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Untangling the coupling effect of water quality and quantity on lake algal blooms 
in Lake Hulun from a dual perspective of remote sensing and sediment cores

a) Highlights

Dual-scale view of algal blooms: remote sensing image and sediment core sample.

Utilization of multiple analysis methods, including Copula, GAM, and SEM analysis.

The nonlinear water quality and quantity variation exhibited a turning point in water level changes at 543 meters.

Through indirect coupling effects, water level changes dominate water quality shifts, algal blooms, and diatom 

community variations.

mailto:yu.li@bnu.edu.cn
mailto:yaobo@imech.ac.cn


（ii） Abstract

Algal blooms and sediment diatoms are crucial indicators of lake water ecology, 
influenced by water quantity and quality. However, the coupled effects of water quality 
and quantity changes on algal blooms are still unclear, especially for lakes in cold and 
arid regions. This study assessed the long-term variations in algal blooms in Hulun Lake 
using a novel approach combining remote sensing and sediment core samples for 
diatom analysis. Two mutation points from the structural change test were identified in 
approximately 2000 and 2010 for algal bloom area (MBE) and sediment diatom 
richness, indicating asynchronous algal blooms. A structural equation model (SEM) 
demonstrated that water level (WL) changes were the dominant influencing factor, co-
driving the variations in algal blooms and sediment diatoms in conjunction with total 
nitrogen (TN), total phosphorus (TP), and chemical oxygen demand (COD). The results 
revealed nonlinear relationships between the lake WL, TN, Chla, and COD. The water 
level of 543 m emerged as a critical threshold affecting the relationship between water 
quality and quantity. Distinct differences in this relationship were observed when water 
levels were above or below this threshold. These variations became particularly 
pronounced during periods of high and low water levels. The results provide novel 
insights into the dynamics of algal blooms and can further support lake ecosystem 
conservation and management.

Keywords: Algal blooms, water quality, water quantity, coupling effects, Hulun Lake

1. Introduction

Algal blooms have become one of lakes' most critical environmental issues worldwide. 
Recent research highlights a significant increase in algal blooms across global freshwater lakes, 
with marked rises, particularly in Asia and Africa over the last four decades (Hallegraeff et 
al.,2021; Hou et al., 2022; Sha et al., 2021). This trend is further complicated by the interplay 
between deteriorating water quality and shifting hydrological conditions (Ho et al., 2021; Van 
Vliet et al.,2023); in places like China, worsening water quality not only causes eutrophication 
but also leads to ecological degradation and biodiversity loss. Therefore, implementing more 
effective measures to control eutrophication and restore aquatic ecosystems is urgently needed 
(Babamiri and Marofi, 2021; Yang et al., 2021; Zhang et al., 2022). Water quantity and quality 
management have been recognized as crucial factors for controlling algal blooms, but their 
coupling effects are still unclear (Cui et al., 2021). Investigating the impact of water quality and 
quantity on algal blooms while considering the relationship between water quality and water 
quantity may help to elucidate the mechanisms behind algal blooms further and provide 
essential insights for the coordinated management of lakes.

Sediment cores as biomarkers have been widely used in hydrogeological research to study 
the temporal changes in biological communities (Capo et al., 2019; Li et al., 2019; Naeher et 
al., 2012). Among these biomarkers, diatoms are suitable for studying the long-term dynamics 
of algal ecosystems due to their broad habitat distribution, sensitivity to environmental changes, 



and indicative influence on lake nutrition, hydrology, and aquatic vegetation (Chen et al., 2021; 
Moser, 2004; Wang et al., 2012). However, collecting sediment samples requires field sampling 
and laboratory analysis, which is costly and time-consuming (Zhang et al., 2021b). In contrast, 
remote sensing provides an alternative means. Due to the spatial and temporal coverage of 
remote sensing images, remote sensing techniques can be used to monitor the dynamics of algae 
blooms (Zhang et al., 2021a) over a large extent and an extended period. However, the quality 
of remote sensing images is influenced by weather conditions, which could introduce further 
errors in the estimates of algal blooms. Remote sensing monitoring focuses on identifying algal 
blooms using specific spectral information. In contrast, the study of diatoms in sediments 
focuses on analyzing ecological characteristics such as the abundance and community structure 
of diatoms. Sediment analysis provides localized, detailed information about specific sites and 
requires physical sampling and laboratory analysis. It allows for identifying specific algal taxa 
and reconstructing past environmental conditions and historical algal blooms extending back 
decades or even centuries. Contrastingly, remote sensing data provides sizeable spatial 
coverage and facilitates temporal analysis of algal bloom dynamics but may be affected by 
cloud cover and have limitations in distinguishing between algal types. By integrating these 
two approaches, researchers can overcome the limitations of each method alone, providing a 
more nuanced and complete picture of algal bloom dynamics at different scales (Fig. 1). Few 
studies have combined the two approaches to investigate the ecological shifts within aquatic 
ecosystems.

