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A B S T R A C T

Untangling the complexities of harmful algal bloom (HAB) dynamics is an ongoing effort that requires a
fundamental understanding of spatiotemporal phytoplankton patterns and the environmental filters through
which assemblages are structured. To this aim, monthly field surveys were conducted from 2019 to 2021 at 21
sites in Lake Okeechobee, Florida – a large, shallow, eutrophic, and heavily managed lake with coastal con-
nectivity that experiences intense and recurrent HABs. Phytoplankton assemblages were strongly spatially
structured forming 7 distinct lake zones with significant dissimilarity in composition and total abundance. While
successional patterns were not apparent across seasons or wet/dry periods, total phytoplankton abundance was
significantly greater towards the end of the wet season. Distance-based linear models using 16 abiotic variables
were used to identify significant explanatory variables of spatial and temporal patterns. The spatial model
explained 93% of the variability suggesting deterministic processes largely control spatial patterns. The temporal
model explained only 48% of the temporal variability suggesting stochasticity in lake-wide shifts in assemblages
over time. However, the strong spatial structuring of assemblages may preclude lake-wide succession patterns.
Total algal abundance metrics were inversely related to nitrate, orthophosphate, and total alkalinity, the
strongest explanatory variables of assemblage patterns, suggesting a lag between peak resources and peak
abundance as phytoplankton cycle “boom-to-bust” phases. Consistent with this inverse relationship, Threshold
Indicator Taxa Analysis returned almost exclusively negative responder indicator taxa for all three explanatory
variable gradients. The assemblage-level threshold defined the gradient boundary between boom- and bust-
associated indicator taxa. These data contribute novel information about HABs ecology pertinent to manage-
ment strategies.

1. Introduction

Understanding the processes that structure algal assemblages in
space and time is foundational to unraveling the complexities of harmful
algal bloom (HAB) dynamics. Community ecology is largely concerned
with describing the spatial and temporal patterns of species distributions
and identifying the drivers that organize assemblages into observed
patterns (Leibold et al., 2004; Austin, 2007; Vellend, 2010; Weiher et al.,
2011; Rojo, 2021). Although generalized patterns and drivers of algal
community assembly exist, such as those described by Margalef’s
mandala and the C-S-R model (Smayda and Reynolds, 2001; Reynolds

2006; Wyatt, 2014; Glibert, 2016), system-specific or local processes,
especially in highly managed aquatic habitats, must be identified to
truly understand HAB dynamics in the system of interest.
Ecological community assembly theory includes both deterministic

and stochastic components encompassed by four main mechanisms:
selection, drift, dispersal, and speciation (Vellend, 2010). Environ-
mental selection by abiotic and biotic factors, commonly called envi-
ronmental filtering or species sorting, is a deterministic mechanism that
involves the sorting of species from the regional species pool through a
series of environmental filters that determine the structure of the local
community. Ecological drift, dispersal, and speciation are considered
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stochastic mechanisms that occur because of the inherent randomness or
probability in biological and environmental processes. The relative
strength of these mechanisms in structuring ecological communities
depends on the spatial and temporal scale under investigation as well as
on the organism being studied (Chase and Myers, 2011).
Most HAB-forming species in freshwaters are microalgae (Paerl et al.,

