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A B S T R A C T

Interactions between bacteria and cyanobacteria influence the occurrence and development of harmful cyano-
bacterial blooms (HCBs). Bloom-forming cyanobacteria and cyanotoxin-degrading bacteria are essential in HCBs,
nonetheless, their interactions and the underlying mechanisms remain unclear. To address this gap, a typical
microcystin-LR (MC-LR)-degrading bacterium and a toxic Microcystis aeruginosa strain were co-cultivated to
investigate their interactions. The cyanobacterial growth was enhanced by 24.8 %-44.3 % in the presence of the
bacterium in the first 7 days, and the cyanobacterium enhanced the bacterial growth by 59.2 %-117.5 %
throughout the growth phases, suggesting a mutualistic relationship between them. The presence of the bacte-
rium increased cyanobacterial intracellular MC-LR content on days 4, 8, and 10 while reducing the extracellular
MC-LR concentration, revealing the dual roles of the bacterium in enhancing cyanotoxin production and
degrading cyanotoxins. The bacterium alleviated the oxidative stress, which may be crucial in promoting cya-
nobacterial growth. Critical functional genes related to cyanobacterial photosynthesis and MC-LR synthesis, and
bacterial MC-LR degradation were up-regulated in the presence of the bacterium and cyanobacterium, respec-
tively. Moreover, extracellular polymeric substances (EPS) were produced at the cell interface, implying EPS play
a role in cyanobacterial-bacterial interactions. This study is the first to unveil the interaction mechanisms be-
tween cyanotoxin-degrading bacteria and bloom-forming cyanobacteria, shedding light on the dynamics of
HCBs.

1. Introduction

The extensive outbreak of harmful cyanobacterial blooms (HCBs) has
raised global concern (Kruk et al., 2023; Ren et al. 2024; Zhang et al.
2022; Zhang et al. 2023). HCBs pose a serious threat to ecosystems,
leading to water quality deteriorating and a decline in aquatic organism
diversity (Huisman et al. 2018; Paerl et al. 2001; Paerl and Paul 2012).
HCBs also result in unpleasant smells, negatively affecting the landscape
function of lakes (Huisman et al. 2018). Moreover, bloom-forming
cyanobacteria can produce a wide range of toxic secondary metabo-
lites, with microcystins (MCs) being the most widely distributed toxins
released by >30 cyanobacterial species (Svirčev et al. 2019; Tan et al.

2023). These toxins can enter the animal and human bodies through
drinking water or can accumulate along the food chain (Massey and
Yang 2020; Mohamed 2016; Tamele and Vasconcelos 2020). Among the
microcystins, MC-LR (L represents leucine, R represents arginine), is a
causative agent for metabolism disorders and damage to multiple organs
such as the liver, kidney, stomach, and intestine (Du et al. 2022; Feng
et al. 2022; Yang et al. 2023; Yang et al. 2022; Yi et al. 2019; Zheng et al.
2017).

The dynamics of HCBs are influenced not only by environmental
conditions like nutrients, temperature and pH (Cook et al. 2020; Yang
et al. 2018), but also by biological factors such as the interactions be-
tween cyanobacteria and bacteria (Pound et al. 2021). Cyanobacteria

* Corresponding author.
E-mail address: yangfeilong@126.com (F. Yang).

1 These authors contributed equally to this work.

Contents lists available at ScienceDirect

Water Research

journal homepage: www.elsevier.com/locate/watres

https://doi.org/10.1016/j.watres.2024.122241
Received 1 March 2024; Received in revised form 3 June 2024; Accepted 8 August 2024

Water Research 265 (2024) 122241 

Available online 14 August 2024 
0043-1354/© 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies. 

mailto:yangfeilong@126.com
www.sciencedirect.com/science/journal/00431354
https://www.elsevier.com/locate/watres
https://doi.org/10.1016/j.watres.2024.122241
https://doi.org/10.1016/j.watres.2024.122241
https://doi.org/10.1016/j.watres.2024.122241
http://crossmark.crossref.org/dialog/?doi=10.1016/j.watres.2024.122241&domain=pdf


secrete organic molecules around their cells, creating a microhabitat
known as the "phycosphere," which plays a crucial role in shaping the
associated bacterial community (Gao et al. 2023; Seymour et al. 2017).
The relationships between cyanobacteria and associated bacteria can be
mutualistic or antagonistic. Cyanobacteria offer oxygen and dissolved
carbon sources for the epiphytic bacteria, and bacteria provide cyano-
bacteria with CO2, phosphorus, or growth factors such as vitamins (Cook
et al. 2020; Dziallas and Grossart 2012; Zhao et al. 2023). On the other
hand, some bacteria exhibit inhibitory or algicidal activities (Berg et al.
2009; Bi et al. 2019; Morón-López et al., 2023), and toxins such as MCs
can negatively affect bacterial diversity and richness (Wu et al. 2019;
Zhang et al. 2019). These interactions can either facilitate or suppress
the proliferation of cyanobacteria, thus influencing the formation,
strength, and maintenance of HCBs.

