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A B S T R A C T

Assessing nutrient loading and processing is crucial for water quality management in lakes and reservoirs. 
Quantifying and reducing external nutrient inputs in these systems remains a significant challenge. The difficulty 
arises from low monitoring frequencies of the highly dynamic external inputs and the limited availability of 
measures to reduce diffuse source loading. One option for the latter is the use of pre-dams, i.e. small im-
poundments at the inflow points into reservoirs, designed to retain nutrients by algal uptake and sedimentation. 
This study analyzes long-term (ranging from 8 to 22 years) nutrient and discharge time series for nine German 
pre-dams to assess their retention capacity. For that, we (i) quantified nutrient loading using four different 
mathematical methods, (ii) derived their retention efficiencies, and (iii) identified environmental factors 
determining the retention of nitrogen (N), phosphorus (P), and silica (Si). We show that retention of soluble 
reactive phosphorus (SRP) (43.6 %) and total phosphorus (TP) (39.9 %) is far higher than for nitrate (NO3) (15.3 
%) and Si (15.9 %). The retention efficiency for SRP and TP was higher during the warm seasons because of 
higher algal nutrient uptake and thus higher nutrient sedimentation. Mixed effects models documented a sig-
nificant positive effect of the pre-dams’ hydraulic residence time (HRT) on retention efficiency. Pre-dams provide 
substantial service in retaining nutrients and help to protect downstream waterbodies from nutrient inputs. They 
provide effective measures for trapping nutrients including those originating from non-point sources.

1. Introduction

Excessive nutrient enrichment in water can cause toxic algal blooms 
and thus be dangerous for humans and ecosystems and impair the 
quality of water intended for drinking (EEA, 2018). Therefore, water 
quality management of lakes and reservoirs requires a sound assessment 
of nutrient loading and processing. In recent years, progress has been 
reached in reducing nutrient concentrations in lakes (e.g. Frenken et al., 
2023; Jeppesen et al., 2005), particularly with respect to lowering 
external point sources or internal loading (e.g. Huser et al., 2016a,b). To 
control point sources, proper wastewater management is a key instru-
ment (Tong et al., 2020). However, the control and assessment of 
external loading from non-point sources, e.g. agriculture, remains a 
major challenge (Carvalho et al., 2019; EEA, 2018). Firstly, 

concentration and discharge are extremely dynamic and measurements 
are usually not available in the needed spatial and temporal resolution. 
Secondly, the reduction of the external loading is notoriously difficult as 
agricultural practices still rely on strong fertilizer use. Their long-term 
practice leads to lasting effects making agriculture the major driver of 
non-point nutrient loading at continental scales (EEA, 2018). Addi-
tionally, different approaches deliver different results (Luo et al., 2023; 
Xue et al., 2022).

The operation of pre-dams, i.e. small impoundments at the inflow 
points into reservoirs, designed to retain nutrients by algal uptake and 
sedimentation, is one of the few instruments to reduce external nutrient 
load. They retain nutrients that have already entered the river network 
irrespective of their source. Pre-dams typically have HRT of a few days 
or weeks, and have a surface overflow in order to maximize trapping of 
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sedimenting material (Fig. S2). They also facilitate nutrient retention by 
algal uptake and sedimentation (Paul, 2003) and have a history of 
implementation in drinking water reservoirs (Benndorf and Pütz, 1987). 
Pre-dams retain nutrients in a similar way to chains or cascades of lakes 
or reservoirs (Soares and Calijuri, 2022). The determination of the 
nutrient loads entering and leaving the pre-dam is the basis for the 
retention efficiency assessment. However, the different procedures for 
calculating the load can deliver heterogeneous results. Quantifications 
are furthermore often impaired due to the low, e.g. monthly, temporal 
resolution of nutrient monitoring. Besides that, there is a lack of 
comparative long-term analyses so the influence of environmental 
drivers and reservoir-specific properties cannot be assessed.

Our study tackles these issues and follows a three-step workflow with 
the specific research tasks: (i) quantify nutrient fluxes/loading by using 
and comparing different mathematical approaches for the three key 
algal macronutrients N, P, and, Si, (ii) calculate retention efficiencies for 
nine German pre-dams based on long-term data, and (iii) statistically 
analyze the major factors determining the retention efficiencies for N, P 
and Si and potential seasonal differences in retention.

According to Benndorf and Pütz (1987), we expect phytoplankton 
nutrient uptake and subsequent sedimentation to be the primary factor 
influencing retention in pre-dams, which may be lower during winter 
due to low light intensity and temperature (Pütz and Benndorf, 1998). 
We also hypothesize that SRP, TP, NO3, and Si elimination in pre-dams 
correlate with the hydraulic retention time (HRT) (Paul, 2003).