Climate change impacts algal blooms directly by altering wind patterns and light 
irradiance, which are essential for bloom development (Fang et al., 2018; Thomas et al., 2017). 
Concurrently, human activities, including water management projects and overfishing, 
indirectly affect algal growth by modifying ecological balances and nutrient dynamics (Chen 
et al., 2021). Simultaneously, the impact of climate change and human activities on water 
quality and quantity is quite significant. The effects of climate change on water volume and 
quality are primarily manifested through alterations in precipitation, evaporation, and 
temperature changes. Meanwhile, human activities, such as water diversion projects and river 
flows, can introduce nutrient inputs into lakes, altering water quality and quantity. 
Consequently, these two impacts influence water quality and quantity through biogeochemical 
processes and ecosystem hydrodynamics, collectively affecting algal blooms (Zhang et al., 
2022). However, the interplay between hydrological conditions and water quality, significantly 
influenced by climate change and human activities, plays a decisive role in developing algal 
blooms in lakes (Liu et al., 2022). The dual influence of water quality and quantity has been 
identified as the main driving force (Zuo et al., 2019). The close interaction between water 
quality and quantity inevitably leads to changes in biogeochemical and physical processes in 
the water body and sediments (Fig. 1), which may trigger the release of buried nutrients in 
sediments and algal blooms, as well as shifts in biological communities (Yang et al., 2021; 
Chen et al., 2020). However, existing studies mostly treated lake water quantity and water 
quality as independent variables without considering the interplay between water quantity and 
water quality (pathway 2 in Fig. 1) and overlooked their combined effects (pathway 1 in Fig. 
1) (Zhang et al., 2019; Yan et al., 2022). Therefore, investigating the coupling effect of water 
quality and quantity on algal blooms is crucial.



To reveal the dynamic mechanism of algal blooms requires further study of the response 
relationship between water quality and water quantity. Previous works on lake water quantity 
and quality have mostly adopted two approaches. The first is based on mechanistic models. For 
example, Alamdari et al. (2022) assessed the impact of water quality and quantity on a 
watershed in northern Virginia by combining watershed hydrological models with reservoir 
water quality models. Yet, the mechanistic models require extensive data and calibration 
efforts. Another approach relies on statistical ones. This approach has advantages when data is 
limited (Atique & Attoh-Okine, 2016). For example, Zang et al. (2022) analyzed the joint 
probability distribution of discharge and TN/TP concentrations using the Frank copula function 
and identified quantitative management intervals. The Gaussian mixture model was introduced 
into their copula models to adaptively describe the joint effects of water quantity and water 
quality indicators for assessing the eutrophication risk. Copula functions have advantages in 
characterizing marginal distributions of different environmental parameters, but they have 
difficulties dealing with nonlinearity or threshold effects (Zhang et al., 2020; Li et al., 2023). 
Combining other models with the Copula approach, such as generalized additive models 
(GAM), may offer a more comprehensive understanding of the dynamic changes between water 
quality parameters and water levels and, consequently, support effective lake environment 
protection.

Fig. 1. Hypothesis of the role of water quantity and water quality in jointly controlling algal blooms and diatoms under various 

climatological and hydrological forcings. Sediment diatoms can be identified with sediment core samples, and algal blooms can 

be identified with remote sensing images.

Hulun Lake, the largest lake in northern China, has experienced remarkable economic 
growth, but the population expansion has continuously declined. Since the early 1990s, algal 
blooms have occurred several times that have jeopardized the local ecosystem of the lake (Fang 



et al., 2018). Despite decades of restoration efforts, the threat of algal blooms remains a concern 
(Chen et al., 2021). Taking Hulun Lake as an example, in this work, we hypothesized that the 
coupling of water quality and quantity primarily influenced algal blooms. Specifically, water 
quantity affects water quality and drives algal blooms via the coupling effect. Thus, the 
objectives of this study were as follows: (1) to characterize the variations in algal blooms in 
Hulun Lake using sediment diatoms and remote sensing data; (2) to quantify the impact and 
driving mechanisms of the coupled changes in water quality and quantity on algal blooms; and 
(3) to illustrate the response relationships between the water quality and quantity in Hulun Lake 
and identify key response factors. This work aimed to investigate the impact of coupled water 
quality and quantity variations on algal blooms and explore potential mechanisms. The results 
can contribute to implementing pollution control strategies and restoring aquatic ecosystems in 
cold and arid regional lakes.

（iii） 2. Materials and Methods

a) 2.1 Study Area

Hulun Lake (48°30′40″~49°20′40″N, 117°00′10″~117°41′40″E) is the fifth largest 
freshwater lake in China. It is located in the northern Inner Mongolia Autonomous Region, 
which is a cold and arid climate region. The lake has an area of 2339 km2 with an average water 
depth of 5-6 m and a maximum depth of approximately 8 m. The two main water inflows are 
the Krulen and Urshen Rivers, respectively. In 2000, the lake level dropped sharply due to 
reduced precipitation, severe warming, and drying in the basin. Under these conditions, Hulun 
Lake became an endorheic lake. Water and pollution entering the lake have no way out. The 
eutrophication level has risen to an alarming level. In recent years, the local government has 
taken many measures, such as ecological water replenishment via water diversions, to restore 
the lake storage and improve the water quality. Although they have successfully restored the 
water level up to ~543 m above sea level, the lake's water quality remains poor and at risk of 
algal blooms.

b) 2.2 Datasets

In situ water quality data were obtained from field surveys from August 2006 to August 
2019 at 13 water sampling sites (located in the western, middle, and eastern sections of the lake; 
Liang et al. (2016) and Yu et al. (2021)) (Fig. 2). The water quality parameters include pH, 
Secchi depth (SD, cm), dissolved oxygen (DO, mg/L), nutrient concentrations (i.e., TN and TP, 
μg/L), chlorophyll a (Chl a, μg/L), chemical oxygen demand (CODcr). Lake surface water 
temperature (LSWT) was extracted from MOD11A2 remote-sensing images with 8-day and 1-
km resolution. Correspondingly, the primary rivers that feed into Hulun Lake are the Kherlen 
River, Urson River, and Hailaer River. Data concerning river TN and TP levels were sourced 
from Yu et al. (2021), Pang et al. (2019), and research reports.



