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Abstract The color of lakes is an essential indicator of the local ecological state, and the corresponding
changes can reflect the physical and biochemical processes of lakes. However, worldwide changes in lake color
and their drivers remain largely unknown. Here, we analyze the long‐term color distributions and changes of
67,579 lakes worldwide from 1984 to 2021 by utilizing 32 million consistent satellite observations. Blue lakes
(<495 nm) were primarily located in high‐latitude and high‐elevation areas. Green lakes (495–560 nm) were
more prevalent in densely populated middle‐latitude regions, while most red and yellow colors (≥560 nm) were
located in the Southern Hemisphere. Our findings reveal distinct temporal patterns of lake color changes, with
the majority of global lakes shifted toward shorter wavelengths. This phenomenon is more common in Warm
Temperate and Boreal zones. Lake color changes are closely linked to basin vegetation conditions, population,
water volume change, and lake area. Our study provides essential references for monitoring the ecological status
of global lakes, further supporting the sustainable development of water resources in the future.

Plain Language Summary Lakes integrate multiple basin‐scale climatic and anthropic processes
and lake ecological state often characterizes as “sentinel” of climate change. Lake color is thought to be the
closest variable to lake ecosystem properties, the variation of lake colors therefore reflects both short‐ and long‐
term climate fluctuations. However, worldwide changes in lake color and their drivers still remain largely
unknown. Here we detected the color variation in global lake colors by building a lake color variability data set
for 1984–2021. Most of these trends are attributed to basin vegetation conditions, variation trends of lake water
volume, basin population and lake area. Considering the importance of these lakes for ecosystem services and
water supply, the consequences of lake color changes are both locally and globally important.

1. Introduction
The ecological states of lakes, such as cyanobacterial blooms (Huisman et al., 2018), productivity (Kuhn
et al., 2020), carbon storage (Bogard & del Giorgio, 2016; Buffam et al., 2011; Denfeld et al., 2018), and water
quality (Topp, Pavelsky, Stanley, et al., 2021), are influenced by terrestrial processes and in turn affect human
water security (Cao et al., 2023). Global lake ecology has undergone widespread changes linked to climate change
and human activities (Adrian et al., 2009). Most of these changes can be closely linked to lake color; it is thought
to be the closest variable to lake ecosystem properties (Yang et al., 2022) and is also the essential climate variable
in the current global climate observing system (Kuhn & Butman, 2021). Therefore, dynamic monitoring of lake
color is of great scientific significance for revealing the lake and regional ecological state.

Although in situ or field observations have provided insights into the color variations of some lakes (Kutser, 2012;
Weyhenmeyer et al., 2016; Williamson et al., 2015), these measurements are often limited in spatial coverage and
observation frequency, making large‐scale observations challenging. Satellite remote sensing provides a prom-
ising approach for global‐scale and regular monitoring of lake color (Kuhn & Butman, 2021). Recent studies have
used multiple satellites to investigate lake colors; however, these studies are either limited to single specific
regions or use inconsistent methods to derive lake color changes and identify their driving factors. For example,
lake greenness declines were found for Arctic‐boreal lakes, and the change is assumed to be related to the air
temperature and precipitation (Kuhn & Butman, 2021); 68% of lakes in China shifted toward blue, and the trends
and driving factors are spatially heterogeneous (Cao et al., 2023). In a recent advancement, Yang et al. (2022)
investigated the colors of 85,360 lakes globally using satellite data from Landsat 8 and analyzed the relationship
between lake color and climate conditions and lake morphology. Despite the significance of this endeavor, their

RESEARCH ARTICLE
10.1029/2023WR036926

Key Points:
• Fifty‐Eight percent of global lakes

shifted significantly toward shorter
visible wavelengths from 1984 to 2021
based on ∼32 million satellite
observations

• Only 14% of the lakes across the globe
have steady color patterns, indicating
that most lakes are in an unstable state

• Landscape, population, and lake
properties are associated with lake
color changes, and basin vegetation
condition is the most dominant

Correspondence to:
C.‐Q. Ke,
kecq@nju.edu.cn

Citation:
Shen, X., Ke, C.‐Q., Duan, Z., Cai, Y., Li,
H., & Xiao, Y. (2025). Satellite
observations reveal widespread color
variations in global lakes since the 1980s.
Water Resources Research, 61,
e2023WR036926. https://doi.org/10.1029/
2023WR036926

Received 14 DEC 2023
Accepted 11 DEC 2024

© 2024. The Author(s).
This is an open access article under the
terms of the Creative Commons
Attribution‐NonCommercial‐NoDerivs
License, which permits use and
distribution in any medium, provided the
original work is properly cited, the use is
non‐commercial and no modifications or
adaptations are made.