MCs-degrading bacteria are widely distributed in HCBs-
contaminated water bodies (Li et al. 2017; Mohamed et al. 2022;
Mohamed and Alamri 2012). Some studies reported the composition of
species and community structure dynamics of MCs-degrading bacteria
during HCBs. For instance, the MCs-degrading bacterium Sphingomonas
dominated the particle-attached bacterial communities during the
decomposition ofMicrocystis blooms (Shao et al. 2014). Gao et al. (2022)
revealed that Sphingopyxis sp. was the most prominent MC-degrader in
water samples of Lake Taihu. Cyanobacteria, particularly Microcystis
spp. often form colonies where microorganisms are embedded in the
mucilage matrix surrounding the cyanobacterial cells (Le et al. 2022).
These findings suggest a close association between MCs-degrading
bacteria and bloom-forming cyanobacteria. Nonetheless, knowledge of
the interactions between MCs-degrading bacteria and bloom-forming
cyanobacteria and the underlying mechanisms is still lacking.

Sphingopyxis sp. YF1 was previously isolated from Lake Taihu during
the outbreak of HCBs. The strain is a typical MC-LR degrading bacterium
and can use MC-LR as its sole carbon and nitrogen sources (Yang et al.
2020). The present study aims to investigate the interplays between
Sphingopyxis sp. YF1 and the toxic cyanobacteriumMicrocystis aeruginosa
FACHB-905. The growth of both strains in the cyanobacterial and bac-
terial monocultures and their co-culture, the production and degrada-
tion of MC-LR were explored. Additionally, the study investigated the
biochemical and molecular characteristics underlying these in-
teractions. By understanding the relationships between the
MCs-degrading bacteria and toxic bloom-forming cyanobacteria, this
study would provide further insights into the emergence and progression
of HCBs and the dynamics of cyanotoxins.

2. Materials and methods

2.1. Strains and culture conditions

Sphingopyxis sp. YF1 was cultivated using nutrient broth (NB) me-
dium containing 10.0 g/L peptone, 3.0 g/L beef extract and 5.0 g/L
NaCl, pH 7.2 ± 0.2. The NB medium was autoclaved at 121◦C for 20
min. The culture was oscillated at 180 rpm at 30◦C. Microcystis aerugi-
nosa FACHB-905 was purchased from the Freshwater Algae Culture
Collection of the Institute of Hydrobiology, Chinese Academy of Sci-
ences (Wuhan, China). The culture medium ofM. aeruginosa FACHB-905
is BG11 medium (Doppler et al. 2021). The culture was incubated at 28
±2◦C under a 12:12 light: dark cycle, at a light intensity of 150 μmolm− 2

s− 1 in a light incubator. In the culture,Microcystis aeruginosa FACHB-905
cells occurred as unicellular forms.

2.2. Co-culture of Sphingopyxis sp. YF1 and M. aeruginosa FACHB-905

Cells of Sphingopyxis sp. YF1 and M. aeruginosa FACHB-905 at the
logarithmic growth stage were collected by centrifugation at 12,000 × g
and 5000 × g for 10 min, respectively. Collected cells of both strains
were washed twice with sterilized fresh BG11 medium, respectively.
Cells of Sphingopyxis sp. YF1 and M. aeruginosa FACHB-905 were co-

cultured with an initial cell density ratio of 10:1. Meanwhile, Sphingo-
pyxis sp. YF1 and M. aeruginosa FACHB-905 were cultivated separately
as controls. All three groups were cultured with 1 L BG11 medium at 28
±2◦C in a light incubator. Bacterial and cyanobacterial cell density was
counted with a hemocytometer under a microscope (Wei et al. 2020;
Zhang et al. 2020).

2.3. Measurement of chlorophyll a, MDA, and SOD activity

At different time points (on days 0, 2, 4, 6, 8, and 10), cells in the
monoculture and co-culture were harvested by centrifugation at 8000 ×

g for 10 min and washed with PBS three times. To determine the chlo-
rophyll a (Chla) concentration, the collected cells were soaked in 90 %
acetone overnight in darkness. Then Chla concentration was measured
as described in a previous study (Xu et al. 2022).

MDA is an indicator of lipid peroxidation intensity and is usually
considered a critical index for reactive oxygen species (ROS) production
in organisms (Qian et al. 2012). Organisms possess an antioxidant de-
fense system to reduce the levels of ROS, and superoxide dismutase
(SOD) is one of the most common antioxidants. To determine the
malondialdehyde (MDA) content and SOD activity, the collected cells
were washed twice with PBS. Each sample was ground in liquid nitrogen
until the cells were broken. The resulting cell debris was collected,
suspended in pre-cooled PBS, and centrifuged at 8000 × g for 10 min.
The supernatant was withdrawn to measure the MDA content and SOD
activity according to the instructions of the MDA and SOD Detection Kit
(Jiancheng Institute of Bioengineering, Nanjing, China).