Fig. 2. Location of the study area. (a) The geographical location and elevation of the study area; (b) the location of the water 

diversion project and the distribution of field points.

i. 2.2.1 Sediment diatom counts with sediment cores

A gravity sampler collected sediment cores (approximately 30-40 cm long) from the lake. 
The sediment cores were then subsampled every 1 centimeter, frozen, and stored at -20 °C. The 
subsamples were pretreated for diatom analysis (Battarbee et al., 2001). The pretreated diatom 
concentrates were dropped onto glass slides. Naphrax® gum was then used to make slides after 
completely dried concentrates. The diatoms were counted under a 1000x oil microscope (Leica 
DM2500) according to the classification system of Krammer et al. (1991). The diatom count of 
each sample was limited to 400-450 grains, and the number of diatoms per gram of dry sediment 
was denoted as the diatom density (DD, 104 ind/g) (Matthews and Shakesby, 2004). The 
Margalef diversity index was used to represent the species richness of the diatoms, calculated 
as follows:

MD = (S ― 1)/ln N                                            (1)

Where MD represents the Margalef diversity index, S is the number of algae types, and N 
is the total diatom counts.

ii. 2.2.2 Algal bloom detection with remote sensing

We selected the Hou et al. (2022) algorithm for its pioneering use of the CIE color system 
in algal bloom detection, chosen for its precision and broad applicability across various lake 
environments. Compared to other methods for detecting algal blooms, the advantage of the CIE 
method is its ability to quantify and define colors using a two-dimensional CIE xy chromaticity 
diagram. This method allows for the numerical specification of colors based on human 
perceptibility using the visible spectrum. It has been confirmed this that algorithm is both 
reliable and accurate for Lake Hulun (Wang et al., 2023). This prior validation supports our 
utilization of the algorithm in our study, ensuring that our methodology is appropriate and 
scientifically robust for estimating algal bloom distribution in this particular environment. 
Remote sensing images from Landsat 5, 7 and 8 were obtained from the Google Earth Engine 



platform. For each pixel, we recorded the number of times that the pixel was classified as having 
an algal bloom event (denoted as Nbloom) and the number of valid Landsat observations (Nvalid) 
that were not cloud-shadowed. We then calculated the maximum bloom extent (MBE) and the 
bloom occurrence (BO). The MBE represents the total area of pixels where algal blooms were 
detected at least once. The BO was estimated by normalizing Nbloom against Nvalid and represents 
the proportion of Landsat observations during which an algal bloom was recorded.

BO = Nbloom / Nvalid                                                                                                                                      

(2)

Our dual-perspective approach, combining remote sensing for monitoring blue-green 
algae and sediment core analysis focusing on diatoms, is designed not only to leverage the 
strengths of each method but also addresses the limitations of remote sensing, such as variable 
image quality and seasonal discrepancies. Together, these methods provide a comprehensive 
understanding of algal bloom dynamics. Diatoms are well-known for their sensitivity to 
changes in water quality and have been widely used as bioindicators for historical 
environmental reconstructions. Their siliceous frustules preserve well in sediments, allowing 
for a detailed reconstruction of past water quality conditions (Wang et al., 2012). Preserving 
blue-green algae in sediment cores can be less reliable than diatoms, as cyanobacterial remains 
are more prone to decomposition (Ding et al., 2021). This can introduce biases or uncertainties 
in reconstructing past algal bloom events based solely on blue-green algae. Preliminary reviews 
of existing literature and studies on Hulun Lake suggested that diatoms provide a consistent 
and reliable proxy for historical water quantity assessments in this particular lake environment 
(Xue et al., 2003).

c) 2.3 Data analysis

In this study, we systematically integrate Structural Equation Modeling (SEM), Copula 
functions, and Generalized Additive Models (GAM) to intricately examine the roles of water 
quality and quantity in influencing algal bloom dynamics. SEM is initially applied to map the 
intricate relationships between water quality, quantity, and algal blooms. This approach allows 
us to understand water parameters' direct and indirect effects on algal blooms, establishing a 
structural framework for our analysis. However, SEM might not adequately address the 
complex, nonlinear dependencies between water quality and quantity. To bridge this gap, we 
introduce Copula functions. This method enhances the analysis by modeling the joint 
distribution of water quality and quantity, thereby uncovering the nuanced dependencies that 
SEM overlooks. This step allows us to comprehend better how variations in water quality and 
quantity jointly contribute to algal bloom conditions. To extend the analysis further, GAM is 
employed to dissect the nonlinear relationships between water quality and quantity, offering a 
more granular view of their interaction. Unlike SEM, GAM provides the flexibility to 
accurately model these intricate dynamics without predefining a specific relationship form, thus 
complementing our initial findings from SEM and the depth provided by Copula functions. 
Collectively, these methods constitute a robust analytical framework, each contributing 
uniquely to unraveling the complex interplay between water quality, quantity, and algal blooms. 
By employing SEM for structural analysis, Copula functions for dependency modeling, and 



GAM for nonlinear exploration, we can better understand how water quality and quantity 
influence algal bloom dynamics.

 

Fig. 3. Flowchart for the overall methodology.

i. 2.3.1 Mutation points and regime shifts detections 

Detecting potential structural changes in data sequences has many applications in 
analyzing algal ecosystems. The Sequential F Test is a statistical method to detect breakpoints 
in time series data. It works by assuming that the data is continuous up to a certain point and 
then checking to see if a significant change occurred after that point (Kong et al., 2017). 
Sequential F test and breakpoint function analyses were used to estimate breakpoints by 
minimizing the residual sum of squares and Bayesian information criterion (BIC). In addition, 
ordinary least square cumulative sum (OLS-CUSUM) is a method for monitoring and analyzing 
potential structural changes in time series data. This study used the experience of empirical 
fluctuation processes cumulative sum based on ordinary least square residuals in OLS-CUSUM 
to analyze whether algal ecosystems undergo steady-state transformation (Brown et al., 1975). 
According to the theory of state transformation, for lake ecosystems that have undergone such 
a transformation, reducing external pressures to levels before the transformation does not revert 
the ecosystem to its original state along its previous developmental trajectory (Scheffer & 
Jeppesen, 2007). Steady-state transformations lie in their ability to indicate critical thresholds 
or tipping points beyond which ecosystems may not recover to their original state, thereby 
informing conservation strategies and management practices aimed at preserving ecological 
balance (Wang et al., 2012). This concept is widely applied in environmental science to 
understand the resilience of aquatic ecosystems to eutrophication (Sarkodie & Adams, 2018).

ii. 2.3.2 Structural equation modeling

Structural Equation Modeling (SEM) is a potent statistical methodology capable of 
precisely quantifying the cumulative impact of numerous influencing factors on target variables. 