SHEN ET AL. 1 of 15

https://orcid.org/0000-0003-0212-4069
https://orcid.org/0000-0002-4411-8196
https://orcid.org/0009-0009-9068-9182
mailto:kecq@nju.edu.cn
https://doi.org/10.1029/2023WR036926
https://doi.org/10.1029/2023WR036926
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2023WR036926&domain=pdf&date_stamp=2024-12-26


study was constrained by a relatively short observation period (2013–2020) and limited discussion on color
changes. Surprisingly, global lakes have garnered comparatively less attention despite the recent emphasis on
preserving the lake environment and safeguarding water quality in the context of sustainable development, and
there is still a lack of understanding of global lake color trends, shifts and their drivers.

To address this knowledge gap, we estimated the annual colors for lakes and reservoirs worldwide from 1984 to
2021 using consistent satellite observations from Landsat 5, 7, and 8. We derived lake color trends for over 67,000
lakes larger than 1 km2, representing 39% of the current total lake area across the globe. Small lakes were not
included as the surface reflectance of them are more easily influenced by the surrounding land. We analyze lake
color trends across various conditions of lake morphology and ecological zoning. Finally, a machine learning
method was used to identify drivers of global lake color changes using data sets of climate, landscape, and human
activity. Our study provides crucial insights into global lake ecology and has important implications for lake
environment monitor.

2. Data and Methods
2.1. Data

2.1.1. Landsat Data

To obtain the longest and consistent satellite observations of lake colors, we used the Landsat Collection 1 Tier 1
data set (30 m spatial resolution) from 1984 to 2021 on the Google Earth Engine (GEE) platform. This data set
includes data from Landsat 5, 7, and 8 and utilizes the highest quality images corrected for radiometry and
georegistration (Yang et al., 2022). Uniform quality over time and across instruments has been maintained for this
data set, ensuring its reliability for long‐term analysis (USGS, 2019). This data set has been atmospherically
corrected and can be directly used for inland water bodies, such as chlorophyll‐a (Cao et al., 2020), suspended
sediments (Dekker et al., 2001), primary productivity (Kuhn et al., 2020), and colored dissolved organic matter
(CDOM) (Olmanson et al., 2020).

2.1.2. Auxiliary Data

We derived the colors of lakes from the Hydrolake data set (Messager et al., 2016), which contains records of over
1.4 million lakes across the globe. However, as we mentioned above, lakes with areas smaller than 1 km2 were not
considered. Consequently, approximately 180 thousand lakes were finally detected, and their locations and at-
tributes (area, depth, and elevation) were recorded. Additionally, lake Basin information was derived from Sikder
et al. (2023), climate zone data were sourced from Beck et al. (2018).

Climate, landscape and anthropogenic factors were used to detect the drivers of global lake color changes.
Specifically, we used monthly air temperature, total precipitation, and wind speed data from the ERA5 data set,
spanning from 1984 to 2021, at a spatial resolution of 10 km. The MODIS‐based 16‐day normalized difference
vegetation index (NDVI) data set at 1 km from 2000 to 2021 was used and converted to annual‐averaged NDVI at
the lake basin scale to represent the local landscape conditions. Similarly, the annual world gridded population
data at a spatial resolution of 1 km, which is available for the years from 2000 to 2021, from Oak Ridge National
Laboratory (2021), were used to indicate anthropogenic factors, and basin total populations were used. A data set
of annual lake water volume from 1992 to 2020 in Yao et al. (2023) was also used. All these data sets were
converted to the annual scale.