Our methodology involves four methods (two linear and two non- 
linear) for load estimation, which differ in complexity, aiming to 
determine whether there are systematic differences among them. These 
specific methods were chosen because they are commonly used by 
stakeholders and in literature to calculate nutrient loads. The linear 
methods are based on algebraic formulations whereas the non-linear 
methods are data-driven and include a statistical component. We also 
quantify differences in retention efficiency among the studied nutrients 
and pre-dams to identify driving environmental factors and site-specific 
characteristics that affect retention efficiency.

The novelty of this study includes (i) a fully quantitative assessment 
of nutrient retention including the comparison of four load calculation 
methods in several reservoir systems and over long time series; (ii) a 
separate analysis for the three major nutrients N, P, and Si; (iii) evalu-
ation of the variability of retention efficiency at interannual and sea-
sonal time scales, and; (iv) a statistical analysis of the drivers in nutrient 
retention using Linear Mixed Models (LME).

2. Methods

2.1. Study sites

The study was conducted in nine pre-dams from five German reser-
voir systems (Fig. S1). These pre-dams cover a wide range (i.e. more 
than one order of magnitude) of morphometric and hydrological char-
acteristics (Table 1) and hence represent a typical sample of these 
engineered infrastructures (Fig. S2). Detailed information about the 
reservoirs can be found in the Supplementary Material.

2.2. Monitoring data

The data includes biweekly or monthly measurements of nutrient 
concentration [mg l-1] (Table 1) and daily discharge [m3 d-1] for nine 
pre-dams. The nutrients analyzed were SRP, TP, NO3, and Si. The data 
was provided by the responsible German reservoir authorities (Land-
estalsperrenverwaltung Sachsen, Talsperrenbetrieb Sachsen-Anhalt, and 
Wupperverband). This included two data sets per pre-dam at different 
temporal resolutions: (i) daily discharges of inflows (or outflows alter-
natively) and (ii) nutrient concentrations at the specific sampling dates 
(at monthly or biweekly scale). All data were quality-checked, merged 
into one consistent data structure, and processed for load estimation and 
retention efficiency calculations. Information on the standard methods 
used for chemical analyses is provided in the supplementary material.

2.2.1. Assumptions
The data analysis was based on the following assumptions: 

I. Inflow discharge was considered equal to outflow discharge for all 
the pre-dams, considering that the pre-dams operate in continuous 
overflow, short HRT, and negligible evaporation losses.

II. Retention efficiency is calculated by load estimates of inflows and 
outflows of the pre-dam (see below).

2.2.2. Calculated derived and explanatory variables
The HRT (τ, days) was calculated as the ratio of the pre-dam volume 

(V, m3) to the discharge (Q, m3⋅s-1) according to Equation 1. 

τ =
V
Q
× 3600 × 24 (days) (1) 

The areal load (La, tonne km-2 year-1) was calculated by the ratio of 
the annual inflow load (Lin, tonne year-1) to surface area (A, km2, see 
Equation 2). 

Table 1  
Pre-dams’ main morphological and time series characteristics.

Reservoir Pre-dam Abreviation Volume 
(106 

m3)

Surface 
area 
(km2)

Max 
(mean) 
depth 
(m)

Catchment 
area (km2)

Mean 
HRT 
(d)

Time series Nutrient 
Sampling

Si 
data

Reservoir authority

Droeda Ramoldsreuth DPD1 0.136 0.0511 6.2 
(2.6)

27.8 9 1998–2020 
(22 years)

Monthly Yes Landestalsperrenverwaltung 
Sachsen (LTV)

 Bobenneukirchen DPD2 0.194 0.0563 6.3 
(3.4)

15.1 28  Monthly Yes 

Rappbode Rappbode RPD1 1.25 0.218 17 
(5.3)

48.1 29 2012–19 (7 
years)

Biweekly Yes Talsperrenbetrieb Sachsen- 
Anhalt

 Hassel RPD2 1.45 0.288 14 (5) 44.5 53  Biweekly Yes 
Poehl Neuensalz PPD1 0.21 0.056 9.5 

(3.7)
21.8 21 2008–21 

(13 years)
Monthly No LTV

 Thossfell PPD2 1.23 0.33 11 
(3.7)

109.1 19  Monthly No 

Grosse 
Dhuenn

Grosse Dhuenn GDPD1 7.5 0.67 28.4 
(11.2)

59 84 2004–17 
(13 years)

Biweekly No Wupperverband

 Kleine Dhuenn GDPD2 0.4 0.106 12.9 
(3.8)

14 14  Biweekly No 

Bautzen Oehna BPD1 0.518 0.163 6 (3.1) 293 2 2007–18 
(11 years)