2.4. Detection of extracellular and intracellular MC-LR

The extracellular and intracellular MC-LR concentrations in
M. aeruginosa were measured every two days. Fifteen mL of solutions in
the co-culture and the monoculture of M. aeruginosa FACHB-905 were
withdrawn under aseptic conditions and centrifuged at 8000 × g for 10
min. The extracellular MC-LR (ExMC-LR) concentration in the super-
natant was determined by the Microcystin Plate Kit (Beacon Analytical
Systems, Saco, USA). To determine the intracellular MC-LR (InMC-LR)
concentration, the collected cells were ground in liquid nitrogen until
broken, and the resulting cell debris was collected and re-suspended in
PBS. To prevent the bio-degradation of MC-LR by enzymes of Sphingo-
pyxis sp. YF1 in the co-culture during subsequent treatments, the MC-LR
degrading enzymes were inactivated by adding 25 μL of 5 mol/L hy-
drochloric acid (final pH 3.5 ~ 4). As reported previously, MC-LR at this
pH range is very stable (Harada et al. 1996). The suspension was
centrifuged at 12,000 × g to remove the cell debris, and then the con-
centration of InMC-LR was determined using an ACQUITY
ultra-performance liquid chromatograph (UPLC) (Waters, Milford,
United States) equipped with an ACQUITY UPLC BEH C18 column. A
mixture of methanol (63 %, v/v) and trifluoroacetic acid (0.05 %, v/v)
was used as mobile phase with a flow rate of 0.6 mL/min. MC-LR was
detected with a photodiode array (PDA) detector at a wavelength of 238
nm. The InMC-LR content was calculated as the ratio of InMC-LR con-
centration to cyanobacterial cell density.

2.5. RNA extraction, cDNA synthesis and quantitative real-time-PCR

The expression of genes involved in photosynthesis and MC-LR
biosynthesis of M. aeruginosa, and genes associated with MC-LR degra-
dation of Sphingopyxis sp. YF1, was investigated. The gene psaB encodes
one of the reaction center proteins of photosystem I and psbB encodes
the core antenna CP47 protein of photosystem II, respectively (Shi et al.
2004). The gene rbcL encodes the large subunit of ribulose bisphosphate
carboxylase, which is a key enzyme involved in the dark reaction of
photosynthesis (Liu et al. 2015). The gene mcyB is crucial in MC-LR
synthesis. The genes mlrA, mlrB, mlrC, and pAAase are critical genes
involved in MC-LR biodegradation (Cai et al. 2022; Wei et al. 2023). The
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target genes and their primers are shown in Table S1. Solutions in the
co-culture and the monocultures were withdrawn and centrifuged at
8000 × g for 10 min to harvest bacterial and cyanobacterial cells, and
the harvested cells were ground in liquid nitrogen. RNA was extracted
using the RNAprep Pure Plant Plus Kit (TianGen, Beijing, China) and
cDNA was synthesized using the HiScript® IIQ RT SuperMix for qPCR
(Vazyme, Nanjing, China). Quantitative real-time PCR (qPCR) was
performed using the ChamQUniversal SYBR qPCRMaster Mix (Vazyme)
on a qTOWER3 Real-Time PCR System (Analytikjena, Jena, Germany).
The 16S rRNA genes of Sphingopyxis sp. YF1 and M. aeruginosa
FACHB-905 were used as internal references. The relative expression of
target genes was calculated according to 2− ΔΔCt method (Livak and
Schmittgen 2001).

2.6. Scanning electron microscopy and energy dispersive spectroscopy

At different time points, bacterial and cyanobacterial cells in the co-
culture were harvested and then fixed overnight at 4◦C with 2.5 %
glutaraldehyde. The samples were washed thrice using phosphate buffer
(0.1 M, pH 7) and subsequently fixed with a 1 % osmic acid solution for
1–2 h. After the osmic acid solution was carefully removed, the samples
were rinsed and dehydrated with different concentrations of ethanol.
The samples were then sprayed with platinum by a coating machine
(Quorum Q150T ES plus, East Sussex, United Kingdom) under 10 mA
current for 10 s and examined under a Nova Nano 450 scanning electron

microscope (FEI, Hillsboro, United States) equipped with an X-MaxN50
energy dispersive spectrometer (Oxford Instruments, Abingdon, UK).

2.7. Statistical analysis

All assays were performed in triplicate and the results were reported
as means ± standard deviation (SD). The data in this study, including
cell density, Chla, oxidative stress, concentration of InMC-LR and ExMC-
LR, and functional gene expression, were analyzed using t-test (SPSS
26.0). Differences were considered as statistically significant if p-value<
0.05. Correlation between concentrations of InMC-LR and ExMC-LR was
evaluated using linear regression.