2001) and can therefore be expected to follow microbial community
assembly rules (Nemergut et al., 2013). Lourens G. M. Baas Becking
(1934; Canfield, 2015) famously said of microbial biogeography,
“everything is everywhere, but the environment selects,” asserting that
because microbes are not limited by dispersal barriers like many mac-
roorganisms, they can hypothetically disperse globally, but the envi-
ronment they randomly colonize determines survival (Van der Gucht
et al., 2007; Nemergut et al., 2013). Although this paradigm has been
challenged by modern microbial biogeography studies that have found
microbial endemism (O’Malley, 2008; Ribeiro et al., 2018; Spatharis
et al., 2019), local deterministic processes are thought to be a stronger
driver of microbial community assembly than stochastic processes,
particularly at smaller spatial scales (Van der Gucht et al., 2007; Lan-
genheder and Székely, 2011; Nemergut et al., 2013; Zhou and Ning,
2017). Species sorting and environmental filtering are useful concepts
for understanding how phytoplankton assemblages are structured along
environmental gradients at the landscape scale, and identifying
ecological thresholds or change points where individual species or
whole assemblages undergo significant shifts in composition and
abundance (Baker and King, 2010; King and Baker, 2010). Knowledge of
species-level and community-level thresholds to a particular environ-
mental driver is valuable for management and prediction of ecosystem
health and can be useful for establishing total maximum daily loads and
numerical nutrient criteria aimed at mitigating HABs (Guntenspergen
and Gross, 2014; King and Baker, 2014; Nichols et al., 2014). Likewise,
indicator species, organisms having strong sensitivity to specific envi-
ronmental drivers that provide early warning signals of impending
ecosystem changes, can also be a powerful tool in HABs management
(Dufrene and Legendre, 1997; Siddig et al., 2016; McQuatters-Gollop
et al., 2017). Algae are especially reliable bioindicators and are
routinely used in ecosystem assessments (Stevenson, 2014; McQuat-
ters-Gollop et al., 2017).
The Lake Okeechobee system, located within the Greater Everglades

Watershed in south-central Florida, presents a model ecosystem to study
the patterns and processes of phytoplankton assembly in large, shallow
subtropical lakes with coastal connectivity. Novel anthropogenic envi-
ronmental gradients – environmental gradients that have developed as a
result of human activities such as watershed development, managed
hydrologic processes, and climate change – create new spatial and
temporal heterogeneity that likely alter natural phytoplankton assem-
blage structure and play an important role in HAB dynamics. The sur-
rounding agricultural and pasture lands along with urban development
have contributed to the eutrophication of the Lake Okeechobee system
which is in part responsible for the increasingly common and more
intense HABs in the system (Zhang and Welch, 2018). Despite consid-
erable research into HABs in the Lake Okeechobee system, there remains
large uncertainty about the immediate processes that cause steady-state
phytoplankton assemblages to shift towards dominance by one or a few
cyanobacteria species that proliferate into a HAB (Brooks et al., 2016;
Haakonsson et al., 2017; Ho et al., 2019). Nutrient enrichment is un-
deniably linked to HABs, not only in this system, but across the globe
(Glibert et al., 2005; Glibert and Buford, 2017; Glibert, 2020). In large,
shallow lakes like Lake Okeechobee, physical processes such as wind
and hydrology can also play an important role in HAB dynamics (Havens
et al., 1994). However, a complex interplay between nutrients, lake
physics, and other abiotic and biotic factors determine the occurrence,
extent, duration, and composition of a HAB (Paerl et al., 2001), and has
yet to be understood in a manner supporting actionable management
strategies.
In this paper we (1) describe the spatial and temporal patterns of

phytoplankton assemblages based on genus-level (or lowest possible)
taxonomic classifications in Lake Okeechobee and the Caloosahatchee
and St. Lucie Rivers (henceforth collectively referred to as the Lake
Okeechobee system); (2) identify abiotic variables explaining the
greatest proportion of the total spatial and temporal phytoplankton
assemblage variability using multidimensional, multivariate regression
models; and (3) describe the distribution of indicator taxa along gradi-
ents of the variables shown to be highly explanatory of assemblage
patterns and define thresholds for those variables using Threshold In-
dicator Taxa Analysis. We hypothesized that (1) the phytoplankton as-
semblages of the Lake Okeechobee system are spatially and temporally
structured exhibiting geographically distinct assemblages and predict-
able seasonal succession; (2) deterministic processes such as spatial
differences in water quality and seasonal fluctuations in meteorological
conditions significantly structure phytoplankton assemblages; and (3)
phytoplankton assemblages exhibit clear thresholds along the prevailing
environmental gradients influencing phytoplankton assembly and HABs
with indicator species on either side of the assemblage-level thresholds
representing the different ecosystem states.