Biweekly Yes LTV
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La =
Lin

A
(
tonne× km− 2 × year− 1) (2) 

2.3. Load estimation

The nutrient load can be calculated by multiplying discharge and 
concentration. However, load estimation from hydrological observa-
tions is challenged by the fact that discharges are usually measured 
continuously (hourly or at least daily) while concentration measure-
ments take place at a far coarser temporal resolution (usually monthly or 
biweekly). We quantified the yearly nutrient load by using four math-
ematical approaches: (i) unweighted (UA) and (ii) weighted averaging 
of concentration and discharge (WA), (iii) statistical concentration dy-
namics predictions based on GAMs (Generalized Additive Models), and 
(iv) the R package EGRET (Exploration and Graphics for River Trends) 
developed by the USGS (Hirsch and De Cicco, 2015). The first two 
methods are based on algebraic formulations and the latter two are 
data-driven statistical approaches. 

a) UA: Unweighted averaging method (“Standard method” in Hilden 
(2003))

This linear method determines the load L (tonne⋅year-1) based on the 
number of available samples (N) by multiplying the measured nutrient 
concentrations (c, mg l-1) by the corresponding daily average discharges 
(Q, m3 s-1) at each day of sample i resulting in an estimate of loading rate 
given as mass per time. These loading rates are simply averaged and 
then converted to a unit of tonne per year. The annual load is estimated 
by Eq. (3) and represents a simple (unweighted) averaging of loading 
rates over all available samples in a given year. 

LUA =
365 × 86400
1000 × 1000

1
N

∑N

i=1
c(ti) × Q(ti)

(
tonne× year− 1) (3) 

b) WA: Weighted averaging method (“Discharge-corrected standard 
method” in Hilden (2003))

This method is a refinement of WA by accounting for potential 
sampling bias, which is likely to occur when water quality sampling is at 
a much lower frequency (usually biweekly or monthly) than discharge 
gauging (usually daily or hourly). In such a sampling design, the 
representativeness of rare events (samples during high or low discharge) 
may bias the annual load and may result in over- or underestimations. 
Therefore, in WA the annual load from Method UA (LUA) is weighted by 
the ratio of annual mean discharge Qm (average of the daily discharges 
Qi of the given year) to the mean sampled discharge Qs (i.e. mean of 
discharges Qs,j during sampling days j when both nutrient concentration 
and discharge were sampled, Eq. 4). 

LWA = LUA

1
365

∑365
i=1Qi

1
N
∑N

j=1Qs,j

(
tonne× year− 1) (4) 

These two linear methods UA and WA were chosen because they are 
commonly used by stakeholders and in literature to estimate nutrient 
load in pre-dams (Paul, 1995). Also because they are defined as standard 
methods in practical recommendation sheets (Hilden, 2003). 

c) Generalized Additive Models (GAM)

This method is based on a statistical time series model with non- 
linear smoothing terms for the long-term trend, seasonal dynamics, 
and a runoff-dependent component using generalized additive models 
(GAM), see Wood (2011). GAM method fits the data with local splines, 
smoothing over the data in order to catch the inherent data variability 
patterns. GAMs do not have a single fixed formula but a flexible 
modeling framework that can incorporate a variety of functions.

In order to define the GAM model we used the “gam()” function from 
the “mgcv” R package (Wood, 2011) with concentration as the response 
variable and smoothing splines of year, day of the year, and discharge as 
predictors. The resulting GAM model was then used to predict daily 
concentration values based on the provided daily discharge data. The 
daily nutrient load is then calculated by multiplying the predicted 
concentration by the daily discharge. Daily nutrient loads were summed 
over the whole year in order to achieve yearly estimates. Note, that we 
used a circular spline term for the seasonal predictor (day of the year). 

d) EGRET: Exploration and Graphics for River Trends

The EGRET method (USGS, R package EGRET) is also a statistical- 
based approach that describes dynamics in water quality and hydrolo-
gy data and is a recommended procedure by the US Geological Survey 
(USGS). EGRET is similar to GAM as it is based on a flexible, data-driven 
statistical approach. It uses a Weighted Regression on Time, Discharge, 
and Season (WRTDS) to describe long-term dynamics for the various 
water-quality components as nutrient concentrations or any other sol-
utes (Hirsch and De Cicco, 2015). The daily and subsequent annual loads 
were calculated using the regular function “modelEstimation()” of the 
“EGRET” R package as defined in the documentation (Hirsch and De 
Cicco, 2015). This involves a similar procedure as in GAM since the 
EGRET model first computes daily concentration values based on daily 
discharge, which are then converted to loads by multiplication of con-
centration and discharge at a daily scale. This method was also used in 
this study to calculate monthly retention efficiency based on these daily 
mode outputs.