3. Results

3.1. Growth of M. aeruginosa FACHB-905 and Sphingopyxis sp. YF1 in
the monocultures and the co-culture

The cell density of M. aeruginosa FACHB-905 increased from 5.80 ×

106 cells/mL to 6.45 × 107 cells/mL and 6.55 × 107 cells/mL in the
monoculture and co-culture on day 11, respectively (Fig. 1A). Moreover,
the cell density of M. aeruginosa FACHB-905 from day 1 to day 7 was
promoted by 24.8 % (day 1) to 44.3 % (day 5) in the presence of
Sphingopyxis sp. YF1 compared to that in the absence of YF1. After day 7,
the cyanobacterial cell density in the co-culture and in the monoculture

Fig. 1. Variations of (A) cell density of M. aeruginosa FACHB-905 in the cyanobacterial monoculture and in the co-culture of M. aeruginosa FACHB-905 and
Sphingopyxis sp. YF1, (B) Chla content of M. aeruginosa FACHB-905 in the cyanobacterial monoculture and in the co-culture, and (C) cell density of Sphingopyxis sp.
YF1 in the bacterial monoculture and in the co-culture. *, p < 0.05, **, p < 0.01.
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became close. These results indicate that strain YF1 is beneficial to the
growth of M. aeruginosa FACHB-905 during the initial 7-day period.

Chla is one of the major light-capturing pigments in Microcystis
aeruginosa, responsible for absorbing and transferring light. It serves as
an indicator of photosynthetic activity and is closely correlated to cya-
nobacterial growth (Liu et al. 2015; Zhang et al. 2019). According to
Fig. 1B, the concentration of Chla increased from 213.09 μg/L (day 0) to
1711.14 μg/L (day 10) in the monoculture ofM. aeruginosa FACHB-905,
and from 219.72 μg/L (day 0) to 1763.54 μg/L (day 10) in the
co-culture. The concentration of Chla in the co-culture of M. aeruginosa
FACHB-905 and Sphingopyxis sp. YF1 was higher than that in the
monoculture of strain FACHB-905 on days 2, 4, and 6 (p < 0.05). The
dynamic of Chla concentration was consistent with the cell density of
strain FACHB-905.

The growth of Sphingopyxis sp. YF1 in the monoculture and the co-
culture was determined. The BG11 medium used in this study has
limited organic substances (such as 6 mg/L citric acid and 6 mg/L
ammonium ferric citrate). Strain YF1 did not show apparent growth in
the monoculture (Fig. 1C), indicating its poor utilization of citric acid
and citrate as a carbon source. In the co-culture, the cell density of YF1
increased fast during the first 2 days, from 5.11× 107 cells/mL to 8.01×

107 cells/mL. Until day 7, the cell density increased to 9.44 × 107 cells/
mL. From day 1 to day 11, the cell density of Sphingopyxis sp. YF1 in the
co-culture was increased by 59.19 % (day 1) to 117.51 % (day 8)
compared to that in the monoculture. Since the BG11 medium can not

provide available carbon sources for strain YF1, it should be
M. aeruginosa FACHB-905 that provides the necessary carbon sources to
support the growth of YF1 in the co-culture. Therefore, M. aeruginosa
FACHB-905 benefited the growth of Sphingopyxis sp. YF1. Taken
together, the findings in Fig. 1 suggest a mutualistic relationship be-
tween M. aeruginosa FACHB-905 and Sphingopyxis sp. YF1 during the
initial 7 days.

3.2. Dynamics of InMC-LR and ExMC-LR

The concentration of InMC-LR increased from the onset to day 10,
both in theM. aeruginosa FACHB-905 monoculture and in the co-culture
(Fig. 2A). In the FACHB-905monoculture, the concentration of InMC-LR
on days 2, 4, 6, 8, and 10 was 32.18, 69.98, 94.28, 117.25 and 174.27
μg/L, respectively. In the co-culture, the concentration of InMC-LR
increased by 52.53 %, 50.58 %, 31.09 %, 70.17 %, and 91.15 % on
days 2, 4, 6, 8, and 10, respectively. The content of InMC-LR (cellular
quota) in the co-culture is higher than in the M. aeruginosa FACHB-905
monoculture on days 4, 8, and 10, increased by 12.9 %, 54.8 %, and 82.8
%, respectively (Fig. 2B). This suggests that the bacterial strain YF1
enhanced the MC-LR biosynthesis of M. aeruginosa.