SEM offers a means to comprehensively analyze the intricate interplay between various factors 
and their collective influence on specific outcomes (Huang et al., 2023). SEMs were used to 
evaluate the impact of water quality and quantity on lake algal blooms and sediment diatoms. 
A maximum likelihood estimation method was adopted for SEM model fitting. The model fit 
was assessed using several goodness-of-fit indices, including the CFI (comparative fit index), 
RMSEA (root mean squared error of approximation), and root mean square residual (SRMR). 
An SRMR lower than 0.05, an RMSEA lower than 0.08, and a CFI approximating one indicates 
a good fit. The model will be revised iteratively by deleting or changing nonsignificant (p > 
0.05) paths during the fitting process. If multiple models pass the criterion, the best goodness-
of-fit indices will be selected (Xie et al., 2020; Yang et al., 2021). 

iii. 2.3.3 Copula functions

To further reveal the response relationship found in the SEM and to explore how water 
quality is influenced by water quantity, we applied copula functions to establish a two-
dimensional joint distribution of water quantity and quality. The copula function is widely used 
for constructing multivariate joint probability distributions, which connect the marginal 
distributions of several random variables. Let F be an n-dimensional distribution function with 
marginal distributions of each variable denoted as F1(x1), F2(x2),..., Fn(xn). Then the joint 
distribution F of n random variables X1, X2, ..., Xn (where Xi∈R for all i) can be written as Eq. 
(3):

F(x1, x2, …, x𝑛) = P{X1 ≤ x1, X2 ≤ x2, …, Xn ≤ xn} = C[F1(x1), F2(x2), …, F𝑛(x𝑛)]     (3)

where X1, X2, ..., Xn are observed random variables, and F1(x1), F2(x2), …, Fn(xn) is the 
marginal distribution function of each variable. C is an n-dimensional copula function. This 
paper used five functions from two common copula families (see Table 1). First, we employed 
nonparametric methods to approximate the distribution types of the population for determining 
suitable copula functions (Table S1). The histogram of the water quality-water quantity 
relationship was used to define the sample population distribution.

Table 1. The full equations of five candidate copulas.

Function type Copula class Equation

Gaussian Copula C(u, v) =  Φ2[Φ―1(u), Φ―1(v); ρ]

t-Copula

Meta-elliptical Copula

C(u, v) =  T2[t―1
ν (u), t―1

ν (v); ρ]

Clayton Copula Archimedean Copula C(u, v) =  (u―ρ +  v―ρ ―  1)―1
ρ



iv. 2.3.4 Generalized additive model

The generalized additive model (GAM) is a nonparametric statistical model exploring the 
nonlinear relationship between response and explanatory variables (Beale et al., 2010; Pearce 
et al., 2011). The general formula of GAM can be expressed as follows:

                             G (y) =  s0 +  s1(x1) +  … + sm(xm) +  𝜀                                        
（4）

s(x) is a smooth function connecting explanatory variables, and ε is a random residual.

The steps for performing GAM analysis are summarized below. First, we analyzed the 
collinearity of the predictor variables based on the variance inflation factor (VIF;  0<VIF<10 
for no multicollinearity; 10 ≤ VIF<100 for strong multicollinearity; VIF ≥ 100 for severe 
multicollinearity). Second, the potential colinear variables were eliminated according to 
estimated collinearity, and the connection function was determined according to the type of 
probability density distribution of the response variable. Third, all remaining variables were 
included in the GAM model. The degrees of freedom (edf) and significance (p) of the 
smoothing function were determined, and the determination coefficient (adj-R2) was adjusted 
to attain the Akaike's information criterion (AIC) of each driving factor. The insignificant 
variables were gradually eliminated through the p-value. The smooth functions for predictor 
variables are based on natural splines. The parameters of the smoothing functions are 
determined by balancing the Generalized Cross-Validation (GCV) criterion to maximize model 
explanatory power and prevent overfitting. Finally, the GAM check function was used to 
evaluate the performance of the optimized model, and the most critical influencing factors were 
identified according to the edf of the smoothing function of each variable (Chen et al., 2020; 
Liu et al., 2020).

（iv） 3. Results and Discussion

a) 3.1 Changes in algal blooms in Hulun Lake 

This section summarized the results of algal blooms identified from remote sensing and 
sediment diatoms. Figure 4 illustrates the annual changes of MBE and BO. From 1990 to 2019, 
both MBE and BO showed periodic fluctuations. Specifically, the algal bloom area varied 
significantly, with an evident peak in 2000 (Fig. 4). This trend escalated notably from 2001 to 
2010, with the maximum area increased by a factor of 16, and the period from 2013 to 2019 
had an initial increase followed by a decrease in MBE. From 1990 to 2019, except for 2000, 
the BO experienced a marked rise, reaching a maximum of 23.6%, with the majority of algal 

Gumbel Copula C(u, v) =  exp[ ― ( ―log(u))θ +  ( ―log(v))θ
1
θ]

Frank Copula C(u, v) =  ―
1
θ  ∗  log 1 +

(exp( ―θ𝑢) ―  1)(exp( ―θ ∗ v) ―  1)
exp( ―θ) ―  1



blooms frequency in Hulun Lake being approximately 10%.