2.4. Retention efficiency calculation

Based on the estimates of the yearly inflow load (Lin) and outflow 
load (Lout), we calculated nutrient retention efficiencies (R) according to 
Eq. (5): 

R[%] =
Lin − Lout

Lin
∗ 100 (5) 

Both load and yearly retention efficiency calculations were carried 
out for SRP, TP, NO3, and Si for nine pre-dams.

2.5. Statistical analysis

We statistically analyzed the calculated retention efficiencies 
(response variable) across all pre-dams and years using different 
explanatory variables. Since yearly-based retention efficiencies were 
pseudo-replicated within each pre-dam, we selected Linear Mixed Effect 
Models (LME) for data analysis (Bates et al., 2015). In order to account 
for the pseudo replication within pre-dams over the multiple years for 
each pre-dam and the four methods, we defined pre-dams, years, and 
methods as random effects with the latter two nested within pre-dams. 
The type of nutrient (N, P, Si) as well as various other environmental 
variables (retention time) were evaluated as fixed effects. We applied 
model selection over competing models and removed model compo-
nents with non-significant p-values.

We approximated the coefficient of variation R2 by using the method 
of Stoffel et al. (2021) specifically designed for LMEs. Finally, we 
approximated the relative importance of each environmental variable 
by recalculating the LME based on z-scores calculated from normalized 
data (i.e. transforming the mean of zero and a standard deviation of 1) 
using the R function scale(). In this procedure, the different scales in the 
various variables (e.g. residence time, radiation, depth) were unified to 
produce dimensionless numbers. In an LME with z-score variables, the 
model estimates (i.e. the slopes) are a measure of their relative effect size 
and can be interpreted as relative importance.
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2.6. Code transparency and open access availability by package creation

An all-inclusive R function was developed using the R programming 
language to compile the estimation of load and retention efficiency 
using the methods described above. This new R function “ret_eff()” was 
added to the Seefo R package. It is publicly available in the GitHub 
environment under https://github.com/shatwell/seefo.

All analyses, model calculations, and plots were made with R version 
4.1.3 (R Core Team, 2021). The following R packages were used: “mgcv” 
for GAMs (Wood, 2011), “lme4” (Bates et al., 2015) for LME, “partR2” 
for partition variance analysis (Stoffel et al., 2021), “EGRET” (Hirsch 
and De Cicco, 2015) for calculating nutrient load, “DHARMa” (Hartig, 
2022) and “ggeffects” (Lüdecke, 2018) to check for residual diagnostics. 
Additionally, ArcGis Pro (Esri, 2024) was used to create Fig. S1.

3. Results

3.1. Comparison of the different calculation methods for retention 
efficiency

All four methods to calculate retention efficiency showed similar 
results with respect to mean or median retention values for all nutrients. 

However, the UA method generated more outliers and had a wider 
variability when compared to the other methods (Fig. 1). Along with this 
agreement in the overall medians, the calculated retention efficiencies 
varied depending on the specific pre-dam and year. However, the vari-
ability contribution from the four methods remained rather small (0.8 
%), as shown by an LME model (Table 2), indicating that the methods of 
calculation are not strongly influential. The pre-dams contributed 14 %, 
and the interannual variability accounted for 8 %, with the remaining 76 
% as residual variability. In other words, the variance partitioning 
showed that variability is highest among pre-dams, followed by year-to- 
year variation. The different methods remained unimportant compared 
to the other random factors. In the few cases where the four methods 
deviated from each other for a given pre-dam, year, and nutrient, the UA 
method was responsible while the other methods were more consistent 
among each other (Fig. 1). Given this agreement among the four 
methods, we aggregated retention efficiencies by taking the average 
over all 4 methods in the further statistical analysis for each pre-dam and 
year (see Supplement for further details on method comparisons, 
Fig. S3).

Regarding the fixed factors, the LME-model confirmed that retention 
efficiencies were significantly different (Table 2) between nutrients and 
also that the effect of HRT was significant. Note that, since 

Fig. 1. Retention efficiency (%, y-axis) for each load calculation method (x-axis) EGRET, GAM, UA, WA) for each nutrient (horizontal panels, SRP, TP, NO3, Si). 
Violin plots show probability density distribution, boxplots median, and Q25-Q75 range, means are shown in red dots, and outliers in purple dots. The 95 % 
confidence interval error bars of the means are shown in red. The 95 % confidence intervals of the medians are displayed as a notch around the boxplot median.
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sedimentation follows first-order kinetics, mean HRT was log- 
transformed and an increase in HRT by one unit (log-transformed 
days) was associated with an average increase of 4.57 % in retention 
efficiency.