The concentration of ExMC-LR was much lower than the concen-
tration of InMC-LR, especially after day 4, the former was ~40 to ~100
times less than the latter. The concentration of ExMC-LR in the cyano-
bacterial monoculture was 2.84, 2.02, 2.46, 1.77, 2.68 and 4.58 μg/L

Fig. 2. Variations of (A) InMC-LR concentration in the cyanobacterial monoculture and the co-culture, (B) InMC-LR content in the cyanobacterial monoculture and
the co-culture, and (C) ExMC-LR concentration of M. aeruginosa FACHB-905 in the cyanobacterial monoculture and the co-culture. *, p < 0.05, **, p < 0.01.
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(Fig. 2C). In the cyanobacterial monoculture, the concentration of
ExMC-LR was positively correlated to that of InMC-LR (r = 0.603, p <

0.05). There was a rapid increase in ExMC-LR during days 8–10, possibly
due to that strain FACHB-905 began entering the stationary phase and
more lysed cells released MC-LR. The concentration of ExMC-LR in the
co-culture was 13.72 % - 50.89 % lower than in the monoculture since
day 2, especially on day 10. The results imply strain YF1 effectively
reduced the content of ExMC-LR (Fig. 2C). In the co-culture, the con-
centration of ExMC-LR was not significantly correlated to that of InMC-
LR (r = − 0.115, p > 0.05). The concentration of ExMC-LR in the co-
culture exhibited a rapid decrease from day 0 to day 2, consistent
with the fast growth of Sphingopyxis sp. YF1 (Fig. 1C). These findings

highlight the critical role of strain YF1 in degrading ExMC-LR.

3.3. Interactions at the interface of Sphingopyxis sp. YF1 and
M. aeruginosa FACHB-905 cells

SEM was performed to better understand the interactions of Sphin-
gopyxis sp. YF1 and M. aeruginosa FACHB-905. In the beginning, only a
few cells of Sphingopyxis sp. YF1 attached to the cells of M. aeruginosa
FACHB-905 (Fig. 3A and 3B). On day 4, more cells of Sphingopyxis sp.
YF1 adhered to the cells of M. aeruginosa FACHB-905 (Fig. 3C and 3D).
Exudates were produced at the interface of the cyanobacterial and
bacterial cells (arrows 1–3). EDS was used to characterize the

Fig. 3. SEM and EDS analyses of Sphingopyxis sp. YF1 and M. aeruginosa FACHB-905 cells in the co-culture. A and B, SEM images on day 0; C and D, SEM images on
day 4; E, EDS spectra of the exudates at the interface of Sphingopyxis sp. YF1 and M. aeruginosa FACHB-905 cells.
Note: Sodium element is the component of BG11 medium; Aluminum, osmium and platinum elements were added during the preparation of the SEM sample.
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components of the exudates at (arrow 3), and the result shows that the
exudates contained C, N, and O (Fig. 3E).

3.4. MDA content and SOD activity in the monoculture and co-culture

The content of MDA in both cultures showed a similar trend
(Fig. 4A). The content of MDA increased during the first 6 days and
reached the maximal value of 98.63 nmol/mg protein in the mono-
culture and 82.33 nmol/mg protein in the co-culture on day 6. After
that, the content of MDA decreased until day 10. The content of MDA in
the co-culture was higher than that in the monoculture on days 4, 6, and
10. This suggests Sphingopyxis sp. YF1 mitigated the oxidative stress
experienced by M. aeruginosa FACHB-905.

We detected the activity of SOD in the monoculture of FACHB-905
and the co-culture. From the onset to day 4, the SOD activities in the
monoculture and the culture were at low levels, with no significant
difference between the two groups. On day 6, the activity of SOD in the
co-culture was 1.97 folds higher than that in the monoculture. The SOD
activity in the co-culture was lower than that in the monoculture after
day 6 (Fig. 4B).

3.5. Expression of photosynthesis-associated genes of M. aeruginosa
FACHB-905

The expression of photosynthesis-associated genes is shown in
Fig. 5A-C. The results show that the expression of psaB and psbB was
significantly up-regulated in the co-culture compared to the mono-
culture ofM. aeruginosa FACHB-905 and that of rbcLwas up-regulated in
the co-culture on days 2, 4, 6, and 8 (p < 0.05). This suggests strain YF1
increased both the light and dark reaction activities of M. aeruginosa
FACHB-905. The elevated expression of key genes of photosystems,
coupled with the higher Chla content from day 0 to day 6 (as shown in
Fig. 1B), resulted in a higher photosynthetic activity of M. aeruginosa
FACHB-905, and provided an increased energy supply for cyanobacte-
rial growth. In addition, the up-regulation of rbcL indicates a strength-
ened carbon fixation capacity and can provide more carbohydrate for
cyanobacterial growth. On days 8 and 10, despite the higher gene
expression in the co-culture than in the monoculture of M. aeruginosa
FACHB-905, there was no significant difference in Chla content between
the two groups (Fig. 1B), which means there was no more captured light
energy for cyanobacterial growth, thus limiting the growth enhance-
ment in the co-culture.

