water storage fluctuations. Conversely, anthropogenic
factors, particularly the regulation of outflow for flood control, hydropower generation, and ice‐jam prevention,
played a dominant role in shaping reservoir water storage dynamics in the YR, Eastern China, and Southwest
China.

In conclusion, our study represents a significant advancement in the monitoring and understanding of large
reservoir dynamics across China. The robust data sets generated, along with the insights gained, offer valuable
contributions to reservoir management, hydrological modeling, and the sustainable utilization of these critical
water resources in a rapidly changing world.

Conflict of Interest
The authors declare no conflicts of interest relevant to this study.

Data Availability Statement
Weare committed tomaking our calibrated geospatial data set covering all large reservoirs in China, alongwith the
estimatedmonthly inundated areas for 721 reservoirs andmonthlywater storage changes for 662 reservoirs, openly
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The data and codes utilized in this study have been sourced from publicly available data sets. Details are as
follows:

The Joint Research Center (JRC)'s global surface dynamics data set (Pekel et al., 2016) is available at: https://
global‐surface‐water.appspot.com/download, or https://developers.google.cn/earth‐engine/datasets/catalog/
JRC_GSW1_4_YearlyHistory?hl=en and https://developers.google.cn/earth‐engine/datasets/catalog/JRC_
GSW1_4_MonthlyHistory?hl=en.

The Global Land Analysis and Discovery (GLAD)'s global surface dynamics data set (Pickens et al., 2020) is
available at: https://glad.umd.edu/dataset/global‐surface‐water‐dynamics.

The China Reservoir Data set (CRD) data set (Song et al., 2022) can be accessed at: https://doi.org/10.5281/
zenodo.6984619.

The processed Sentinel‐1 SAR data are available on Google Earth Engine (Gorelick et al., 2017) at: https://de-
velopers.google.cn/earth‐engine/datasets/catalog/COPERNICUS_S1_GRD?hl=en.

The CryoSat‐2 Level 2 Geophysical Data Record (GDR) data is provided by European Space Agency
(ESA, 2019), and can be accessed at: ftp://science‐pds.cryosat.esa.int/.

ICESat‐2 L3A Along Track Inland Surface Water Data (ATL 13) V005 product (Jasinski et al., 2021) is available
at: https://nsidc.org/data/atl13/versions/5.

GEDI L2A Raster Canopy Top Height Version 2 (Dubayah et al., 2021) can be accessed on Google Earth Engine:
https://developers.google.cn/earth‐engine/datasets/catalog/LARSE_GEDI_GEDI02_A_002_MONTHLY?
hl=en.

Global Reservoirs and Lakes Monitor (G‐REALM) altimetry data (Birkett et al., 2011, 2019) can be downloaded
from: https://ipad.fas.usda.gov/cropexplorer/global_reservoir/.

The Database for Hydrological Time Series of Inland Waters (DAHITI) (Schwatke et al., 2015) is available at:
https://dahiti.dgfi.tum.de/en/.

The Le laboratoire d'études en géophysique et océanographie spatiales (LEGOS) Hydroweb data (Crétaux
et al., 2011) is available at: https://hydroweb.theia‐land.fr/.

The China Reservoir Water Level Data set (Shen et al., 2022) can be accessed at: https://doi.org/10.5281/zenodo.
7251283.

The Multi‐Error‐Removed Improved‐Terrain (MERIT) DEM data (Yamazaki et al., 2017) is available at: http://
hydro.iis.u‐tokyo.ac.jp/~yamadai/MERIT_DEM/ or https://developers.google.cn/earth‐engine/datasets/catalog/
MERIT_DEM_v1_0_3.

The Copernicus DEM data (ESA, 2021) is from: https://developers.google.com/earth‐engine/datasets/catalog/
COPERNICUS_DEM_GLO30 or https://portal.opentopography.org/raster?opentopoID=OTSDEM.032021.
4326.3.

The SRTMWater Body Data Shapefiles and Raster Files (SRTMSWBD v003) (NASA, 2013) is available from:
https://lpdaac.usgs.gov/products/srtmswbdv003/.

The in‐situ reservoir water level and water storage records were obtained from the Ministry of Water Resources‐
National Hydrological Information Center at: http://xxfb.mwr.cn/sq_dxsk.html (MWR‐NHIC, 2023), the Yellow
River Conservancy Commission at: http://61.163.88.227:8006/hwsq.aspx (YRCC, 2023), and various provincial
hydrological information websites, including: http://yzt.hnswkcj.com:9090/#/, http://www.schwr.com/article/45,
and http://113.57.190.228:8001/web/Report/BigMSKReport. For some websites, register is required to see the
data. And, you might need to check and download the data every day to composite a time series.

The Global Lake Evaporation Volume data set was developed in G. Zhao et al. (2022), and can be accessed at:
https://zenodo.org/record/4646621.

The Global Reservoir Surface Area Data set (GRSAD) was developed in G. Zhao and Gao (2018), and can be
accessed at: https://dataverse.tdl.org/dataset.xhtml?persistentId=doi:10.18738/T8/DF80WG.
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https://developers.google.cn/earth-engine/datasets/catalog/JRC_GSW1_4_YearlyHistory?hl=en
https://developers.google.cn/earth-engine/datasets/catalog/JRC_GSW1_4_MonthlyHistory?hl=en
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https://doi.org/10.5281/zenodo.6984619
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https://dahiti.dgfi.tum.de/en/
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https://developers.google.cn/earth-engine/datasets/catalog/MERIT_DEM_v1_0_3
https://developers.google.cn/earth-engine/datasets/catalog/MERIT_DEM_v1_0_3
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_DEM_GLO30
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_DEM_GLO30
https://portal.opentopography.org/raster?opentopoID=OTSDEM.032021.4326.3
https://portal.opentopography.org/raster?opentopoID=OTSDEM.032021.4326.3
https://lpdaac.usgs.gov/products/srtmswbdv003/
http://xxfb.mwr.cn/sq_dxsk.html
http://61.163.88.227:8006/hwsq.aspx
http://yzt.hnswkcj.com:9090/#/
http://www.schwr.com/article/45
http://113.57.190.228:8001/web/Report/BigMSKReport
https://zenodo.org/record/4646621
https://dataverse.tdl.org/dataset.xhtml?persistentId=doi:10.18738/T8/DF80WG


Global Flood Awareness System (GloFAS) version 4.0 data set (Grimaldi et al., 2022b) can be accessed at:
https://cds.climate.copernicus.eu/cdsapp#!/dataset/cems‐glofas‐historical?tab=overview.

The MATLAB code for Shape Language Modeling (SLM) algorithm (D'Errico, 2023) can be downloaded from:
https://ww2.mathworks.cn/matlabcentral/fileexchange/24443‐slm‐shape‐language‐modeling?
requestedDomain=zh.
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