2.2. Methods

2.2.1. Lake Color Derivation

The main processing steps are briefly summarized in Figure 1. We used the visible dominant wavelength (λd) in
the lake centroid to represent the surface color of individual lakes (Cao et al., 2023). In particular, those lakes
whose centroids are located in non‐water areas or surrounding lands have been manually amended. The lake λd
was estimated by converting the satellite reflectance in blue, green, and red bands to color wavelengths in the
chromaticity color space, which can be perceived by humans (Wang et al., 2015). This indicator can reveal subtle
changes in color that may not be captured by satellite reflectance (Topp, Pavelsky, Dugan, et al., 2021). The
calculation process is summarized as follows. First, to reduce the possible influences from the lake bottom on lake
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surface reflectance, only lakes with a mean depth larger than 2.2 m were kept, as in this situation the lakes were
assumed to not likely to be affected by lake bottom reflectance (Yang et al., 2022). Second, to ensure the con-
sistency of surface reflectance across Landsat sensors, the surface reflectance from Landsat 5 and 8 were both
cross‐calibrated to match with those from Landsat 7. In detail, the surface reflectance observed on the same day
over the same lake location from Landsat 5–7 and 7–8 were collected, and a second‐order polynomial regression
was used to the 1%–99% percentiles of surface reflectance records for individual bands (Table 1). These empirical
equations were then applied to the surface reflectance from Landsat 5 and 8 for consistent observations. More
discussion about the performance of cross‐calibration can be seen in Section 4.1. Third, to ensure the reliability of
satellite observations, we identified and eliminated observations with clouds, shadows, and snow/ice based on the
quality flag in Landsat data (Zhu et al., 2015). This was performed for the lake centroid and all pixels within a
radius of 4 pixels around it, which also tends to reduce the influence of boundary land and vegetation. Fourth, we
used the dynamic surface water extent algorithm (Jones, 2019) to assess the reliability of water pixels by detecting
the presence of aquatic vegetation. Only observations with at least nine water pixels with high confidence were
retained (Topp, Pavelsky, Dugan, et al., 2021). Fifth, to further reduce potential noise and lake boundary effects,
we derived the median surface reflectance value of all pixels, including surface reflectance from the red, green,
and blue bands. Last, following Wang et al. (2015), we converted the λd from the satellite surface reflectance
observations.

On average, lakes have valid color observations every month, with relatively more observations in June, July, and
August (the average number of monthly observations is 1.8, compared to 1.45 in other months, Figure 2b). To
obtain reliable annual lake colors, only annual lake color records with more than six valid color observations were
retained. More than six observations per year can guarantee one observation every 2 months on average, ensuring
nearly uniform color sampling. In fact, the average annual number of observations is 24, and the number of

Figure 1. The main process of data processing, including data preprocessing and spatiotemporal matching of multisource
data, calculation of lake color, generation of long‐term lake color data set and analysis method of factors influencing lake
color.
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observations in mid‐latitudes is higher (Figure 2a). The purpose of ensuring
six observations is also to account for the limited number of satellite obser-
vations in the early period. To ensure the reliability of the trend calculation,
only lakes with 20 or more valid annual color observations between 1984 and
2021 were used (Cao et al., 2023; Kuhn & Butman, 2021). More discussions
about these thresholds can be seen in Section 4.2. Consequently, a total of
67,579 lakes were finally included. These lakes are widely distributed across
the globe, ensuring their good spatial representation.

2.2.2. Statistical Analysis

Based on the annual λd record from 1984 to 2021, Sen's slope was calculated
as the variation trend of lake color by using the Mann–Kendall (MK) trend
analysis. MK test was then used to examine the significance of estimated
trends, and a significant trend was identified with p < 0.05.

Prior investigations have demonstrated the close relationship between lake
color changes and climatic conditions and lake characteristics (Cao
et al., 2023; Hopkins et al., 2021; Hou et al., 2017; Kuhn & Butman, 2021;

Paerl & Huisman, 2008). To comprehensively explore the drivers of global lake color changes as much as
possible, we collected data sets of climate (temperature, precipitation, and wind speed), landscape (vegetation
growth status, indicated by basin NDVI), human activity (total population), and lake properties (area, depth,
elevation and water volume) for each lake. NDVI and total population were calculated at the basin scale; lake
Basin, that is, referring to the entire drainage area encompassing each lake network, was derived from Sikder
et al. (2023). These factors were chosen based on their global scale and proven links with lake color in previous
studies. A machine learning method named regression tree analysis was applied to detect their potential

Table 1
The Coefficients of Equations to Correct the Surface Reflectance From
Landsat 5, and 8 to Those From Landsat 7

Band a b c R2

Correct Landsat 5 (to 7)

Blue 0.9785 0.7697 0.0059580 0.8938

Green 0.2029 0.8911 0.0014080 0.9520

Red 0.07243 0.9670 − 0.0003055 0.9535

Correct Landsat 8 (to 7)

Blue 0.8750 0.6774 0.02072 0.7186

Green 0.2960 0.8007 0.01571 0.8817

Red 0.3832 0.8207 0.01300 0.9055

Note. The correction equation is ρc= aρ2+ bρ+ c, ρc is the corrected surface
reflectance, ρ is the original surface reflectance, and a, b, and c are equation
coefficients.