3.2. Nutrient-specific retention efficiencies and variability over pre-dams 
and years

Retention efficiencies differed significantly between nutrients 
(Fig. S7). Observed mean retention efficiencies for the phosphorus 
components, SRP (43.6 %) and TP (39.9 %), were higher than for NO3 
(15.3 %) and Si (15.9 %) (Fig. 2). There were also systematic differences 

among the pre-dams (Figure S9), the retention efficiency for some pre- 
dams and years, respectively even turned out as negative values in the 
case of TP (5.45 % below zero), NO3 (10 % below zero), and Si (5.17 % 
below zero), meaning that a net mobilization of these nutrients took 
place in specific years and pre-dams. The variability contribution from 
the pre-dams (14.7 % of random variability) was almost twice as high as 
the interannual variability (8.4 % of random variability) pointing to 
systematically different performances of the studied pre-dams (LME, see 
Table 2).

3.3. Variability and covariation of nutrient retention at monthly vs. 
yearly scales

High SRP and TP retention efficiency coincided with months of high 
radiation and water temperature pointing to the decisive role of phos-
phorus uptake by phytoplankton. However, the seasonal course of the 
retention efficiency for SRP was broader than that of TP. Interestingly, 

Table 2 
Results from an LME model of yearly nutrient retention efficiencies in the nine 
pre-dams. The type of nutrient and HTR were selected as fixed effects as they 
showed significant influence while other fixed factors evaluated remained 
insignificant. Note that HRT was log-transformed (natural log). Due to pseu-
doreplication within pre-dams along with years and calculation method, we 
chose pre-dam as well as method and year, nested in pre-dam, as random factors. 
The stars indicate statistical significance with: *p < 0.05, **p < 0.01, ***p <
0.001. The partition of the variance analysis showed that the total explanatory 
power of the full model, given as approximated R2, is substantial (conditional R2 
= 0.50) and even the fixed factors alone explain about one-third of the vari-
ability (marginal R2) is 0.34. The complete model result is displayed in Fig. S.6.

Random 
effects

Variance

Pre.dam:year 24.35    
Pre.dam: 

method
2.30    

Pre.dam 42.59    
Residual 219.80    
Fixed effects Estimate Standard 

Error
df t-value p-value

Intercept − 1.98 4.95 30.01 − 0.400 0.69
Si 8.43 1.16 1621.13 7.222 7.86e- 

13***
SRP 28.91 0.94 1611.56 30.709 <2e-16***
TP 18.85 0.94 1611.56 20.025 <2e-16***
HRT (log) 4.57 1.49 45.52 3.060 0.004**

Fig. 2. Boxplots for yearly retention efficiency for SRP, TP, NO3, and Si in nine 
pre-dams (averages of all four methods). The colors represent the different pre- 
dams (legend on the top, abbreviations see Table 1). The yellow triangle in each 
boxplot represents the arithmetic mean over all years and pre-dams while the 
horizontal black line in the boxes shows the median. The sample size (n) for 
nutrients and pre-dams are SRP (124), TP (124), NO3 (124), and Si (70), 
DPD1–2 (84), RPD1–2 (32), BPD1 (48), PPD1–2 (42), GDPD1–2 (39). Note that 
values within each nutrient were plotted with horizontal scatter.

Table 3 
Results of the LME model using monthly retention efficiency for each pre-dam 
and year (after applying z-scores). Note that we used the ratio of inflow load 
and inflow discharge, i.e. the mean inflow concentration, instead of including 
them separately simply because they showed a high covariation. The explana-
tory power given as approximated R2 was at 0.57 for the full model (conditional 
R2) and 0.46 for the fixed effects alone (marginal R2). The sample size (n) was 
5187. For significance levels, see Table 2. The Fig. S.7 displays the complete 
model result.

Random effects Variance Standard 
deviation

Pre.dam:year 0.022 0.149   
Pre.dam 0.082 0.292   
Residual 0.363 0.602   
Fixed effects Estimate Standard 

Error
df t- 

value
p-value

Intercept (NO3) − 0.59 0.106 8.33 − 5.61 0.000435***
Si 0.02 0.039 5072.69 0.67 0.499641
SRP 1.34 0.031 5071.92 42.14 <2*e-16***
TP 0.87 0.031 5071.06 27.83 <2*e-16***
HRT (log) 0.73 0.022 4557.33 32.30 <2*e-16***
Mean depth − 0.27 0.100 8.30 − 2.72 0.024991*
Solar radiation 0.18 0.010 4989.62 16.75 <2*e-16***
Weighted 

concentration
0.15 0.020 5072.90 7.74 1.12e-14***

Fig. 3. Seasonally scaled dynamics of solar radiation (kWH m-² month-1), water 
temperature (◦C), residence time (HRT in days), and retention efficiency for 
SRP, TP, NO3, and Si aggregated over all pre-dams. To enhance comparability, 
the variables were scaled by dividing by the maximum value, i.e. all variables 
scale within the interval [0, 1]. Smoothed curves were fitted using a circular 
(yearly scale) Generalized Additive Model (GAM) showing predictions (lines) 
and confidence intervals (shaded areas).
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for NO3 the retention efficiency peaked a little later in the year and 
hence did not coincide with the months of elevated radiation and scaled 
best with HRT. The seasonality of the retention efficiency for Si peaked 
in late summer, between those of TP and NO3, respectively.