The F-statistic and p-values from the structural change test further confirmed the 
significance of such changes. The mutation points for MBE occurred in 2000, while for BO in 
approximately 1998 and 2002, which is consistent with Fang et al. (2018), who also found the 
primary outbreaks in Hulun Lake in 2000 and 2010. Before 2000, due to minor changes in water 
levels, the variation in the percentage of algal blooms and their area dynamics were consistent, 
maintaining an inconspicuous trend (Fang et al., 2018). Moreover, according to our previous 
studies, 1997 was identified as a critical point of change in water levels (Huang et al., 2023), 
with the period up to 2020 characterized by significant fluctuations. There were two abrupt 
changes in BO between 1998 and 2002, further confirming the driving force of water level 
changes. After 2009, the consistency between area changes and the percentage of algal blooms 
became fragile. MBE's increasing and then decreasing trend indicated that, alongside water 
level recovery and water quality changes, MBE and BO also underwent synchronous changes.

Fig. 4. Spatiotemporal monitoring of algal bloom outbreaks from 1990 to 2019 in Hulun Lake. Black areas indicated regions 

where algal blooms were not detected or where data was invalid, as reflected by the number of valid images (Nvalid)

Fig. 5 (a) shows the evolution of four indicators derived from sediment records (i.e., 



richness and density) and remote sensing (i.e., MBE and BO). Results showed that the past 
three decades have undergone a periodic fluctuation in diatom richness and density. Since 2010, 
however, diatom richness and density increased steadily, indicating Hulun Lake's aquatic 
environment recovery. After 2015, the diatom density slightly decreased while richness 
continued to grow. By comparing the extracted changes, it was found that the changes in lake 
algal blooms did not coincide with the mutation points of sediment diatoms. Around 2000, BO 
and MBE experienced increasing and declining transitions, coinciding with a period of recovery 
in diatom indicators. Around 2010, fluctuations in BO and MBE were observed alongside an 
overall upward trend in diatom density and richness. This pattern might be linked to changes in 
eutrophication levels and indicates that the lake's ecological system was evolving toward a more 
stable state (Wu et al., 2023). 

Additionally, the OLS-CUSUM test was applied to our long-term time series data to assess 
the stability of the lake ecosystem's parameters. Despite the observed fluctuations in the density 
and richness of diatoms, the OLS-CUSUM values did not exceed the critical confidence level 
threshold (α = 0.05 dotted line) (Fig. 5 (b)). This result indicates no significant structural 
changes have occurred, suggesting that the lake's ecosystem has likely not undergone a steady-
state transformation over the past three decades. Given that Hulun Lake has not experienced 
such a transformation, measures to reduce environmental pressures, such as restoring water 
levels and optimizing water quality parameters, could enable the ecosystem to recover along its 
original developmental trajectory. The trend variation offered clues about internal states within 
the lake's ecosystem. The comparison between the two datasets revealed that sediment diatom 
richness demonstrated better stability than algal blooms from remote sensing. At the same time, 
the data on algal blooms captured through remote sensing represents just a snapshot in time. To 
assess the relationship between algal blooms and the density and richness of sediment diatoms, 
we calculated the coefficient of determination (R2) between instances of algal blooms and 
variations in diatom metrics, incorporating varying lag times to account for the effect of delayed 
algal blooms on sediment diatoms (refer to Table S2 for details). Our analysis revealed a 
moderate correlation between the richness of diatoms in the lake's sediments and maximum 
bloom extent (R2=0.21, p < 0.05). A similarly mild correlation was observed between blooms 
and diatom density, albeit with a one-year delay. These findings underscore that the algal 
blooms in Hulun Lake exert a moderate influence on the dynamics of richness and density of 
diatoms. Diatoms are resilient to environmental changes, potentially contributing to their 
relative stability amidst fluctuations in water quality and quantity (Hao et al., 2021). Compared 
with algal blooms, the sediment diatom index having fewer mutation points might explain their 
stable presence in sediment records over time. In contrast, algal blooms captured by remote 
sensing are more sensitive to immediate environmental changes and exhibit more significant 
variability in response to nutrient dynamics and water conditions (Shi et al., 2018). For instance, 
algal blooms detected via remote sensing but absent from sediment diatom records could 
indicate short-lived bloom events that do not significantly alter the long-term diatom 
assemblage (Cui et al., 2021). Alternatively, significant changes in diatom compositions not 
accompanied by corresponding changes in surface algal bloom intensity could reflect shifts in 
deeper water or benthic conditions, potentially driven by changes in sedimentation rates or 
bottom-up ecological processes (Liu et al., 2016). Moreover, due to meteorological factors, 
especially wind speed, cloud cover, and the timing of satellite overpasses, the highly variable 



algal bloom frequency and sediment diatom richness did not exhibit consistency. Nevertheless, 
the exchange and cooperative change of diatoms in sediments and algae in water served as the 
foundation for algal bloom formation. Therefore, it is necessary to observe the algae changes 
in Hulun Lake from the dual perspective of algae.