Figure 2. (a) Spatial distribution of average annual valid satellite observation counts for global lakes. The average count of
valid observations for all lakes within each 1° × 1° grid was calculated and shown. (b) The temporal distribution of the
average monthly valid satellite observation count.
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relationship. Prior to the analysis, we calculated the correlation coefficients between various variables, including
air temperature, precipitation, wind speed, basin NDVI, population, and lake water volume, to ensure that these
variables were independent of each other. The results show that no apparent correlations can be found between
them with most correlation coefficients between − 0.5 and 0.5 (Figure 3), and all these factors can be indepen-
dently used for analysis. In the regression tree analysis, we used all the variables mentioned above, including the
trend variations and averaged values of climate and human activity factors and lake morphology (area, depth,
elevation, and water volume), due to their potential connections with lake colors. Specifically, 15 factors were
used as inputs for the regression tree analysis. These included variation trends and time‐averaged values of
various environmental and human activity variables (i.e., temperature, precipitation, wind speed, basin NDVI,
water volume, and total population), as well as three lake properties: area, depth, and elevation.

To ensure the temporal consistency of the input data and analysis reliability, only the lakes with all 15 valid and
spatiotemporally matched parameters were used, and the time series should be 16 years or longer. In total, 566
lakes were included, and the depth of the regression tree was optimized according to the minimized cross‐
validation error (Sharma et al., 2012).

3. Results
3.1. Distributions and Long‐Term Change Trends of Global Lake Color Since the 1980s

Spatially, visual representations of global lake color (i.e., denominated as the period‐median dominant wave-
length λd) over the past 38 years reveal a predominantly blue and green color spectrum with distinct spatial
clustering patterns (Figure 4). Blue lakes (<495 nm) were primarily found in high‐latitude and high‐elevation
areas, which are usually characterized by ice cover in winter. Usually, there are cold temperatures in winter,
which also affect the summer lake environment (Hampton et al., 2017) by influencing phytoplankton growth,
reducing nutrients and suspending solid inputs (Yang et al., 2022). Green lakes (495–560 nm) were more
prevalent in densely populated middle‐latitude regions, likely due to more phytoplankton (Heathcote & Down-
ing, 2012). Some lakes exhibited red and yellow colors (≥560 nm), most of which were located in the Southern
Hemisphere.

Approximately 60% of lakes experienced significant color changes (p < 0.05), with a decrease in λd found in 96%
of these cases. That is to say, we observed a significantly decreased λd in 58% of global lakes over the past four
decades. The temporal changes of lake color present apparent spatial heterogeneity. Hotspots of significantly
decreasing λd are found in high‐latitude regions, including North America, Northern Europe, and Western
Canada; whereas in the middle‐latitude regions, some lakes experienced significantly increased λd (Figure 5a).
Additionally, there is no apparent difference in the average trends of λd between different longitudes and latitudes
(Figures 5b and 5c).

Figure 3. (a) Average correlation coefficients between temperature (T), precipitation (Pr), wind speed (W), normalized difference vegetation index (NDVI) (N), total
population (Po), and lake water volume (V). Positive values are shown in red and negative values are shown in blue. (b) Distribution of correlation coefficients among
different variables. Index 1: temperature versus precipitation, index 2: temperature versus wind speed, index 3: temperature versus NDVI, index 4: temperature versus
total population, index 5: temperature versus lake water volume, index 6: precipitation versus wind speed, index 7: precipitation versus NDVI, index 8: precipitation
versus total population, index 9: precipitation versus lake water volume, index 10: wind speed versus NDVI, index 11: wind speed versus total population, index 12:
wind speed versus lake water volume, index 13: NDVI versus total population, index 14: NDVI versus lake water volume, and index 15: total population versus lake
water volume.
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Globally, the lake showed an overall decline in λd with an average value of − 0.39 nm/yr from 1984 to 2021
(Figure 6a), most of them ranging from − 2 to 1 nm/yr. Similarly, an overall decreasing trend of λd can also be
found for lakes with different types and in individual continents and climate zones (Figures 6b–6d). Relatively
lower λd trends can be found in North America and Europe (Figure 6e), South America and Oceania have a higher
proportion of increasing λd trends. Similar pattern of λd trend can be found for natural lakes and reservoirs
(Figure 6f). More lakes with decreasing λd trend can be found in Warm Temperate and Boreal zones, while lakes
with increasing λd trend are usually presented in Equatorial and Arid regions (Figure 6g). Notably, lake
morphology is also found to be related to changes in color. Smaller and shallower lakes are more likely to
experience a decreasing λd trend (Figures 6h–6j).

