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Abstract
Understanding how the causal feedback between phytoplankton and environmental drivers controlling the

chlorophyll a (Chl a, as a proxy of phytoplankton biomass)–nutrient relationships are modulated under differ-
ent ecosystem conditions is a major challenge in aquatic ecology. Using an empirical dynamic model (conver-
gent cross mapping) on a 20-yr dataset on 20 Danish lakes, we quantified hypothesized causal feedback
networks for each lake and related them to lake system properties (e.g., mean water depth, nutrient concentra-
tions and extent of reduction, climate warming) vs. the Chl a–nutrient relationship (estimated from generalized
least square models). The results showed prevalent causal feedback across the studied lakes, which demonstrated
clear patterns for the tested ecosystem variations. Weaker causal feedbacks were found in deeper lakes and lakes
with larger warming trends, while stronger causal feedbacks appeared in lakes experiencing greater reductions of
TP (total phosphorus) and TN (total nitrogen). Moreover, these causal feedbacks showed a strong and positive
coupled pattern. Most of the causal feedbacks worked as enhancement loops, which promote the sensitivity of
phytoplankton to TP, not least in shallow lakes with a high TP reduction, and as regulatory loops, which force a
shift in the Chl a–TN relationship from a more negative slope in lakes experiencing a high nutrient reduction
and weak warming to a positive slope in lakes with low nutrient reduction and stronger warming. Our findings
suggest a mechanistic explanation of how internal feedbacks regulate the Chl a–nutrient relationships across a
broad gradient of nutrient reductions, climate warming, and lake morphologies.

The mechanisms driving chlorophyll a (Chl a) (used as a
proxy of phytoplankton biomass)–nutrient relationships are
fundamental for freshwater ecosystem function and, therefore,
important to elucidate for lake managers (Smith and Schin-
dler 2009). Based on Liebig’s law, numerous empirical and
experimental studies have found that phosphorus (P) and
nitrogen (N) are the primary factors limiting phytoplankton
growth and thus Chl a concentrations in lakes (McCauley
et al. 1989; Prairie et al. 1989; Phillips et al. 2008; Filstrup

et al. 2014; Quinlan et al. 2021). Therefore, a reduction of the
loading of either P or both N and P has been recommended to
mitigate eutrophication worldwide (Paerl and Otten 2013b;
Paerl et al. 2016; Schindler et al. 2016). However, the Chl
a–nutrient relationship is highly context-dependent (e.g., lake
type, trophic status etc.) and comes with great uncertainty
(Canfield et al. 2019; Olson and Jones 2022; Zhao et al. 2023).

The Chl a–TP relationship follows a log-linear pattern at
intermediate P concentrations and displays a sigmoid pattern
at larger P gradients (Quinlan et al. 2021), while wedge-shaped
scatter diagrams widely suggest a high degree of Chl
a variability between lakes at a given nutrient level (Cade and
Noon 2003; Canfield et al. 2019). This variability may, in part
be caused by a variety of ecosystem differences in lake mor-
phology, chemistry, and climate at local regional and global
scales (Quinlan et al. 2021; Wu et al. 2022; Zou et al. 2022;
Zhao et al. 2023). At the local scale, deeper and stratified lakes
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exhibit low Chl a per unit of nutrients and lakes with high
transparency generally have low Chl a concentrations at a
given nutrient level, while shallow lakes with low and moder-
ate alkalinity have the highest Chl a levels (Phillips
et al. 2008; Zhao et al. 2023). High salinity and acidic water
limit P bioavailability, leading to lower Chl a per unit of nutri-
ents (Prepas and Trew 1983). Phytoplankton is more sensitive
to TN at high TP levels (Zhao et al. 2023). Large zooplankton
(e.g., Daphnia) may weaken the Chl a–TP relationship through
grazer control of phytoplankton biomass (Jeppesen et al. 2005a,
2011; Wu et al. 2022). At the regional scale, the rate at which
Chl a increases with nutrients is strongly related to watershed-
specific characteristics, the Chl a–TP relationship being higher
in regions with less wetland cover and richer pasture fields
(Filstrup et al. 2014). Filstrup et al. (2014) further found a wea-
ker relationship at the annual temperature extremes (< �5�C
and > 25�C) and dominance of lake- and watershed-specific
characteristics within the moderate temperature range, and
according to Zou et al. (2022) the sensitivity of Chl a to nutri-
ents is strongly influenced by changes in temperature, water
level, wind speed, the N : P mass ratio and grazing pressure. Fur-
thermore, the regional meteorology might be causally linked
with the global climate oscillation (e.g., El Niño, the Southern
Oscillation, North Atlantic Oscillation) and thus potentially
show teleconnections with local biotic (e.g., phytoplankton
and zooplankton) and abiotic (e.g., temperature, stratification
onset) environments in both subtropical and temperate lakes
(Arhonditsis et al. 2004; Winder and Schindler 2004a;
Blenckner et al. 2007; Xiao et al. 2019; Fu et al. 2022). However,
the intrinsic mechanisms responsible for the observed patterns
have yet to be fully elucidated.