Fig. 5. Change point detection of (a) lake algal blooms and sediment diatom indicators. (b) OLS-CUSUM test on structural changes 

in diatom composition and diversity.

b) 3.2 The coupling effect of water quantity and quality on algal blooms 

In this section, we applied the SEM method to quantitatively explore the driving 
mechanisms of lake water quality and quantity on both algal bloom phenomena. Figure 6 
depicts the derived model, where the thickness of each line is proportional to the standardized 
path coefficients. Red lines represent positive pathways, while blue ones represent negative 
ones. Results showed that the selected SEM can explain 92.1% of the variations in diatom 
density and 87.1% of the variations in diatom richness, with the water quality parameters being 
the main explanatory factors, namely TP, COD, Chla, and WL. Specifically, WL directly 
impacted diatom density (effect coefficient: -0.795, p< 0.001). TP and Chla had positive effects 
on diatom density, with standardized path coefficients of 0.757 (p < 0.001) and 0.423 (p < 
0.001), respectively. A similar correlation between diatom density and TP was found by Chen 
et al. (2021) for Dianchi Lake, while Taihu Lake found a significant negative relationship 
between TP and diatom density (Shi et al., 2019b). This discrepancy may be attributed to the 
importance of the nitrogen-to-phosphorus ratio in influencing diatom density (Lai et al., 2011). 
COD, DO, and LSWT negatively impacted diatom richness, with COD having the most 
significant effect coefficient of -0.384, while DO and LSWT had effect coefficients of -0.324 



and -0.197, respectively. This result suggests that higher concentrations of pollutants are 
associated with lower diatom richness. Fox et al. (2013) indicate that both excessively high and 
low levels of COD are detrimental to the stability and integrity of diatom communities. 
Additionally, studies have shown that WL insignificantly influences diatom richness (Wang et 
al., 2023). Nevertheless, WL negatively correlated with COD (effect coefficient: -0.607, p = 
0.004), and COD negatively influences diatom richness (effect coefficient: -0.384, p < 0.001). 
This result reflected the impact of the coupled interaction between water quality and quantity 
on diatom richness. When considering WL as an explanatory variable for changes in diatom 
density, the identified influence is small (Peng et al., 2021b). Instead, WL indirectly modulates 
planktonic biomass through interaction with water quality parameters ((Reid and Ogden 2009). 
The LWST was another crucial factor affecting diatom growth and respiration rates (Kong et 
al., 2021). Previous studies have indicated that fluctuations in water temperature can influence 
DO saturation in water, subsequently impacting diatom growth (Da Silva et al., 2005).

Fig. 6. The structural equation models (SEMs) for Hulun Lake are based on interactions between water quality and 

quantity, sediment diatoms, and algal bloom variables. Solid lines indicate significant paths, and the thickness is 

scaled to the strength of the effect; dotted lines represent nonsignificant paths. Red lines show positive path strengths 

and blue lines show negative path strengths. Overall fit is: chisq=79.76, df=28.00, p< 0.001, CFI=0.620, 

RMSEA=0.363.

Another SEM was established for MBE, BO, and Chla. The results revealed that coupled 
water quality and quantity influence could explain 81.7% of the variance in MBE changes. 
Moreover, the model explained 72.9% of Chla changes and 61.5% of BO changes. Among 
these, WL emerged as a pivotal influencing factor for both MBE and Chla changes, with 
standardized path coefficients of -0.47 (p < 0.05) and 0.64 (p < 0.05), respectively. WL is a 
sensitive predictor of eutrophication and can reflect the lake's capacity to dilute nutrient loads 
(Liu et al., 2010). In the SEM results, the influence of WL on indicators such as diatom richness 



and algal bloom frequency was not significant, possibly because WL mostly imposes indirect 
effects on aquatic ecosystems via its impact on water quality (Wang et al., 2021). A simple 
instance is the increase in water volume that can facilitate the dilution of nutrients in water, 
leading to a decrease in algal concentration. Additionally, among the two models, WL has had 
inconsistent effects on COD in different models. In contrast, in the models with algal bloom 
and sediment diatoms variables, the relationship was opposite, which showed that although the 
model structure and path were similar in the established model, However, due to the response 
relationship between water quality and quantity indexes at different times, the results of 
different periods may be captured. Similar results have also been found in Poyang Lake and 
Dongting Lake, and there were positive and negative correlations between water level and COD 
in the long time series (Geng et al., 2022; Li et al., 2020). These findings underscore the 
complex interplay between hydrological regulation and nutrient dynamics, ultimately 
influencing the observed water quality parameters and ecosystem responses. Despite the 
model's objective to clarify the relative contributions of water quality and quantity to algal 
bloom dynamics, the fit indices suggest suboptimal model performance. This discrepancy may 
be attributed to the model not encompassing additional influential variables, such as population 
and temperature, which have been identified to impact algal blooms (Chen et al., 2021). 
Integrating these factors notably refines the model's explanatory capability and overall fit.

Notably, TN exhibited a significant positive correlation with MBE among the water 
quality parameters, with a standardized path coefficient of 0.71 (p < 0.001). Negative 
correlations were observed for pH on both MBE and BO, with standardized path coefficients 
of -0.54 (p < 0.001) and -0.34 (p < 0.05), respectively. A similar result was also observed in 
Taihu Lake, where a strong negative correlation between algal phenology and pH was noted 
across the entire lake and within specific lake areas (Shi et al., 2019). Chla, however, showed 
a significant positive correlation (effect coefficient of 0.50, p < 0.001). This may be due to the 
impact of water pH on algal photosynthesis. The weakly alkaline water in Hulun Lake is 
conducive to algae photosynthesis. Generally, diatom density tends to increase with increasing 
pH, subsequently increasing the concentration of Chla in water (Kolada, 2014). In addition, the 
increasing LWST and pH can stimulate algal growth while concurrently limiting sediment 
diatom growth, ultimately decreasing diatom richness and density (Kong et al., 2021).

c) 3.3 Response analysis between water quality and quantity and identified key response 
factors