3.2. Drivers of Global Lake Color Changes

A machine learning method (i.e., regression tree analysis) was applied to unravel the complex and nonlinear
relationship between lake color changes and various factors, including climate, landscape, human activity, and
lake morphology (R2= 0.78, Figure 7a). This method has been applied to the changes in lake surface temperature,
stratification phenology, and dissolved organic carbon (O’Reilly et al., 2015; Toming et al., 2020; Woolway
et al., 2021), which is suitable for revealing complex, nonlinear and multicollinearity relationships (O’Reilly
et al., 2015). Here, 566 lakes were used for analysis (see Methods). These lakes are widely distributed across
different regions and climate zones, encompassing various types and attribute characteristics. Compared with the
67,579 lakes analyzed in Section 3.1, the two data sets exhibit similar numerical distributions of λd trends (the
averaged and standard deviation values of the 566 lakes are − 0.25 ± 0.44 nm/yr, while the numbers of the 67,579
lakes are − 0.39 ± 0.42 nm/yr). Thus, these selected lakes demonstrate good representativeness in terms of spatial
distribution, attribute characteristics, and color trends.

Figure 4. Spatial distribution of global lake color during individual time periods from 1984 to 2021. For better visualization,
the lake colors are shown in grids of 1° × 1°. The median dominant wavelength λd of all lakes within each grid cell was
calculated and transferred into the Forel‐Ule Index and finally shown in the corresponding color. The calculation of Forel‐
Ule Index and the corresponding color can be referred to Wernand and Van der Woerd (2010).
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The basin‐wide NDVI was found to be the most dominant factor controlling lake color changes (Figure 7b).
Usually, lakes with high clarity often have high vegetation coverage in the basin, impacting the concentration of
detrital particles and promoting the lake to be less green (Pi et al., 2020). In regions with high NDVI (basin NDVI
larger than or equal to 0.57), the lake λd tends to be much smaller with more water volume loss (<− 0.23 Gt/yr,
Figure 7a). This suggests that a large reduction in water volume would promote a further decrease in lake λd, while
an increase in water volume may resist this change.

In low‐NDVI areas (basin NDVI less than 0.57), population and lake area are more strongly related to lake color
changes (Figure 7a). In general, in densely populated areas, the changes in lake λd are more apparent, indicating
the direct influence of human activities on lake color changes. In less populated areas, changes in lake λd are often
also affected by lake size. Large lakes have smaller changes in λd than smaller lakes, suggesting that lakes with
more water are more resilient to color changes. This suggests that small lakes are more susceptible to color change
and therefore need to be managed with more care in the future. Large lakes are more resilient to color change, but
when they do change surface color, it suggests that they have been deeply affected.

We acknowledge that the above analysis only employs several global‐scale factors to assess the drivers of lake
color change, and the actual processes of change are often more complex, requiring consideration of the physical
and chemical properties of the lakes. Here, we do not delve into the specific mechanisms driving color changes in
individual lakes. Instead, we analyze the consistent influences of major climatic and anthropogenic factors on
lakes worldwide.

4. Discussions
4.1. The Consistency of Reflectance Observations Across Landsat Sensors

Landsat data from 1984 to 2021 were used to analyze the variations of lake color around the world. The lake color
observations of these 38 years were obtained by using three Landsat satellites. Due to the initial differences

Figure 5. (a) Spatial distribution of the dominant wavelength λd trends for global lakes from 1984 to 2021. For better visualization, the lake colors are shown in grids of
1° × 1°, and the median color trend values for all lakes within each grid were used. Additionally, we display the numerical proportions of lakes showing different color
trend patterns (i.e., positive and negative) at the continental scale. The distribution density of trend values, along with the standard deviation of trends within each value
range, is also presented. Panels (b, c) show the average trend variation related to longitude and latitude, respectively. It should be noted that only lakes with significant λd
trends were presented here.
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between them, obtaining lake color observations with high consistency is a prerequisite for the reliable analysis of
color variation. Considering this, the biases across different Landsat sensors were corrected by using an empirical
method as shown in Section 2.2.1, and Figure 8 shows the differences in surface reflectance across Landsat
sensors. It can be found that, before cross‐calibration, Landsat 5 has higher consistency with Landsat 7 compared