Phytoplankton not only responds to varying nutrient
levels, but it also has feedback to the nutrient cycling (Paerl
and Otten 2013a; Cottingham et al. 2015). Thus, phytoplank-
ton alters the abundance of dissolved nutrients by direct
uptake and then returns inorganic nutrients to the water after
death (Carpenter et al. 1992). In addition, phytoplankton may
indirectly affect the nutrient dynamics through alterations in
the local environment (Gao et al. 2014; Cottingham
et al. 2015). For instance, phytoplankton blooms increase pH
and organic matter concentrations, increase oxygen depletion
in the bottom water and reduce water transparency
(i.e., Secchi depth, SD), stimulate P release from the sediment
and N loss by denitrification, all of which increase the rate
and magnitude of the internal nutrient recycling (Cottingham
et al. 2015; Huisman et al. 2018; Fu et al. 2024). Such
phytoplankton-dominant feedbacks could form enhancement
loops where a minor increase in nutrient levels leverages
extensive phytoplankton proliferation (Scheffer et al. 1993; Fu
et al. 2024), leading to enhanced sensitivity of phytoplankton
to nutrients. Accordingly, recent studies have demonstrated
that climate warming, especially during winter, and atmo-
sphere stilling increase phytoplankton sensitivity to nutrients
and thus exacerbate eutrophication by strengthening the self-

amplifying feedback loops (Yan et al. 2017; Deng et al. 2018;
Qin et al. 2019; Meerhoff et al. 2022; Fu et al. 2024). However,
these feedback loops might differ greatly depending on lake
morphology, nutrient input, and macrophyte cover (Yuan
and Jones 2020; Meerhoff et al. 2022). Therefore, the feedback
loops involving phytoplankton and nutrients, as well as their
drivers might play an important mechanistic role in modify-
ing Chl a–nutrient relationships in diverse habitats.

Feedback loops have been suggested to be important inter-
nal forces in maintaining ecological stability in ecosystems
(Scheffer et al. 1993), which could be identified as both unidi-
rectional (triple feedbacks: A ! B ! C ! A) or bidirectional
pairwise feedbacks: (A $ B) causality that forms a closed cycle.
The strength of the feedback loops is spatially and temporally
variable and thus frequently difficult to quantify with tradi-
tional linear statistics (e.g., correlation, regression, structural
equation model), especially in a dynamic ecosystem (Chang
et al. 2022; Fu et al. 2024). Convergent cross mapping (CCM) is
an empirical dynamic model that can help to detect distinct
causal interaction structures (unidirectional or bidirectional cau-
sality) from spurious correlations in time series (e.g., population
and environment timeseries in ecology research) in dynamic
systems (Sugihara et al. 2012).

Here, based on a 20-yr dataset from 20 Danish lakes, we
used CCM (Sugihara et al. 2012) to construct causal feedback
networks for each of our study lakes in order to assess how
causal feedback altered Chl a–nutrient relationships during a
period in which the lakes faced both re-oligotrophication and
climate warming. We evaluated the strength of the causal
feedback between phytoplankton and the tested drivers
(e.g., local nutrients, regional meteorology, and global climate
oscillation) and related them to lake system properties
(e.g., water depth, long-term trends in temperature and nutri-
ents) and the Chl a–nutrient relationship (estimated from gen-
eralized least square models). We addressed the following
questions: (1) How do phytoplankton interact with the drivers
and what is the magnitude of the phytoplankton feedback to
these drivers? Are these causal feedbacks common in the stud-
ied lake ecosystems? (2) How do causal feedbacks vary in
strength across lake ecosystems? Especially when these lakes
have undergone distinct magnitudes of changes in nutrients
and climate warming. (3) How do causal feedbacks govern the
Chl a–nutrient relationship? Among these causal feedbacks,
specifically, which ones are characterized by enhancement
loops that boost phytoplankton responses to nutrients and
which ones are regulatory loops that reduce phytoplankton
responses to nutrients.

Materials and methods
Data collection

We used a long-term (1989–2008) monitoring dataset on
20 lakes included in the Danish National Monitoring Pro-
gramme on the Aquatic Environment, NOVANA (Supporting
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Information Fig. S1). The average sampling interval of the
lakes was 14 d from May to October and 30 d in the other
months. Details on measurements of abiotic variables, phyto-
plankton and zooplankton sampling, identification, and data
curation can be found in Özkan et al. (2014) and Fu et al.
(2020). To construct the hypothesized feedback networks for
each lake (Supporting Information Fig. S1), we used local vari-
ables, including Chl a, nitrate (NO3), orthophosphate (PO4),
ammonium (NH4), Secchi depth (SD), pH and zooplankton
biomass (zbiomass), and regional variables, encompassing pre-
cipitation (Precip), wind speed (WindSpeed), air temperature
(AirTemp) and solar irradiance (Light). We also included
global climatic oscillations such as the El Niño, the Southern
Oscillation (ENSO), the Pacific Decadal Oscillation (PDO),
North Atlantic Oscillation (NAO), and the Atlantic Mul-
tidecadal Oscillation (AMO). Total phosphorus (TP) and total
nitrogen (TN) were used to assess the phytoplankton response
to nutrients (log-linear Chl a–nutrient relationships). All the
tested variables were monthly averaged (n = 240). For each
time series (variables) in each lake, we used the residuals from
a linear regression against time to eliminate temporal linear
trends and ensure stationarity. Furthermore, the time series
were de-seasonalised by scaling them against the mean and
standard deviation of values occurring in the same month
across the studied periods (Fu et al. 2024).