3.6. Expression of a critical gene involved in MC-LR synthesis

The expression of a critical MC-LR synthesis gene mcyB was
analyzed. The expression ofmcyB in the presence of Sphingopyxis sp. YF1
on days 2, 4, 6, 8 and 10 was 1.31, 1.48, 1.63, 1.74 and 1.75 times as
high as that in the absence of Sphingopyxis sp. YF1 (Fig. 5D). The up-
regulation of mcyB in the co-culture implies that Sphingopyxis sp. YF1
promoted the MC-LR production of M. aeruginosa FACHB-905. The in-
crease in the InMC-LR concentration in the co-culture (Fig. 2A) can be
attributed to the dual effects of Sphingopyxis sp. YF1, i.e., it not only
stimulated the growth ofM. aeruginosa FACHB-905 (days 2–6) (Fig. 1A)
but also enhanced MC-LR synthesis of individual cells of M. aeruginosa
FACHB-905, as indicated by the elevated expression of mcyB.

3.7. Expression of critical genes involved in MC-LR bio-degradation by
Sphingopyxis sp. YF1

The expression of mlrA, mlrB, mlrC, and pAAase was analyzed. The
expression of all four genes was significantly higher in the co-culture
than in the monoculture of Sphingopyxis sp. YF1 (p < 0.05) (Fig. 6).
The expression of mlrA, mlrB, and mlrC in the co-culture was at least
12.52 times that in the YF1 monoculture (Fig. 6A-C), consistent with the
lower ExMC-LR level in the co-culture (Fig. 2C). PAAase mediates the
reactions during the late phase of MC-LR degradation (Wei et al. 2023),
which may account for the relatively low expression on day 2 and day 4
and the higher expression level after day 4 in the co-culture (Fig. 6D).

4. Discussion

Epiphytic bacteria can have either positive or antagonistic or no
obvious effects on cyanobacterial growth. Nonetheless, to the best of our
knowledge, little is known about the influence of MCs-degrading bac-
teria on the growth of bloom-forming cyanobacteria and the underlying
mechanisms. The present study unveiled that the Sphingopyxis sp. YF1
enhanced the growth of M. aeruginosa FACHB-905 from day 1 to day 7.
On the other hand, after day 7, cyanobacterial growth was close in the
presence or absence of YF1. The enhancement of cyanobacterial growth
stopped after day 7 may be due to that strain YF1 could not obtain
enough ExMC-LR as a main carbon source, resulting in slow bacterial
growth. But the ratio of cyanobacterial cells to bacterial cells increased,
which diluted the effect of strain YF1 on cyanobacterial growth.
Therefore, the effect was weakened with time, and the enhancement
stopped after day 8. Although the concentration of extracellular MC-LR
increased after day 8, there may be a lag effect in the response of

Fig. 4. Variations of MDA content (A) and SOD activity (B) of M. aeruginosa FACHB-905 in the cyanobacterial monoculture and the co-culture. *, p < 0.05, **, p
< 0.01.
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bacterial cells to the change in ExMC-LR concentration, as reported in a
previous study (Gao et al. 2022). As a result, bacterial density did not
increase at that time. Previous research by Berg et al. (2009) demon-
strated that most of the bacterial strains isolated from various aquatic
environments enhanced the cyanobacterial growth in one or two weeks,
although subsequent cyanobacterial growth was not reported. Kim et al.
(2019) revealed that Rhizobium sp. MK23 promoted the growth of
M. aeruginosa PCC7806 from the logarithmic phase to the decline phase,
which differs from our findings. Pannard et al. (2016) found that the
presence of heterotrophic bacteria did not significantly affect cyano-
bacterial growth. These discrepancies may be attributed to the differ-
ences in the tested cyanobacteria (e.g., toxic or non-toxic) or bacteria
(MCs-degrading or non-MCs-degrading). It can be inferred from these
studies that different microbes play roles at different stages of cyano-
bacterial growth and may therefore have varying effects on the occur-
rence and development of HCBs.

Furthermore, it was found that the MDA content of strain FACHB-
905 decreased on days 4, 6, and 10 in the presence of strain YF1,
implying the role of strain YF1 in reducing ROS in cells of strain FACHB-
905. Excessive ROS are detrimental to cyanobacterial growth due to

lipid peroxidation, protein oxidation, damage of nucleic acids and the
destruction of cellular components such as phycobilisomes (Liu et al.
2005; Rezayian et al. 2019). Therefore, the alleviation of oxidative stress
by strain YF1 may account for the promoted growth of M. aeruginosa
FACHB-905 in the co-culture. The MDA content was close in the
FACHB-905 monoculture and the co-culture on day 2, possibly due to
the ROS level being relatively low, which may be not sufficient to induce
a response from the cyanobacterial and bacterial antioxidant systems.