Figure 6. Time series of annual median λd for all lakes (a) and lakes across various spatial scales or lake attributes, including continents (b), lake types (where human‐
controlled natural water bodies were also classified as reservoirs, (c)), and climate zones ((d), Beck et al. (2018)). The bold lines represent the median values, and the
standard deviations are shown in shading. (e–j) Comparison of λd trends for all lakes across the abovementioned spatial scales or lake attributes and lake surface area,
depth, and elevation. NA: North America, SA: South America, and WT: Warm Temperature.
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with Landsat 8, but the differences in the blue and green bands seem to be more apparent. Similar phenomena can
also be found between Landsat 7 and 8. Overall, the consistency of the data has been improved after cross‐
calibration, no matter which indicator is used (Table 2). The average surface reflectance of the red, green, and
blue bands of Landsat 5 after cross‐calibration is 0.06, 0.08, and 0.09, while the average reflectance of the red,
green, and blue bands of Landsat 8 after correction is 0.05, 0.07, and 0.06. The average absolute difference after
cross‐calibration is less than 0.01 for all three bands of these two satellites, and thus the consistency of the surface
reflectance is acceptable.

In particular, the surface reflectance of Landsat 8 is generally lower than that of Landsat 7 across all bands,
particularly for reflectance values below 0.025 (Figure 8). This difference may be attributed to the higher
radiometric resolution of Landsat 8, which enables the detection of smaller reflectance values. A similar
observation was also reported by Maciel et al. (2023), which compared the reflectance of Landsat 7 and Landsat 8
using in situ measurements from over 1,000 inland lakes. To ensure consistency among observations from
multiple Landsat satellites, correction equations were developed to align Landsat 5 and Landsat 8 reflectance with
that of Landsat 7. The analysis above has validated the reliability of these equations. After the calibration of

Figure 7. A regression tree to reveal the impact of climate, landscape, and lake morphology on (a) lake color change and (b) their importance. The numbers at each node
represent the classification criteria, and the final number represents the average color trend of all lakes under that classification criterion.

Figure 8. Scatter plot of the surface reflectance from (a–c) Landsat 7 and Landsat 5, (d, e) Landsat 7 and Landsat 8. Original and corrected surface reflectance are shown
in orange and cyan, respectively. SR: surface reflectance.
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Landsat 8 data, across all three bands, there is a lack of small reflectance values. We attribute these to differences
in the observational performance of the two satellites. Landsat 7 is less capable of detecting low reflectance values
in water bodies compared to Landsat 8. By applying the correction equations, the smaller reflectance values
captured by Landsat 8 are adjusted to a level consistent with Landsat 7, thereby reducing their apparent
magnitude. This phenomenon has also been observed in other studies (e.g., Topp, Pavelsky, Dugan, et al., 2021;
Topp, Pavelsky, Stanley, et al., 2021). Nonetheless, consistent surface reflectance is crucial for ensuring the
reliability of long‐term series analyses.

To further illustrate the necessity and effectiveness of cross‐calibration, we randomly selected six lakes around
the world and displayed the variation of annual λd before and after cross‐calibration. The results show that before
calibration, there are certain differences between the λd derived from different satellites, often showing consistent
overestimation or underestimation (Figure 9). These differences are bound to affect the calculation of the λd trend,
while the time series of corrected λd is more consistent and the obtained trend is thus more reliable.

Table 2
Comparsion of the Corrected Surface Reflectance From Landsat 5, 8 to Those From Landsat 7

Band Mean difference (nm)
Average absolute
difference (nm) RMSE (nm) R

Correct Landsat 5 (to 7)

Blue − 0.0031 − 4.5137 × 10− 7 0.0096 0.0088 0.0128 0.0120 0.9446 0.9454

Green − 0.0063 − 4.9302 × 10− 6 0.0107 0.0084 0.0147 0.0127 0.9756 0.9757

Red − 0.0023 − 4.4672 × 10− 7 0.0094 0.0090 0.0145 0.0143 0.9765 0.9765

Correct Landsat 8 (to 7)

Blue 0.0104 5.0567 × 10− 6 0.0148 0.0114 0.0210 0.0168 0.8470 0.8477

Green 0.0056 1.2053 × 10− 6 0.0127 0.0107 0.0190 0.0165 0.9389 0.9390

Red 0.0054 5.5741 × 10− 6 0.0119 0.0105 0.0182 0.0163 0.9513 0.9516

Note. RMSE: Root Mean Squared Error and R: correlation coefficient.