Data analysis
At the individual lake scale (Question 1), we first evaluated

whether there were significant causal feedbacks between Chl
a and tested variables (i.e., local, regional, and global)
according to an empirical dynamic causality analysis—
convergent cross mapping (CCM) (Takens 1981; Sugihara
et al. 2012). We then quantified the strength of causal feed-
back as the geometric mean (i.e., Neutel’s loop weight) of SLS
for all linkages (Question 1) (Chang et al. 2022). Using a gener-
alized least squares model (GLS) with temporal autoregressive
error structures (corArma function), we estimated Chl a–
nutrient (TP and TN) relationships separately for each lake.
Therefore, we yield one value for the strength of each casual
feedback and for the slope of the Chl a–nutrient relationship,
respectively, for each lake.

Across the lakes, the strength of the two distinct causal
feedbacks that are calculated from CCM for each lake was
compared through permutation analysis, and the coupling
between them, as well as between each causal feedback and
the lake-level property, was identified with Spearman correla-
tion analysis (Question 2). To assess how these causal feedbacks
control the Chl a–nutrient relationships (Question 3), we first
tested if there was a significant correlation between them
using Spearman correlation analysis and then quantified the
relative importance of the remaining significant determinants
using Random Forest (RF) analysis. Then, we modeled the
multiple relationships between lake-level properties,
the strength of causal feedbacks, and the Chl a–nutrient

relationships using generalized multilevel path models
(GMPMs; Question 3) (Shipley 2009).

Convergent cross mapping (CCM)
The CCM approach is based on Takens’ theorem for

dynamical systems, which states that the historical informa-
tion of causal variable (Y) is encoded in the time series of the
effector variable (X) if X and Y are part of the same dynamical
system (Takens 1981). That is, the reconstructed state spaces
of X and Y topologically represent the same attractor (with a
one-to-one mapping between the reconstructed attractors of
X and Y). For this point, CCM could quantify the information
transfer from X to Y by reconstructing their nonparametric
state space when a causal association exists between the two
variables, and the causal direction depends on the direction of
the information flow (Sugihara et al. 2012). The strength
of causal feedback between pairs of time series was defined as
the correlation coefficient ρ (hereafter called “cross-map skill”)
between estimated states of Y from states of X and actual
observations of Y (Sugihara et al. 2012). Therefore, CCM has
been suggested to have a great ability to detect the mirage cor-
relations (i.e., the sign and magnitude of the correlation vary
with time) between two variables in complex nonlinear
dynamic systems (Sugihara et al. 2012). Details about CCM
analysis and procedures for significance testing causal links are
described in Supporting Information Methods. For the distinct
paths mapped in Supporting Information Fig. S1, the signifi-
cant path (A ! B) revealed by CCM was considered as causal
linkages, the significant bidirectional path (A ! B and B ! A)
as causal pairwise feedback loop, the significant directed cyclic
loop (A ! B ! C ! A: A ! B, B ! C, C ! A) as causal triple
feedback loop, and the significant unidirectional loop with
two paths (A ! B ! C: A ! B, B ! C) as a causal pathway.
The paths work as enhancement (or self-reinforced, self-
amplified) loops if they increase the Chl a–nutrient
relationship (promote the response of phytoplankton to
nutrients) and as regulatory loops if they decrease the Chl
a–nutrient relationship.

Strength of causal feedback loops at individual lake scale
The strength of causal feedback was firstly determined as a

cross-mapping skill at maximal library size (ρ(Lmax)). Notably,
the ρ(Lmax) for each causal feedback was standardized by divid-
ing linkage strength (SLS) by the maximum ρ(Lmax) within
each lake, which was used to exclude systematic noise in
cross-mapping skill (ρ) among lakes (Chang et al. 2022). The
SLS ranged from 0 to 1, and a larger value indicated a stronger
causal effect. For each lake, the hypothesized causal feedback
networks were mapped (Supporting Information Fig. S1), and
then the ρ(Lmax) was standardized separately for each lake
(Fu et al. 2024).

The strength of the causal feedback was quantified separately
for pairwise and triple ones. For each hypothesized causal feed-
back, we calculated the geometric mean (i.e., Neutel’s loop
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weight) of SLS for all linkages (Chang et al. 2022). For example,
the loop weight for pairwise feedback (A $ B) is determined as
the geometric mean of the SLS in both directions (i.e., A ! B
and B ! A), while triple feedback is determined as the geomet-
ric mean of the SLS in a directed cyclic loop with all three paths
(i.e., type I: A ! B ! C ! A; type II: A ! C ! B ! A)
(Fu et al. 2024). Likewise, the geometric mean of the SLS for all
causal feedbacks in the pathway (i.e., A ! B ! C) was calcu-
lated as the causal effects of global climate oscillation on the
components of the local feedback loops through meteorological
variables (Fu et al. 2024). To assess the uncertainty associated
with our estimations of loop weight, we generated 500 random
samples by resampling the embedded data points with replace-
ment and then determined their standard errors from the
reconstructed sampling distributions (Chang et al. 2022).

Chl a–nutrient relationships at individual lake scale
To assess the Chl a–nutrient (TP and TN) relationship

separately for each lake, we used a generalized least squares
model (GLS) with temporal autoregressive error structures
(i.e., corArma function). The GLS slope is as proxy for the
Chl a–nutrient (TP, TN) relationship in the subsequent
analysis.