A Spearman correlation analysis using monthly averaged values from 
the whole dataset (Fig. 4) demonstrated that these statements were 
statistically significant and the single best predictor for nutrient reten-
tion was radiation (SRP, TP, Si), HRT (NO3), and water temperature (Si). 
There was also a positive correlation between the monthly retention 
efficiency of SRP and TP (r = 0.87, p < 0.001, Fig. 4). Besides that, the 

correlation between both TP and SRP with Si monthly retention effi-
ciency was also strong and positive (r = 0.99*** and r = 0.87***).

3.4. LME model for monthly retention efficiency

The monthly derived retention efficiencies in each pre-dam and year 
were finally evaluated in a full LME model including hydrological, 
morphological, and climatological variables. This allowed us to account 
for intra- and interannual variability in the predictors and the pseu-
doreplication within each pre-dam in one coherent statistical model. The 

Fig. 4. Correlation plot using Spearman’s rank correlation coefficient for monthly mean retention efficiency for four nutrients (SRP, TP, NO3, and Si), HRT 
(avg_restime), water temperature (avg_temp), and solar radiation. The stars indicate statistical significance with: *p < 0.05, **p < 0.01, ***p < 0.001. The diagonal 
displays histogram plots for the corresponding variable. The red line is a regression line and the grey shaded area is the 95 % confidence interval.
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model estimates for the fixed factors explained 46 % of the variability 
and confirmed that phosphorus is retained more efficiently than Si and 
NO3. HRT, radiation (Table 3), inflow concentration, and mean depth 
were significant drivers indicating that meteorological, hydrological, 
and morphological characteristics influence retention. Among the 
random factors, variability within pre-dams explained 18 % of random 
variability while interannual variability contributed only 5 %. We 
identified HRT as the most influential variable followed by mean depth 
and radiation (Table 3, see methods for calculation of relative 
importance).

4. Discussion

4.1. Are there systematic differences among the chosen methods?

It is known in the literature that the Unweighted Average (UA) 
method (Eq. (3)) can lead to systematic deviations due to the unprecise 
representation of flood events (Quilbé et al., 2006; Treunert et al., 1974; 
Valerio et al., 2022; Williams et al., 2015). For TP load, the errors could 
range from 10 % to 14 % (Valerio et al., 2022). Nevertheless, it is a 
simple approach still used by recent papers (Audet et al., 2020; Barbosa 
et al., 2019; Kumwimba et al., 2022) and in governmental procedures. In 
this study, the results of the UA method had the largest number of 
outliers when compared to the other three methods (Fig. 1). In the rare 
cases where the values from the four methods deviated to some extent, 
the UA method was usually the cause (Fig. 1) while the other three 
methods showed higher consistency. Aside from this higher, partly 
erratic, variability, the UA method still captured the average retention 
efficiency satisfactorily as long as a reasonable number of years were 
included. Therefore, the ensembled mean of all four methods was used, 
providing a reasonable and robust load estimate.

4.2. Which nutrient is retained best in pre-dams?

Regarding the phosphorus fractions, for six (DPD1–2, GDPD2, RPD2, 
PPD1–2) out of nine pre-dams, the mean SRP retention was higher than 
TP agreeing with literature for German pre-dams (Determann et al., 
2024; Paul, 2003; Pütz and Benndorf, 1998). Three (BPD1, GDPD1, and 
RPD1) out of nine studied pre-dams presented higher mean TP retention 
when compared with SRP (Table 1 and Fig. 1) agreeing with findings in 
literature for Chinese and Luxembourgian pre-dams (Kumwimba et al., 
2022; Salvia-Castellvi et al., 2001).