Previous studies have shown that H2O2-resistant bacteria can pro-
vide catalase (CAT) to benefit the growth and photosynthesis of the
H2O2-sensitive M. aeruginosa under H2O2 stress or high light (80 μmol
m− 2 s− 1) (Kim et al. 2021; Kim et al. 2019). Sphingopyxis sp. YF1 has two
copies of CAT-coding genes (https://www.ncbi.nlm.nih.gov/dataset
s/genome/GCF_022701295.1/), while strain FACHB-905 does not
have any (https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_000
332585.1/). Therefore, strain YF1 is capable of providing CAT to pro-
tect FACHB-905 from H2O2 attack. H2O2 has been shown to inhibit the
expression of numerous functional genes, including those related to
photosynthesis and mcy genes (Kim et al. 2021). Therefore, the allevi-
ation of oxidative stress would result in the up-regulation of these genes,

Fig. 5. Expression of photosynthesis-related genes psaB (A), psbB (B) and rbcL (C) and the MC-LR synthesis gene mcyB (D) of M. aeruginosa FACHB-905 in the
presence or absence of Sphingopyxis sp. YF1. *, p < 0.05, **, p < 0.01.
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as observed in the present study (Figs. 5 and 7). We also found a sig-
nificant increase in the SOD activity in the co-culture on day 6 (Fig. 4B),

possibly due to the rapid increase in MDA content after day 4 (Fig. 4A)
necessitating the synthesis of more SOD. Therefore, it is speculated that
SOD also plays a role in reducing ROS (Fig. 7). The SOD activity in the
co-culture was lower than that in the monoculture after day 6, which
may be attributed to the involvement of other ROS-scavenging enzymes,
such as peroxidases and glutathione, which can act as major antioxi-
dants during these stages (Kim et al. 2021; Rezayian et al. 2019).

In turn, cyanobacteria can influence the growth of associated bac-
teria. Some cyanobacteria have been shown to negatively affect bacte-
rial growth. Zhang et al. (2019) found that the growth of M. aeruginosa
increased while the growth of some bacterial species was suppressed in a
co-culture system. It was speculated that the cyanotoxins, including
MCs, can inhibit the energy metabolism of these associated microor-
ganisms. In the present study, M. aeruginosa FACHB-905 significantly
promoted the growth of strain YF1 (Fig. 1C). Unlike those species, due to
the strong MC-LR metabolic capability, MC-LR acts as carbon and ni-
trogen sources rather than a metabolism inhibitor for strain YF1.
Meanwhile, strain YF1may also use cyanobacterial exudates such as EPS
as its nutrients such as N and P (refer to the discussion on EPS below).
Previous research has shown that the exudates from 12 cyanobacterial

Fig. 6. Expression of MC-LR degradation-associated genes in the monoculture of Sphingopyxis sp. YF1 and the co-culture. A, mlrA, B,mlrB, C, mlrC, and D, pAAase. p <
0.05, **, p < 0.01.

Fig. 7. Proposed bacterial-cyanobacterial interaction mechanisms in this study.
Green characteristics are those of FACHB-905, yellow ones belong to YF1, and
the blue ones are produced by both.
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species can support the growth of Pseudomonas sp. P1, Ancylobacter
aquaticus CN13, and Ralstonia eutropha JMP134, and the maximum cell
densities of strain CN13 and JMP134 were positively correlated with the
content of total organic carbon of cyanobacterial exudates (Kirkwood
et al. 2006).

The production of MCs in the presence of epiphytic bacteria has been
reported previously. Briand et al. (2016) reported that the bacterial
community isolated from the mucilage of M. aeruginosa 7806 did not
significantly influence the intracellular MC-LR and desmethyl MC-LR
(Des-MC-LR) concentrations (normalized by the dry weight). To date,
the underlying mechanism by which MC-degrading bacteria affect MC
production remains poorly understood. MCs have various functions such
as the modulation of proteins, involvement in photosynthesis, and
acting as a self-protective mechanism (Dziallas and Grossart 2012; Wang
et al. 2018). In the present study, we observed that the production of
MC-LR by M. aeruginosa FACHB-905 in the presence of Sphingopyxis sp.
YF1 was promoted, especially on days 8 and 10 (Fig. 2B). This might be
attributed to the degradation of MC-LR by strain YF1, which stimulated
M. aeruginosa FACHB-905 to increase MC-LR production to maintain an
adequate level of MC-LR for its functions.

As a MC-LR degrader, strain YF1 significantly decreased ExMC-LR
concentration, especially on day 10 (Fig. 2C). On day 10, more cells
lysed and released MC-LR, resulting in much higher ExMC-LR concen-
trations (which is inferred from the rapid increase in ExMC-LR con-
centration in the monoculture). The InMC-LR concentration in the co-
culture is ~ 2 folds that in the monoculture, it can be inferred that the
actual MC-LR concentration released by strain FACHB-905 in the co-
culture may be significantly higher than that the ExMC-LR concentra-
tion in the FACHB-905 monoculture (4.58 μg/L). Therefore, strain YF1
played a significant role in the degradation of MC-LR. However, because
MC-LR has not been completely released, the role of strain YF1 in
degrading MC-LR has not been fully realized. This study reveals two
sides of MCs-degrading bacteria in the dynamic of MCs. It is the first
study that suggests the dual roles of a MCs-degrading bacterium in
promoting cyanotoxins synthesis and degrading cyanotoxins (Fig. 7).