Relating the causal feedback loops and Chl a–nutrient
relationships across lakes

We used four lake-level properties characterizing physical
environments (mean water depth), re-oligotrophication
(TP_tau and TN_tau), and climate warming (AT_tau), where
“tau” indicates the coefficients estimated from Kendall’s τ test
over time for each variable during the 20 yr of monitoring.

We conducted a permutation test with a sample size of
9999 to compare the strength (SLS) of the two significant and
distinct causal feedbacks (e.g., PO4 ! Chl a vs. NO3 ! Chl a) or
feedback loops (e.g., pairwise: NH4$Chl a vs. PO4$Chl a, triple:
NH4 ! Chl a ! pH ! NH4 vs. PO4 ! Chl a ! pH ! PO4),
which were permutated randomly across 20 lakes (N = 20).
Moreover, Spearman correlation analyses were employed to
examine the relationships between the strength of distinct causal
feedbacks (e.g., linkages, pairwise, triangle, pathway), respec-
tively. In addition, we assessed the Spearman correlation
between the strength of causal feedback and the four lake-level
systematic properties: mean water depth, TP_tau, TN_tau, and
AT_tau.

Random Forest regression in combination with Spearman
correlation was applied to assess the importance of the identi-
fied causal feedback in influencing the Chl a–nutrient relation-
ship. Random Forest regression, incorporating a bootstrapping
classification tree (Breiman 2001), not only addresses overfitting
but also effectively manages spatial autocorrelation among sam-
ples (Breiman 2001). For each Chl a–TP and Chl a–TN relation-
ship, we initially identified their significant determinants
through Spearman correlation. Specifically, NH4 $ Chl a,
zbiomass $ Chl a, NH4 ! Chl a ! pH ! NH4, NH4 ! Chl

a ! SD ! NH4, and NH4 ! Chl a ! zbiomass ! NH4 were
retained for Chl a–TP, while pH $ Chl a, NO3 $ Chl a,
NO3 ! pH ! Chl a ! NO3, Chl a ! NO3, NO3 ! Chl
a ! zbiomass ! NO3, and ENSO ! AirTemp ! Chl a were
retained for Chl a–TN. These determinants were then included
in the Random Forest regression model as potential predictors,
randomly resampled to create 500 unpruned decision trees. The
relative importance of each variable was quantified by the per-
centage increase in mean standard error (MSE) for the Random
Forest regression model predictions. To gauge uncertainty of
Random Forest regression, we calculated a prediction uncer-
tainty metric (e.g., conditional mean squared biases) based on a
novel estimator of the conditional prediction error distribution
function (Lu and Hardin 2021).

We applied generalized multilevel path models (GMPMs) to
specify how the strength of the causal feedbacks modified the
Chl a–nutrient relationship with systematic differences in lake
morphology, the magnitude of re-oligotrophication and cli-
mate warming (Shipley 2009). The generalized multilevel path
models were fitted separately for Chl a–TP and Chl a–TN. The
generalized multilevel path models are the most proper
method when dealing with ecological monitoring data that
are characterized by non-normal distribution and temporal
and spatial dependence (Shipley 2009). Our generalized multi-
level path models included three sets of hypothesized paths:
(1) lake systematic properties influencing the strength of the
causal feedbacks; (2) lake systematic properties influencing
the Chl a–nutrient relationship; (3) how the causal feedbacks
govern the Chl a–nutrient relationship. In addition, we
included correlations between the different causal feedbacks
because their directions were not hypothesized. For each com-
ponent model of generalized multilevel path models, we
applied linear models to fit the predictors. We tested if there
was collinearity in the explanatory variables for each path
model by estimating variance inflation factors (O’brien 2007),
and all variables had variance inflation factors < 7. We exam-
ined the goodness of fit using Shipley’s test of directional sep-
aration (Shipley 2009) and the significance using Fisher’s
C test for each path model (Shipley 2013), and the best model
was selected using the AICc procedure (Shipley 2013). We
used standardized path coefficients to present the path effects
of the predictors (Grace and Bollen 2005).

All statistical analyses were conducted using R version 4.12
software (R Core Team 2013). Cross-correlation mapping
(CCM) was executed with the “rEDM” package (https://github.
com/SugiharaLab/rEDM) in R (v-0.7.5) (Ye et al. 2016). Con-
cise animations illustrating the fundamental concepts of CCM
can be found at tinyurl.com/EDM-intro, while comprehensive
guidelines for performing EDM analyses are available at
https://deepeco.ucsd.edu/resources/#pagecontent. Kendall’s τ

test was implemented using the mann-kendall function within
the “kendall” package. Random Forest models were run using
the “randomForest,” “rfPermute,” “A3” package, generalized mul-
tilevel path models were conducted employing the
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“piecewiseSEM” package (Lefcheck 2016), and visual representa-
tions were generated with the “ggplot2” package.

Results
The 20 lakes studied varied greatly in morphology (mean

and maximum water depth) and nutrient conditions (TP and
TN), and most lakes experienced remarkable reductions in TP
and TN and a rise in air temperature during the study period
despite their distinct magnitudes of temporal trends
(Supporting Information Table S1).