Figure 9. The variation of annual λd in (a) Lake Taihu (Asia), (b) Lake Paijanne (Europe), (c) Lake Vaaldam (Africa), (d) Lake Great Bear (North America), (e) Lake
Chiquite (South America), and (f) Lake Wivenhoe (Oceania) from 1984 to 2021 derived from pre‐ and post‐calibration of the times series of Landsat images. The data
before calibration is shown in color (green for Landsat 5, red for Landsat 7, and blue for Landsat 8), while the data after calibration is shown in black.
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4.2. The Effect of the Missing Data on Trend Analysis of Lake Color

Missing data is another factor that affects the trend analysis of lake color. Missing data usually caused by not
meeting quality control standards (e.g., heavy cloud cover) and then the relevant data are excluded. Due to these
issues, the observation frequency of lake color within 1 year is uneven and data for some months are usually
lacking, affecting the derivation of annual λd. In order to discuss the possible impact of this on the analysis of color
trends, lakes with complete 12 months of λd observations in a certain year or multiple years were collected as
samples, and finally obtained 6,635 lakes with a total of 30,559 years of observations. In individual years, for each
lake, 2i observations were randomly selected (i = 1, 2, …, 12), and the average λd obtained from each randomly
selected sample was calculated and compared with the average λd obtained from all observations. The above
random process was repeated 100 times. The results show that most differences range between − 20 and 20 nm;
with the number of samples increasing, the difference between the calculated λd value and the final value becomes
smaller (Figure 10a). However, it is important to note that most lakes have missing data. It would further reduce
the number of lakes that can be analyzed if much more observations within 1 year are needed. For example, if 15
observations per year are needed, only 8,894 lakes can be kept (Figure 11a). Ultimately, a compromise threshold
was chosen, which required six observations per year, which would generally ensure an observation every
2 months. The average absolute difference is 5.18 nm in this case, which is about 1% compared to the 475–580 nm
range of lake λd. Therefore, the impact on trend calculations can be ignored and also more lakes may be retained.

Figure 10. (a) The difference of annual λd derived by using all observations and different numbers of observations per year. (b) The difference of λd trends derived by
using observations from all years and these from different numbers of years.

Figure 11. (a) The number of lakes with different average numbers of observations per year. (b) The number of lakes with different numbers of years with valid
observations. The black lines in panels (a, b) indicate the thresholds used for quality control.
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Similarly, we also conducted the trend analysis on the intra‐annual scale. Lakes with 38 years of valid lake color
observations were selected, resulting in 3,163 lakes in total. Then, we randomly selected 5i observations (i = 1, 2,
… 7), and compared the color trend obtained from each randomly selected sample with the trend obtained by
using all observations. The random process was also repeated 100 times. Most differences range between − 1 and
1 nm/yr; with the number of samples increases, the trend value becomes closer to the final value (Figure 10b).
Lakes with at least 20 years of observations were used, in this case, more than 60,000 lakes could be used for
analysis (Figure 11b). The average trend value deviation in this case was 0.1 nm/yr, which is about 25% of the
average trend of all lakes of 0.44 nm/yr.

4.3. Additional Analysis of the Variation Trends of Lake Color

It can be seen from the above that there are some uncertainties in the estimated trend of lake λd. Here, instead of
focusing on the numerical value, we divide the variation trends into four categories: significant increasing,
significant decreasing, steady, and variable states. For lakes that λd have not changed significantly when the
variation coefficient is less than or equal to 1%, the lake situation is deemed to be steady, otherwise, it is
considered as a variable state. Compared to lakes with significant increasing trends, other types of lakes have
more widespread distributions (Figures 12a–12d). We found that most lakes were in a state of significant decrease
in λd (n = 39,137), followed by lakes in a state of color change (n = 17,167) and a stable state (n = 9,613,
Figure 12e); a small number of lakes were in a state of significant increase (n = 1,662), indicating that most lakes
are in an unstable state. Although there is no significant trend of lakes in a steady state, most of them also have
decreasing trends (Figure 12f).