As shown in Fig. 7, joint probability distributions were used to represent the degree of 
interrelationship and dependence between water level and water quality variables, with dense 
contours representing high joint probabilities and sparse contours representing low joint 
probabilities. During periods of low WL, our analysis revealed a low joint probability of 
observing both low TN concentrations and low WL concurrently (Fig. 7 (a)). This result further 
supports the possible lack of correlation, implying that the concurrent occurrence of low TN 
and WL is statistically rare. In particular, at a WL of 543 m, the joint probability density values 
were higher, indicating that there was a greater likelihood of observing TN concentrations and 
water levels co-occurring at this specific WL. This may imply a significant relationship or 
influence between TN concentrations and water levels at this particular WL. As the water level 



continued to rise (above 544 m), the joint probability gradually decreased, suggesting that the 
occurrence of specific TN and WL values simultaneously became less likely. Regarding COD 
variations (Fig. 7 (c)), the probability density curve appeared to be even more tightly distributed 
than TN. This observation suggested a stronger correlation between these variables within the 
542-544 m range. As WL increased, a peak probability density was observed at a water level 
of 543 m. According to the joint probability distribution of the WL and Chla, when the WL 
remained constant, the joint probability values increased with increasing Chla concentration. 
Similarly, when the Chla concentration remained constant, the joint probability values 
increased with rising water levels. A positive correlation existed between the WL and Chla 
concentration, implying that as the WL increased, the probability of a higher Chla concentration 
also increased (Fig. 7 (d)). The primary reason behind this correlation was poorer water quality 
due to inflow, resulting in outbreaks of algal blooms. Similar situations have been observed in 
the case of the largest water diversion project globally, the South-North Water Transfer Project 
(Miyun Reservoir) (Zang et al., 2022). The probability density distribution for the 
physicochemical indicators of water quality, namely, DO, SD, and pH, exhibited similar trends 
(Fig. S1). 



Fig. 7. The best copula probability density distribution function of water quality and water quantity in Hulun Lake.

Next, we applied the GAM model to further explore the nonlinear responses among these 
factors. According to the fitted results of the GAM (Fig. 8), it was evident that significant 
nonlinear relationships existed between WL and water quality parameters. The order of 
explanatory power for other water quality parameters followed TN > COD > Chla (Table 2 and 
Table S3). The concentration of TN increased with rising water levels. After the WL surpassed 
543 m, TN and TP increased with increasing WL. Notably, TN and TP showed more 
pronounced variations during high-WL periods when WL fluctuated between 543 m and 544 
m, marking a high-WL phase. The corresponding change rates for TN and TP were 66.1% and 
54.8%, respectively. This could be attributed to reduced runoff and lower water levels, causing 
the increase in TN to primarily stem from atmospheric deposition and dry deposition into the 
lake. Meanwhile, the input of TP became less prominent with decreased rainfall and inflow, 
gradually diminishing the impact of external sources (Yu et al., 2021). Chla increases as the 
WL increases from 541m to 543 m. However, as the WL further increased beyond 543m, Chla 
concentration diminished as WL increased. The WL of 543m was a pivotal point where WL 
and COD transitioned from a negative correlation to a positive one. Within the recovery range 
of water levels from 541 m to 543m, the dilution effect positively influenced reducing COD 
(Table S4). SD, DO, and pH responses to WL variations also exhibited insignificant 
relationships. This indirectly suggested that these three physical indicators could indicate 
eutrophication effects. Furthermore, the variation in WL, serving as a primary driver of 
eutrophication, exhibited a less pronounced indirect impact on the changes in SD, DO, and pH 
within the mentioned range.

Table 2. Parameter results of single-factor meteorological element GAM models for OAC in Hulun Lake

Response 

variable

Explanatory 

variables

edf F p dev. expl 

(%)

Model R2

TN WL 1.87 5.89 0.01 52.5 g(y) ~s0+s 

(EVA)+ε

0.46

TP WL 1.00 2.84 0.11 16.8 g(y) ~s0+ s 

(AT)+ε

0.11

Chla WL 2.40 6.39 0.00 39.5 g(y) ~s0+ s 

(AT)+ε

0.35

COD WL 1.50 4.73 0.02 44.7 g(y) ~s0+ s 

(P)+ε

0.39



SD WL 1.00 0.4 0.538
2.98

g(y) ~s0+s 

(Eva) +ε

0.05

DO WL 1.10 0.65 0.409
8.06

g(y) ~s0+s 

(AT)+ε

0.00

pH WL 1.81 2.48 0.123
34.3

g(y) ~s0+ s 

(P)+ε

0.25

LWST WL 1.56 3.83 0.073
29.4

g(y) ~s0+ s 

(P)+ε

0.23

Fig. 8. The fitting function curve of water level variables with response variables based on the GAM model results for water quality 

in Hulun Lake.

The investigation of pollutant concentrations and fluxes in the Hailaer River, Kherlen 
River, and Wuerxun River revealed the following long-term trends: the pollutant concentrations 
from the three inflowing rivers generally displayed an upward trend followed by a subsequent 
decline from 2011 to 2020 (Fig. 9 (a) and (b)). Upon comparison, it was observed that within 
the 2011-2020 period, the pollutant flux variations were as follows: the TN and TP levels in the 
Hailaer River showed a minor upward trend. The TN levels in the Wuerxun River and Kherlen 
River exhibited a downward trend. In contrast, the TP levels in the Wuerxun River displayed a 
slight increase, and those in the Kherlen River first experienced a substantial increase followed 
by stabilized fluctuations. Moreover, it was evident that the water diverted from the Hailaer 
River contributed over 50% of the total input to Hulun Lake (Fig. 9 (c) and (d)). Since 
implementing the "river-to-lake" water diversion project, an average annual water 
replenishment of 750 million cubic meters has been supplied to Hulun Lake through the Hailaer 
River. Although the river’s water quality had historically been categorized as Class IV (Yue 
and Wei, 2014), the substantial amount of incoming water presents a significant pollutant 
source. In post-2013, the inflow from the Hailaer River has markedly contributed to an 
escalated pollutant loading, leading to a degradation in water quality despite the noticeable 
increase in water levels. In other words, during the period of water level recovery, pollutant 



loadings from the diversion project and the natural inflow have played significant roles in the 
lake's water quality degradation, which deserves further investigation.