Based on CCM analysis (Supporting Information Table S2),
we found significant causal effects of the local and regional
drivers on Chl a for most lakes as well as significant causal
feedbacks of Chl a to the local environments. The permuta-
tion test showed that Chl a was most responsive to Secchi
depth, followed by pH and NO3 (Fig. 1a, all p < 0.001), and
the averaged strengths for the causal effects of PO4, NH4,
and zbiomass were comparable (Fig. 1a, p > 0.05). Similar pat-
terns were observed for the opposite directions (Fig. 1b,
i.e., Chl a ! environments) as well as for the pairwise feed-
back between Chl a and the local drivers (Fig. 1c).

The causal effects of regional drivers on Chl a (e.g., AirTemp,
Precip, WindSpeed) were notably inferior to those exhibited
by local drivers (Fig. 1d, all p < 0.01), except for light (compa-
rable to PO4). Notably, we also found non-negligible causal
effects from global climate oscillation to Chl a via the regional
drivers, though their strengths were generally low (SLS < 0.4).
The physicochemical and nutrient-associated triple feedback
loops were much stronger than the zooplankton-associated
ones (Fig. 1e,f, all p < 0.05).

The strength of causal feedback varied significantly with
water depth, TP_tau, TN_tau, and AT_tau (Table 1). Among
the tested causal feedbacks, 13 (including 2 marginally) causal
feedbacks decreased significantly in the loop weight toward
deep lakes, 14 (6 marginally), and 6 (4 marginally) causal feed-
backs increased significantly in the loop weight in lakes under-
going large reductions of TP and TN, respectively, and
17 (6 marginally) causal feedbacks decreased significantly in
the loop weight in lakes experiencing strong increases in air
temperature (Table 1). Remarkably, the Spearman correlation
analysis demonstrated a strong and positive coupled pattern
between 82% causal linkages (Supporting Information
Fig. S2A), 89% pairwise (Supporting Information Fig. S2B),
and 94% triangle (Supporting Information Fig. S2C) feedbacks
and 85% causal pathways (Supporting Information Fig. S2D).

Using the GLS model, we observed that 17 and 15 lakes,
respectively, had significant log-linear Chl a–TP and Chl a–TN
relationships (Table 2). The GLS slope of Chl a–TP was mostly
positive (0.01–1.03), except for Lake SOHOLM SO (�0.44),
and that of Chl a–TN ranged from �1.03 to 1.48. The Random
Forest regression models revealed that the feedbacks between
Chl a and NH4, zbiomass were generally important for
prompting the GLS slope of Chl a–TP (Fig. 2a), while pH,

NO3- and temperature-associated feedbacks were highly
important in decreasing the GLS slope of Chl a–TN (Fig. 2b).
The prediction error was low for Chl a–TP (conditional mean
squared biases = �0.046) and Chl a–TN (conditional
mean squared biases = �0.088).

According to the AICc model selection procedure, the final
GMPMs explained 90% of the variation of the Chl a–TP slope
(Fig. 3a; χ2 = 9.35, df = 16, p = 0.90, AICc = �197.83) and
62% of the variation of the Chl a–TN slope (Fig. 3b;
χ2 = 14.94, df = 20, p = 0.78, AICc = �329.96). The three
retained causal feedbacks (NH4 $ Chl a, NH4 ! Chl
a ! pH ! NH4, Chl a ! zbiomass) increased the Chl a–TP
slope (Figs. 3a, 4). The mean water depth of lakes decreased
the Chl a–TP slope either directly or indirectly through changes
in the strengths of the causal feedback. Climate warming trends
(more positive AT_tau) decreased the Chl a–TP slope indirectly
through changes in the strength of NH4 ! Chl a ! pH ! NH4,
while TP reduction trends (more negative TP_tau) increased the
Chl a–TP slope indirectly through changes in the strength of
NH4 ! Chl a ! pH ! NH4 and NH4 $ Chl a.

The bidirectional feedback between PO4 $ Chl a increased,
and NO3 $ Chl a and pH $ Chl a decreased the Chl a–TN
slope (Figs. 3b, 5). TN reduction trends (more negative
TN_tau) directly enhanced the Chl a–TN slope, while TP
reduction trends (more negative TP_tau) indirectly promoted
it through changes in the strength of PO4 $ Chl a and
pH $ Chl a. Climate warming trends (more positive AT_tau)
indirectly decreased the Chl a–TN slope via changes in the
strength of PO4 $ Chl a and NO3 $ Chl a.

Discussion
The key variables describing ecosystem dynamics are highly

interdependent and extensively interactive, and they often
interact in a nonlinear state-dependent way to form dynamic
interactions. Using a two-decade dataset on 20 Danish lakes,
we applied empirical dynamic modeling (e.g., CCM) to
reconstruct and quantify the causal feedback loops between
Chl a and the tested drivers for each lake. Predominantly
bidirectional causal linkages were identified, supporting the
hypothesis that causal feedbacks occur commonly in the
studied lake ecosystems. Our results highlighted that the
tested causal feedback played an important role in modify-
ing the Chl a–nutrient relationships in response to distinct
system properties.