4.4. The Uncertainty of λd as a Representative of Lake Color

In this study, we use dominant wavelength λd as an indicator of lake color and analyze its long‐term changes. We
acknowledge that this indicator has certain uncertainties. First, λd is calculated by the reflectance of three visible
bands from Landsat satellites. Compared with hyperspectral observations, their spectral resolution is relatively
coarse (Woerd & Wernand, 2015), and it may not be quite sensitive to slight changes in the spectrum. Second,

Figure 12. The spatial locations of lakes with an (a) increasing trend, (b) decreasing trend, (c) steady state, and (d) variable
state. (e) The number of different types of lakes around the world. (f) The distribution of λd trend for different types of lakes
around the world.
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chromaticity is known to be perceptually nonlinear (Gardner et al., 2021), two colors may have similar λd values
but are perceived slightly differently. Third, the relationship between λd and other water quality parameters, such
as Secchi depth (SD), colored dissolved organic matter (CDOM), and chlorophyll (CHL), is complex (Burket
et al., 2023). For a given λd value, it may be caused by different combinations of SD, CDOM, and CHL.
Therefore, λd cannot provide a quite clear inference of some water quality parameters. In addition, λd has
boundedness, and its range is often distributed between 472 and 572 nm. For example, dominant wavelengths will
saturate to an upper limit of around 572 nm regardless of the water quality constituent present, so long as they
reach a certain high concentration (Bukata et al., 1997). Therefore, λd has a limited capacity to determine the
quantified concentrations of the various optical water quality variables (Malthus et al., 2020). Due to the coarse
spectral resolution and perceptually nonlinear chromaticity, more slight color changes may not be captured.
Additionally, 98% of the lakes analyzed in the present study have λd between 480 and 570 nm, so the trend
analysis may be less affected by the boundedness of λd. Although λd will be affected by the above factors, it has
still been successfully and widely used in many studies (Cao et al., 2023; Gardner et al., 2021; Topp, Pavelsky,
Dugan, et al., 2021; Topp, Pavelsky, Stanley, et al., 2021; Yang et al., 2022).

4.5. Future Implications

Here, lake color is chosen as the monitoring indicator to represent the lake ecological state because of its good
representativeness, and it can be easily obtained through remote sensing technology. This study presents, for the
first time, consistent spatiotemporal patterns of global lake color changes over the past four decades. Global lake
color is currently undergoing significant shifts, and the divergent shifts in lake color can be attributed to a
combination of climate, landscape dynamics, anthropogenic activities, and lake morphometry factors. The
changes in lake color also indicate possible ecosystem shifts, such as decreased colored dissolved material or
plankton. Given the ongoing global climate change and human impacts, future trends in lake color are expected to
change significantly. Our findings provide crucial insights into shifts in lake color, serve as invaluable references
for assessing changes in lake ecological statuses and environmental conditions, and help to improve the under-
standing of the complex interactions between climate, anthropogenic impacts, and lake colors. Furthermore, these
findings can guide policy‐makers in formulating more informed, practical policies related to lake and environ-
mental conservation, as color changes are related to lake attributes and geochemical processes, including lake
surface temperature (Wetzel et al., 2000), lake stratification (Read & Rose, 2013), carbon storage, productivity
(Kuhn & Butman, 2021), and phytoplankton and food chains (Leech et al., 2018).

5. Conclusions
Using a comprehensive data set derived from almost 40 years of continuous Landsat observations, this study
investigates the color changes in 67,579 lakes worldwide at various spatial and temporal scales. The findings
reveal distinct global lake color changes, with a prevailing decrease in dominant wavelength. Lakes of different
continents, climate zones, types, and attributes show varied color change trends. By integrating long‐term lake
color observations with climate, landscape, and human activity data, we identified that basin NDVI, population,
water volume change, and lake area were assumed to affect the variation of lake colors.

Data Availability Statement
All data used in this study are publicly available. Landsat Collection 1 Tier 1 data set (including Landsat‐5/7/8)
from 1984 to 2021, MODIS NDVI data set (i.e., MOD13A2 V6.1 product) from 2000 to 2021 and ERA5‐Land
data set of monthly air temperature, total precipitation, and wind speed data from 1984 to 2021 were derived
through Google Earth Engine (GEE) code editor at https://code.earthengine.google.com. Please enter the key-
words “USGS Landsat 5/7/8 Surface Reflectance Tier 1,” “ERA5‐Land Monthly Aggregated‐ECMWF Climate
Reanalysis,” and “MOD13A2.061 Terra Vegetation Indices 16‐Day Global 1 km” to retrieve the corresponding
data set; Lake boundary and basin information were obtained at Messager et al. (2016) and Sikder et al. (2023),
respectively; World gridded population data from 2000 to 2021 was derived at Oak Ridge National Labora-
tory (2021); Annual lake water volume data set from 1992 to 2020 was derived at Yao et al. (2023). The code
scripts required to produce the lake color data can be derived from Topp et al. (2020). The lake color data set used
in this study is available from Shen (2024).
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