The different retention efficiency for SRP and TP is mainly explained 
by the HRT which needs to be long enough to allow the development of 
fast-settling phytoplankton species (such as diatoms) but short enough 
to prevent dominance of algae with low settling rates (such as cyano-
bacteria) (Hülsmann et al., 2021; Pütz and Benndorf, 1998). In instances 
where SRP is retained effectively but TP is not, phytoplankters have 
obviously taken up SRP, yet the sedimentation was insufficient (main 
mechanism for TP removal). This may be either because of too low HRT 
or because of the motility or buoyancy of the dominating phytoplankton 
species (e.g. flagellates, cyanobacteria). Previous results from RPD1–2 
(Friese et al., 2014) support this interpretation: RPD1 was dominated by 
diatoms in summer and showed (1) better TP retention than SRP and (2)
the highest Si retention. In contrast, RPD2 was dominated by cyano-
bacteria and showed higher SRP retention compared to TP and a 
reduced Si retention (See Fig. S.11–14).

Biological structures in pre-dams can also play a role in P and N 
retention, e.g. by extending the contact of water with water plants and 
therefore reinforcing nutrient uptake and sedimentation (Cui et al., 
2022; Nikolakopoulou et al., 2020; Wiatkowski, 2011). Considering that 
pre-dams are relatively shallow (Table 1) submerged macrophytes can 
shape local nutrient retention with potential network-wide cascading 
effects of improved water quality contributing to net particulate P 
retention and net dissolved P release (Carpenter and Lodge, 1986; van 
Wijk et al., 2022).

The higher P retention relative to NO3 in Fig. 1 agrees with findings 
for lakes and reservoirs globally (Wu et al., 2022). But Wiatkowski 
(2011) found higher NO3 (69 %) retention compared to SRP (33 %) in a 
Polish pre-dam (HRT = 12 days) indicating that in some special cases, 
nitrogen removal can be high, e.g. when denitrification is intense. 
Wendt-Potthoff et al. (2014) found higher denitrification activity in 
RPD2 compared to RPD1 due to the higher nutrient input from the 
catchment, including increased NO3, and the resulting higher trophic 
state. However, denitrification usually operates at lower rates in 
pre-dams due to their short HRT and weak stratification (Paul, 2003). 
Also, typical suspended particles in lakes and inflows show higher 
adsorptive capacities for phosphate compared to NO3. Therefore, 
pre-dams are often not excessive nitrogen sinks over annual timescales 
(Kong et al., 2019; Whitney et al., 2023).

At the global scale, Si retention in standing waters plays a significant 
role in the land-to-ocean transport of Si (Harrison et al., 2012; Maavara 
et al., 2014). Also, Si controls phytoplankton growth, but only for di-
atoms (Friese et al., 2014; Kudela and Dugdale, 2000; Parekh and 
Mccully, 2004; Wang et al., 2010; Wentzky et al., 2018) which are often 
dominating in pre-dams (Friese et al., 2014). Interestingly, not many 
studies analyzed Si retention efficiency in pre-dams. Our results had a 
similar Si annual mean retention efficiency (15.9 %) as the few findings 
in the literature (15.3 % Paul, 2003).

In a few years, net mobilization of TP, NO3, and Si took place and the 
outflow load was higher than the inflow load. Some factors might have 
driven the negative retention efficiency for TP, NO3, and Si like internal 
sediment release and mineralization. For NO3, high mineralization rates 
of allochthonous detritus (Morling et al., 2017), low denitrification 
rates, and atmospheric deposition (Kong et al., 2019; Paul, 2003) can 
mediate net release. The SRP retention was never negative indicating 
that phosphate uptake by algae was sufficiently high in all pre-dams and 
years.

In general, algal uptake is a key process that shapes nutrient reten-
tion. Phosphate uptake has a special role here as it mediates SRP 
retention but not necessarily TP retention. For instance, if an algal 
population takes up all SRP, it is still in the system as intracellular, 
particulate phosphorus and therefore still included in the TP pool. When 
then a flood event flushes the population out of the pre-dam, realized 
TP-retention is zero, or even negative if sediment release is sufficiently 
high.

4.3. Which pre-dams performed better (or worse) and why?

Some pre-dams retained more nutrients than others. Variation in 
HRT alone cannot explain these differences as the correlation with the 
HRT was moderately low (Fig. 2) although not so distant from literature 
findings for TP in lakes (r2 = 0.19 for this study vs. r2 = 0.35 by Brett and 
Benjamin (2008)). Considering the average retention efficiency, BPD1 
and DPD1 showed lower retention efficiencies. GDPD1 (HRT = 84 days) 
had the highest TP retention, and PPD1 (HRT = 21 days) had the highest 
SRP and NO3 retention efficiency (Fig. S.8). We believe that besides 
HRT, other internal factors come into play, namely the sedimentation 
characteristics of the dominating algae and the nutrient release of the 
sediments. For example, some pre-dams were subjected to partial sedi-
ment removal, and others were not, which may explain the difference in 
behavior. This intervention could cause an increase in the HRT since 
there is more volume available and nutrient-rich sediments, potentially 
acting as an internal nutrient source, are removed from the system. At 
the same time, depending on how the sediment removal is performed, it 
can also cause a nutrient resuspension from the sediment into the water 
column during the dredging. A close analysis of the above-mentioned 
processes requires more detailed studies derived from high-frequency 
nutrient monitoring so that the impact of short-term dynamics (e.g. 
flash floods) can be resolved. In that respect, the concept of average HRT 
is maybe too simple and the discharge dynamics at short time scales, 
particularly floods, have a strong influence besides even more complex 
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factors such as stratification and interflow processes (Pilotti et al., 
2014). The retention efficiency in pre-dams can also be altered by 
nutrient concentration variability through hydrological events and 
stratification that creates a layer with shorter HRT (Determann et al., 
2024).