The common bidirectional causal feedback between phy-
toplankton and local drivers was significant (Supporting
Information Tables S2–S4) across the 20 Danish lakes cover-
ing a broad range of nutrients and morphology (Supporting
Information Table S1). This provides evidence that phyto-
plankton can be controlled not only by a variety of local
and regional drivers, but that it may also have important
feedback on the physicochemical environment, nutrient
recycling, and zooplankton, forming prevalent pairwise or
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Fig. 1. Standardized linkage strength of causal linkages (a and b), loop weight of pairwise feedbacks (c), causal pathways (d), and triangle feed-
backs (e and f) between the tested variables across the time series (1989–2008). Chl: chlorophyll a; NO3: nitrate; NH4: ammonium; PO4: orthophos-
phate; SD: Secchi depth; zbiomass, zooplankton biomass. The loop weight ranged from 0 to 1 and the vertical line indicates a value of loop weight
that is equal to 0.5.
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triple feedback loops (Fu et al. 2024). The relatively stronger
pH- and Secchi depth-associated feedback loops indicated
that phytoplankton interacts more strongly with light and
pH, acting as important intermediate influential factors
linking phytoplankton, nutrients, and zooplankton. This
emphasizes a strong coupling effect of the physico-chemical
environment, as indicated in other studies (e.g., Zhang
et al. 2018; Fu et al. 2024). In addition, the high degree of
positive coupling among the tested feedback loops
(Supporting Information Fig. S2) demonstrated an integra-
tive pattern as a response to a varying environment, which
would leverage external environmental forces to the

phytoplankton through conductive effects (through nodes
and edges) between the components of the feedback loops.
This feedback loop-induced leverage effect could be positive
or negative—an enhanced loop promoting phytoplankton
sensitive to drivers (e.g., TN, TP) or a negative regulatory
loop depressing it. In our study, enhanced loops were found
for the Chl a–TP relationships and regulatory loops for the
Chl a–TN relationships.

Water depth was found to control the Chl a–TP relation-
ship either directly or indirectly through changes in several
key causal feedbacks. Deeper lakes had a lower Chl a per unit
of TP, which is in line with previous findings (Phillips

Table 1. Spearman correlations between the strength of causal feedbacks and system properties, including mean water depth, Mann–
Kendall trends in total phosphorus (TP_tau), total nitrogen (TN_tau), and air temperature (AT_tau). Italics indicates marginal relation-
ships (p < 0.1). Insignificant correlation results are not shown.

Strength of causal feedbacks

Water depth TP_tau TN_tau AT_tau

Coefficient p Value Coefficient p Value Coefficient p Value Coefficient p Value

Precip ! Chl a �0.48 0.032

Chl a ! zbiomass �0.80 0.000

NH4 $ Chl a �0.71 0.001

zbiomass $ Chl a �0.63 0.003 �0.39 0.088

NH4 ! Chl a ! pH ! NH4 �0.46 0.044 �0.71 0.001

NH4 ! pH ! Chl a ! NH4 �0.53 0.018 �0.41 0.077

NH4 ! Chl a ! SD ! NH4 �0.43 0.060

NO3 ! Chl a ! zbiomass ! NO3 �0.40 0.082 �0.54 0.015

NH4 ! Chl a ! zbiomass ! NH4 �0.85 0.000

NH4 ! zbiomass ! Chl a ! NH4 �0.43 0.059

zbiomass ! pH ! Chl a ! zbiomass �0.65 0.002

PDO ! Precip ! Chl a �0.52 0.020

NAO ! Precip ! Chl a �0.58 0.009 0.40 0.080

Chl a ! PO4 �0.56 0.011

Chl a ! pH �0.41 0.073 �0.39 0.085 �0.47 0.036

pH ! Chl a �0.52 0.020 �0.47 0.039

PO4 $ Chl a �0.50 0.026 �0.41 0.073

pH < �>Chl a �0.43 0.061 �0.44 0.056 �0.44 0.055

PO4 ! Chl a ! pH ! PO4 �0.57 0.010 �0.44 0.055

NO3 ! Chl a ! pH ! NO3 �0.42 0.070 �0.65 0.003

PO4 ! pH ! Chl a ! PO4 �0.57 0.011 �0.38 0.097 �0.47 0.037

NO3 ! pH ! Chl a ! NO3 �0.44 0.055 �0.45 0.047 �0.45 0.047

PO4 ! zbiomass ! Chl a ! PO4 �0.50 0.027 �0.45 0.046

ENSO ! AirTemp ! Chl a �0.43 0.057

PDO ! Light ! Chl a �0.46 0.043

ENSO ! Light ! Chl a �0.45 0.048

NO3 ! Chl a �0.64 0.003

zbiomass ! Chl a �0.53 0.019

NO3 $ Chl a �0.59 0.007

NO3 ! Chl a ! SD ! NO3 �0.51 0.022

NO3 ! zbiomass ! Chl a ! NO3 �0.41 0.077

zbiomass ! Chl a ! pH ! zbiomass �0.41 0.075

AMO ! Precip ! Chl a �0.44 0.056

Fu et al. Feedback loops modify lake Chl a–nutrient relationships
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et al. 2008) and largely reflects that light limitation in deep
lake weakens the response of phytoplankton to phosphorus.
Notably, the causal feedback between phytoplankton and local
drivers mediated the Chl a–TP relationship across water depth
gradients, and the Chl a–TP slope thus increased significantly
in shallow lakes. Our results demonstrated a notable self-
reinforced feedback loop (e.g., NH4 ! Chl a ! pH ! NH4)
where algae proliferation enhanced water pH and stimulated N
recycling (e.g., NH4 regenerated by waste excretions by cellular
exudation, zooplankton, protists, and mineralization of organic
matter by bacteria) (McCarthy et al. 2013), which was strongly
coupled with the other tested feedback loops (Supporting Infor-
mation Fig. S2, PO4). Therefore, the stronger self-amplifying
feedback loops in shallower lakes could be an important mecha-
nism contributing to higher phytoplankton sensitivity to nutri-
ents (McCarthy et al. 2013). Similar patterns were found for the
causal feedbacks of phytoplankton to zooplankton, which is
supported by previous findings that a TP reduction may cause a
significant decline in fish biomass and thus enhanced zoo-
plankton grazing on phytoplankton; this effect being stronger
in shallow lakes (Jeppesen et al. 1997, 2005b). Therefore, our
results suggest that prey–predator feedback may promote the
phytoplankton yield per unit of TP in shallow lakes.