Fig. 9. Annual load and contribution of river pollutants entering Hulun Lake. a) Interannual load change of the river TN in Hulun 

Lake from 2011 to 2020. b) Interannual TP load changes of rivers entering Hulun Lake from 2011 to 2020. c) TN contribution of 

rivers entering the lake during 2011-2020. d) TP contribution of rivers entering the lake during 2011-2020.

d) 3.4 Conceptual model for the driving mechanism of algae dynamics

Based on the findings above, a conceptual model was proposed for Hulun Lake to describe 
the coupling mechanism of water quality and quantity in driving lake algal blooms (Fig. 10). 
First of all, the results from SEM revealed that the coupling effect of water quality and quantity 
could explain algal blooms and sediment diatoms. Based on the directional influences of 
various factors and coupling outcomes, a schematic diagram depicting the long-term 
mechanism of algal blooms under the coupling of water quality and quantity was constructed 
(Fig. 10). WL positively affected COD and TN, which in turn positively affected Chla and 
negatively MBE, respectively. WL exhibited the highest negative influence on diatom density 
among the algal indicators. Simultaneously, WL affected sediment diatom density and richness 
through its positive effects on TP and Chla and adverse effects on COD and LWST.

In addition, our Copula functions and GAM models further complement the conceptual model 
regarding different quality and quantity response periods. Before water diversion, the lake 
stayed at low water levels, favoring the uplifting process of bottom nutrients to the water surface 
through mixing. Such a process provided ample nutrients that could accelerate eutrophication 
and trigger algal blooms. Since the implementation of the water diversion project, water levels 
have been restored, and nutrient loading has increased since then, which sustained algal growth 
(Fig. 10). The results from GAM and Copula model showed that when the lake water level 
reached 543m from the low water level, the Chla concentration continued to rise, the rapid 
increase in lake nutrient contents and suitable temperatures further enhanced algal growth. 
From the water level of 543m to the high WL stage, external nutrient loading was reduced, 



leading to a weakening of algal blooms and eutrophication status, but COD is increasing due to 
the COD brought by water introduction and driving the covariation in lake algal blooms and 
sediment diatom assemblages. 

Overall, the results from the pivotal role of the 543 m water level in influencing the 
relationship between water quality and quantity were identified. This relationship exhibited 
distinct characteristics above and below this threshold. Such differences were especially 
pronounced during periods of high and low water levels. Additionally, it should be noted that 
this study focused on water quality and quantity as the most immediate factors influencing algal 
growth in Hulun Lake, as identified in previous research (Huang, 2023; Zhang, 2022). These 
studies have acknowledged the significant role of external and climate variables in shaping 
these factors over the long term. By isolating and directly examining these impacts, we aimed 
to provide a clearer understanding of how they drive algal dynamics. This approach highlights 
the specific contributions of internal lake conditions to algal bloom development, offering 
insights into the underlying mechanisms within the lake. These findings are crucial for 
informing targeted management practices to control water quality and quantity, addressing algal 
blooms more effectively.

Fig. 10. Influence pathways of water quality and quantity indicators on changes in algal blooms and sediment diatoms and their 
driving mechanisms.



（v） 4. Conclusions

This study investigated the driving factors behind algal blooms in Hulun Lake by 
considering both the response relationship and the coupling effects between water quality and 
quantity. Compared to previous research, our study explored the variability of lake algal blooms 
at different scales using sediment diatoms and remote images. This approach not only provides 
a holistic view of the dynamics of lake algal blooms but also leverages the strengths of each 
method to offer a more comprehensive analysis. Utilizing sediment diatoms and remote sensing 
images, we identified distinct mutation points in algal bloom dynamics—around 2000 from 
remote sensing and approximately 2010 from sediment diatoms. Using two datasets, we further 
explored the coupling effect of water quality and quantity using SEM; 61.5% to 92.1% of the 
variability in algal blooms could be explained. Among the possible explaining factors, the WL 
had the highest explanatory power on algal blooms. TP and Chla are secondary factors that 
positively correlate with algal blooms, while COD and LWST negatively correlate with diatom 
density and richness. The MBE and BO were positively influenced by TN, COD, and DO while 
negatively affected by pH. Overall, the coupling effect of water quality and quantity is 
modulated mainly by WL change. Using copula functions to assess joint probabilities and GAM 
to delineate nonlinear relationships revealed that a critical water level threshold at 543m 
significantly influences nutrient dynamics. Above 543m, TN and COD showed upward trends, 
while Chla displayed a downward trend. However, as the WL recovered beyond 543 m, 
increased nutrient loads led to rising TN and COD concentrations. This pattern was primarily 
attributed to longer circulation cycles during low water periods, facilitating the accumulation 
of nitrogen and phosphorus pollutants. During high water periods, increased nutrient input 
through water diversion stimulated the growth of phytoplankton in the lake. Therefore, it is 
essential to regulate water levels appropriately and control key water quality indicators such as 
TN, TP, and COD to mitigate the risks of eutrophication and algal blooms associated with water 
level decline. Particular attention is required to understand the changes in water quality during 
periods of high and low WL. 
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a) Highlights

Dual-scale view of algal blooms: remote sensing image and sediment core sample.

Utilization of multiple analysis methods, including Copula, GAM, and SEM analysis.

The nonlinear water quality and quantity variation exhibited a turning point in water level changes at 543 meters.

Through indirect coupling effects, water level changes dominate water quality shifts, algal blooms, and diatom 

community variations.