4.4. Drivers of retention efficiency at monthly vs. yearly scales load

The correlations for retention efficiency among nutrients and with 
environmental drivers showed higher coefficients of determination at 
the monthly scale than for the yearly scale (Fig. S5 and Fig. S6). As a 
matter of fact, intra-annual nutrient retention efficiency variability was 
higher than interannual variability. This is mainly due to the strong 
seasonality in temperate zones where the air and water temperature, 
light availability, and often also HRT vary considerably among the 
seasons (Fig. 3). Adding to that, the abundance and composition of 
phytoplankton may also vary seasonally (Friese et al., 2014). Seasonal 
dynamics, therefore, play a crucial role in nutrient processing and 
retention efficiency. Usual monitoring programs at monthly or biweekly 
sampling can resolve such seasonal dynamics although they fail to 
resolve processes at the event scale. The long time series involved in our 
study enabled us to detect dominant seasonal patterns. Yet, achieving a 
more thorough understanding of short-term dynamics, including the 
analysis of extreme events, necessitates significantly higher sampling 
frequencies. A study by Kong et al. (2019) using high-resolution online 
monitoring showed that retention dynamics can change at the scale of a 
few hours in small, highly flushed reservoirs like pre-dams.

The highest monthly SRP and TP retention efficiencies were 
observed during summer (Fig. 4) when elevated solar radiation, water 
temperature, and HRT support algal growth, nutrient uptake, and 
sedimentation. Such higher retention efficiency in the warm season has 
been also found by others (Determann et al., 2024; Habi et al., 2010; 
Paul, 2003; Paul et al., 1998; Pütz and Benndorf, 1998; Salvia-Castellvi 
et al., 2001). Similarly, the lower retention during winter, when the 
P-input is high, was expected since pre-dams have limited efficiency due 
to low light intensity, low temperature, and high discharge (Pütz and 
Benndorf, 1998). The patterns for Si and NO3 retention peaked in late 
summer but showed similarities with the findings of Kong et al. (2019)
where winter months often exhibit negative N retention (source of N due 
to mineralization), while summer months show positive retention 
(acting as a sink for N). Results shown in Fig. 4 also agree with Li et al. 
(2010) who concluded that the highest SRP removal took place when the 
current velocity in the water body was low so that settling could take 
place undisturbed. This also corroborates with Hülsmann et al. (2021)
who indicated a pronounced reduction in the elimination of suspended 
particles and P during flood events characterized by high flushing rates.

Given these clear and well-explainable seasonal patterns in retention 
efficiency, we also noted that in many cases times with high loads 
coincide with low retention efficiencies. This happens, for instance, 
when high discharges during snowmelt come along with high nutrient 
load. At that time of the year, radiation and temperatures are still low, 
and retention efficiency, as well. But if the total load retained in the pre- 
dam is calculated (inflow load times retention efficiency), in fact, 
maximum absolute retention may occur outside the warm season. All 
this depends on the seasonal patterns in discharge, loads, and meteo-
rological conditions. Nevertheless, pre-dams enable substantial nutrient 
retention during the warm season and this service can and should be 
exploited in surface water quality management.

5. Conclusion

Our results suggest that pre-dams provide a substantial ecosystem 
service in retaining nutrients and by that help to protect the downstream 
reservoir system from point and non-point load sources. Retention of 
phosphorus is particularly high and is overall about 40 %. Corre-
sponding values for NO3, and Si are lower (15.3 % and 15.9 %). We also 

learned that different load calculation methods achieve similar outputs 
for long time series (but UA underperformed). Furthermore, the pre-dam 
HRT and mean depth were identified as the main retention efficiency 
drivers. Our evaluation of pre-dams also indicates that regular hydro-
logical and water quality monitoring of inflows and outflows is impor-
tant for their management and performance evaluation. Further studies 
would benefit from nutrient monitoring at higher temporal resolution 
and could focus on quantifying the beneficial effects for the downstream 
water bodies.
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