Long-term trends in TP indirectly had systematic effects
on the Chl a–nutrient relationship via changes in the causal
feedback. In lakes with an extensive TP reduction (TP_tau),

the causal feedbacks between phytoplankton and local
drivers (e.g., NH4, pH, PO4) tended to be stronger, strength-
ening the Chl a–TP relations and weakening the Chl a–TN
relations. The observed self-amplifying feedback loops indi-
cate that minor increases in loop components (e.g., Chl a,
NH4, pH, PO4) would leverage phytoplankton proliferation
as well as nutrient recycling (hereafter positive leverage
effects) and vice versa in the case of a decrease (hereafter
inverse leverage effects). In Danish lakes, previous studies
have demonstrated that long-term TP reductions caused a
significant decline in phytoplankton biomass (Chl a) and
the Chl a : TP ratio and increases in the zooplankton : phy-
toplankton biomass ratio (Jeppesen et al. 2005b). Our find-
ings on causal feedback may provide a mechanistic
explanation of this phenomenon; that is, TP reduction trig-
gered inverse leverage effects, which became more pro-
nounced at increasing TP_tau, leading to a faster decrease of
Chl a in response to TP. Also, it led to a faster decline of the
Chl a : TP ratio (a more negative Kendall’s τ), although a pos-
itive Kendall’s τ of Chl a : TP was observed in lakes with wea-
ker feedback loops (e.g., NH4 $ Chl a) and lower TP_tau.
However, the lakes with the highest (more negative) TP_tau
often had higher TP levels (indicating a negative relation-
ship between TP_tau and mean TP values, p < 0.001;
Supporting Information Fig. S3), which might contribute to
a relatively large Chl a–TP slope.

Table 2. Chlorophyll (Chl a)–nutrient relationships (TP: total phosphorus, TN: total nitrogen) estimated from generalized least squared
models for each lake (1989–2008).