The present study showed that cells of YF1 and FACHB-905 were in
close contact (Fig. 3), which is conducive to their interactions. More-
over, considerable amounts of exudates were produced (Fig. 3). The
elements of the exudates suggest the presence of extracellular polymeric
substances (EPS), which are complex mixtures of biomolecules sur-
rounding microbial cells (Le et al. 2022; Peng et al. 2022; Seviour et al.
2019). EPS may facilitate the attachment of bacterial cells to cyano-
bacterial cells. It has been found that EPS ingredients such as poly-
saccharides can contribute the cell adhesion (Shi et al. 2022). EPS are
rich in nutrients, and one of the functions of EPS is to store and transport
nutrients (e.g., N and P) between different species (Liu et al. 2018; Tang
et al. 2021). Previous research has shown that EPS fromMicrocystis spp.
can be degraded by the bacterial community obtained from the bloom
zone (Li et al. 2009). It is inferred that strain YF1 may use EPS as its
carbon source. The findings in this study suggest that EPS may play a
role in the interactions of Sphingopyxis sp. YF1 and M. aeruginosa
FACHB-905 (Fig. 7).

The frequent outbreaks of HCBs and the resulting harms have
become a global environmental and public health issue (Li et al. 2016).
Various factors, including climate change and eutrophication, influence
the occurrence of HCBs (Liu et al. 2020; Smucker et al. 2021). However,
the biological factors that affect this process are often overlooked.
Although it is recognized that associated bacteria play an essential role
in the formation of HCBs (Pound et al. 2021), the underlying mecha-
nisms remain unclear. As a special bacterial group, the
cyanotoxin-degrading bacteria exhibit a relatively high abundance in
the cyanobacteria-related microbial community (Gao et al. 2022; Shao
et al. 2014), highlighting their importance in the cyanobacterial phy-
cosphere. Our study reveals the complexity of interactions between
cyanotoxin-degrading bacteria and bloom-forming cyanobacteria.
Firstly, the results show that a MCs-degrading bacterium promotes the

growth of a toxic cyanobacterium specifically during the early and
middle stages, which suggests cyanotoxin-degrading bacteria may drive
the initial or mid-term development of HCBs but may not significantly
affect the eventual outcome of HCBs. Moreover, our findings show that
Sphingopyxis sp. YF1 can significantly reduce the ExMC-LR concentra-
tion, suggesting an important role of bacteria in cyanotoxin degradation
in aquatic environments. Meanwhile, the present study shows that
cyanotoxin-degrading bacteria also affect the production of cyanotoxins.
The present study emphasizes the importance of interactions between
MCs-degrading bacteria and bloom-forming cyanobacteria in the pro-
gression of HCBs and the environmental fate of cyanotoxins. This study
also has implications for the control of HCBs and cyanotoxins detoxifi-
cation. Liu et al. (2020) have revealed that microcystinase A can
simultaneously inhibit the growth of Microcystis aeruginosa and degrade
MC-LR. As cyanotoxin-degrading bacteria may promote cyanobacterial
growth and toxins synthesis, the use of degrading enzymes instead of
bacterial cells for HCB control and cyanotoxin removal could be a
preferable approach.

The present study described the interactions between a MCs-
degrading bacterium and toxic Microcystis aeruginosa. However, in nat-
ural environment, cyanobacteria can occur in the unicellular or colonial
forms, and bacteria always exist as communities rather than single
species. Moreover, bacteria can occur as free-living communities or they
can attach to cyanobacterial cells. These factors make the interactions
between bacteria and cyanobacteria in the natural environment much
more complex. This study also did not explore the entire process from
the lag phase to the decline phase of cyanobacterial growth. Therefore,
future studies should simulate microbial communities in the real envi-
ronment, focusing on the interactions between free-living and/or
attached bacterial communities and cyanobacterial cells on a longer
time scale.

5. Conclusion

This study investigated the interactions between a typical
microcystin-degrading bacterium and a toxic bloom-forming cyano-
bacterium and the underlying mechanisms. The bacterium and the
cyanobacterium mutually affected each other’s growth. The bacterium
increased the intracellular MC-LR content (cellular quota), especially on
the later period, and significantly decreased the extracellular MC-LR
concentration, which was consistent with the up-regulation of critical
functional genes involved in MC-LR synthesis and biodegradation. The
alleviation of oxidative stress may be a key mechanism to enhance
cyanobacterial growth, and EPS may play a role in the bacterium-
cyanobacterium interactions. These findings will further enhance our
understanding of the role that biological factors play in influencing the
occurrence and development of HCBs.
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