Lakes

Chl a–TP Chl a–TN

Slope SE p Value AICc R2 Slope SE p Value AICc R2

RAVNSO 0.08 0.13 0.502 89.98 0.36 0.1 0.22 0.629 89.1 0.36

ARRESO 0.98 0.06 <0.001 �75.89 0.66 1.45 0.11 <0.001 �0.03 0.53

FURESOEN STORESO 0.01 0.17 0.935 302.35 0.35 1.48 0.29 <0.001 276.35 0.42

OSTRUP.GUNDSOMAGLE SO 0.91 0.07 <0.001 127.58 0.62 �0.16 0.16 0.299 243.14 0.38

ENGELSHOLM SO 1.03 0.11 <0.001 174.46 0.42 �0.15 0.14 0.304 225.35 0.28

VESTERBORG SO 0.98 0.09 <0.001 123.66 0.43 �0.5 0.07 <0.001 152.72 0.35

SOGORD SO, JYLLAND 0.86 0.14 <0.001 335.74 0.39 �1.03 0.13 <0.001 302.08 0.47

NORSSO 0.55 0.10 <0.001 �103.24 0.2 0.37 0.11 0.001 �84.31 0.13

BRYRUP LANGSO 0.27 0.13 0.044 220.8 0.25 �0.81 0.14 <0.001 195.59 0.33

MAGLESO V. BRORFELDE 0.02 0.03 0.516 �79.45 0.02 0.1 0.09 0.244 �82.85 0.03

TISSO 0.26 0.09 0.006 176.74 0.17 0.06 0.12 0.573 183.66 0.15

HORNUM SO 0.93 0.12 <0.001 178.23 0.22 1.12 0.13 <0.001 170.06 0.24

SOBY SO, MIDTJYLLAND 0.69 0.11 <0.001 73.53 0.22 0.96 0.14 <0.001 74.83 0.21

ARRESKOV SO 1 0.12 <0.001 331.74 0.35 0.88 0.21 <0.001 366.99 0.24

SOHOLM SO �0.44 0.13 0.001 151.37 0.21 �0.38 0.14 0.006 152.4 0.21

HINGE SO 1 0.14 <0.001 114.91 0.5 �0.3 0.10 0.003 147.63 0.43

KVIE SO 0.83 0.15 <0.001 235.3 0.26 1.75 0.20 <0.001 209.41 0.34

HOLM SO 0.43 0.08 <0.001 177.39 0.13 0.69 0.09 <0.001 152.62 0.21

STORE SOGORD SO 0.49 0.14 <0.001 336.26 0.23 �0.77 0.14 <0.001 317.39 0.29

UTTERSLEV MOSE 0.5 0.05 <0.001 �18.49 0.38 0.9 0.09 <0.001 �32.23 0.41

Fu et al. Feedback loops modify lake Chl a–nutrient relationships
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In lakes with high TP_tau, in contrast, the stronger causal
feedbacks of pH $ Chl a triggered by inverse leverage effects
induced a shift in the Chl a–TN relationship from positive to
negative. Previous findings have indicated a stronger response
of phytoplankton to nitrogen as well as of its effect on the
N recycling at high phosphorus availability (McCauley
et al. 1989; Filstrup et al. 2014; Quinlan et al. 2021). This
implies stronger feedback between phytoplankton and nitro-
gen in lakes with high TP (as well as TP_tau in Danish lakes).
Although CCM cannot detect if the causal feedbacks are posi-
tive or negative (Sugihara et al. 2012), we can expect a strong
negative feedback associated with nitrogen as the observed
self-amplifying (positive) feedback, while phosphorus may
cause accelerating P recycling as well as removal of nitrogen
and thus a reduced N : P ratio (Cottingham et al. 2015). Fur-
thermore, the more negative Chl a–TN slope in lakes with

high TN_tau suggests that this causal feedback acts as an
enhancement loop for the Chl a–TP relations and as a regula-
tory loop for the Chl a–TN relations, respectively.

Unlike the effects of nutrient reduction, trends toward higher
warming (AT_tau) tended to weaken the causal feedback loops
(e.g., NH4 ! Chl a ! pH! NH4, PO4 $ Chl a, NO3 $ Chl a).
Likewise, climate warming has been suggested to affect the tro-
phic linkages between phytoplankton and zooplankton either
due to mismatch in spring (Winder and Schindler 2004b) or to
increased fish predation on zooplankton (Jeppesen et al. 2011). In
addition, a warmer climate coupled with re-oligotrophication and
higher water depth results in a lower hypolimnetic temperature
and stronger thermal stratification (Winder and Schindler 2004a),
which largely prevents the transport of sediment-driven nutrients
between the epilimnion and the hypolimnion (Pomati
et al. 2012; Flaim et al. 2016). This would slow down the nutrient

Fig. 2. Random forest regression showing mean predictor importance (percentage increase of mean square error, MSE increase) of each causal feedback
in determining the log-linear relationships between phytoplankton biomass (Chl a) and nutrients (a, TP: total phosphorus; b, TN: total nitrogen). The
numbers in the figure represent the slope for each determinant, and R2 and p value for the whole model are indicated. NO3: nitrate; NH4: ammonium;
PO4: orthophosphate; SD: Secchi depth; zbiomass: zooplankton biomass.
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Fig. 3. Generalized multilevel path models showing the causal multivariate relationships among lake-level properties (first row), the strength of causal
feedbacks (second row) and the chlorophyll a (Chl a)–TP (a)/TN (b) relationship (third row). Arrows represent the flow of causality among variables. Path
coefficients (i.e., numbers associated with each arrow) are standardized partial regression coefficients. Arrow width is proportional to the standardized
path coefficients. Black arrows represent positive effects and red arrows negative effects. The statistical significance for linear relationships was tested
using likelihood-ratio tests. TP: total phosphorus, TN: total nitrogen, AT: air temperature, NO3: nitrate; NH4: ammonium; PO4: orthophosphate; zbiomass:
zooplankton biomass; tau indicates the coefficient of Mann–Kendall trends for TP, TN and AT across two decades (1989–2008). *p < 0.05; **p < 0.01;
***p < 0.001e.

Fig. 4. Relationships between the significant drivers and the chlorophyll a (Chl a)–TP slope revealed by generalized multilevel path models. Regression
lines are drawn in black. TP: total phosphorus, AT: air temperature, NH4: ammonium; zbiomass: zooplankton biomass; tau indicates the coefficient of
Mann–Kendall trends for TP, TN, and AT across two decades (1989–2008).
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recycling processes as well as the responses of phytoplankton to
nutrients released from sediments, which ultimately dampens the
enhancement loops of Chl a–TP relations and the regulatory
loops of Chl a–TN relations.

Conclusion
Our results identified prevalent causal feedback loops in

20 Danish lakes, the majority of which were undergoing sig-
nificant nutrient reduction and climate warming, character-
ized as enhancement loops for Chl a–TP relations and
regulatory loops for Chl a–TN relations. The loops modified
the Chl a–nutrient relationship in response to variations in
lake system properties (e.g., depth, nutrient concentration
reductions, climate warming). The enhancement feedback
loops increase the extent of phytoplankton sensitivity to TP in
shallow lakes with high TP reduction and a low level of
warming, while the regulatory feedback loops force a shift in the
Chl a–TN relationship from a negative slope in lakes experienc-
ing a large nutrient reduction and a low level of warming to a
positive slope in lakes with the opposite gradients. Our findings
suggest a mechanistic explanation of how internal feedback
loops regulate the emergent Chl a–nutrient relationship across a
broad gradient of nutrients, warming, and lake morphology. This
knowledge is useful for lake managers to advance eutrophication
mitigation measures by focusing on the critical causal feedback
loops as well as their components.

Data availability statement
The data that support the findings of this study are available

at https://miljoedata.miljoeportal.dk (in Danish) or from the
corresponding author upon a reasonable request. R code can be
found on zenodo: https://zenodo.org/records/12821169.
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