2. Methods

2.1. Study area

Lake Okeechobee (27◦ N latitude and 81◦ W longitude), meaning
“big water” in the Seminole language, is the largest lake in the south-
eastern United States occupying 1800 km2 (Zhang and Welch, 2018). It
is located within the Greater Everglades Watershed in south-central
Florida, USA and is connected to the eastern and western coasts by the
St. Lucie River and the Caloosahatchee River which flow into the
Atlantic Ocean and the Gulf of Mexico, respectively (Fig. 1). The lake is
characterized as eutrophic, turbid, and shallow with an average depth of
2.7 m (Zhang and Welch, 2018). The Lake Okeechobee watershed
(LOW) covers the northern section of the larger Greater Everglades
Watershed which extends south through Everglades National Park to
Florida Bay. Water inflows to Lake Okeechobee are primarily from the
Upper Kissimmee, Lower Kissimmee, Taylor Creek/Nubbin Slough, Lake
Istokpoga, Indian Prairie, and Fisheating Creek subwatersheds of the
LOW that drain into the northern portion of the Lake. The primary land
use types in these subwatersheds north of the lake are pastures for beef
cattle grazing and citrus groves, while sugarcane production is the
principal land use type south of the lake (Zhang and Welch 2018;
Fig. 1A). Primary water outflows from Lake Okeechobee are to the St.
Lucie River, the Caloosahatchee River, and the Everglades Agricultural
Area in the South Lake Okeechobee subwatershed.

2.2. Field and laboratory methods

Surface water samples were collected monthly from March, 2019
through October, 2021 (32 months) from 17 sites in Lake Okeechobee, a
site at the upper (S-77) and lower (S-79) Caloosahatchee River, and a
site at the upper (S-308) and lower (S-80) St. Lucie River for a total of 21
field sites (Fig. 1). Quantitative taxonomic analysis of phytoplankton
assemblages was performed using an Imaging FlowCytobot East Fal-
mouth, MA, "https://mclanelabs.com/imaging-flowcytobot/" Imaging
FlowCytobot - McLane Labs. Live and glutaraldehyde-preserved samples
were sent to PhycoTech, Inc. for algal identification and enumeration.
The FlowCytobot captures images of particulates between 2 and 250 µm
as they pass through a flow cell. Laser-induced fluorescence and light
scattering from individual particles are measured and used to trigger
targeted image acquisition allowing for the discrimination between
algal cells, detritus, zooplankton, and other particulates. Algae are
identified by an automated classifier which identifies algal units above
9 µm to genus level. When image resolution did not allow for genus-level
identification, phytoplankton were classified at higher taxonomic or
morphological groups (e.g., chlorophytes other; centric diatoms other;
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etc) or placed into the “unclassified” category used for all algae that
were counted but could not be identified. Algal taxa below 9 µm were
counted but not identified and placed in a separate category, “taxa <

9 µm.” The automated algal classifications were then validated by a two-
person verification system. Abundance measurements for each taxon
were calculated as natural units per milliliter (NU mL-1), cells per
milliliter (cells mL-1), and biovolumes per milliliter (µm3 mL-1). Bio-
volumes were calculated manually using cell measurements taken from
the images and applying the appropriate shape equation for each taxon.
Abiotic data for each site collected concomitantly with our samples

were downloaded from the South Florida Water Management District
(SFWMD) environmental database (DBHYDRO Browser (sfwmd.gov))
and the U.S. Geological Survey (USGS) National Water Information
System (NWIS) database (USGS Water Data for the Nation). Abiotic
variables selected for statistical analyses included total ammonia as ni-
trogen (NH3+NH4–N), nitrate + nitrite as nitrogen (NO3 + NO2–N),
total nitrogen (TN), orthophosphate (ortho-P), total phosphorus (TP),
total alkalinity (TA), chlorophyll-a (Chl-a), depth, dissolved oxygen
(DO), pH, turbidity, specific conductivity (SpCond), water temperature
(temp), precipitation (precip), total solar radiation (TSR), wind direc-
tion (WNDD), and wind speed (WNDS). Precipitation data were avail-
able at only 8 of our sampling sites (Fig. 1) and were extrapolated to the
nearest sites where data were not available. TSR data within the lake
were only available at one of our sampling sites, the LZ40 weather
station in the center of Lake Okeechobee, and was applied to all sites
within the lake and the upper Caloosahatchee River (S-77) and upper St.
Lucie (S-308) sites (Fig. 1). TSR data for the lower Caloosahatchee site
(S-79) were obtained from the S78 weather station on the Calo-
osahatchee River at Ortona (~ 39 km east 78.9◦ of S-79) and TSR data
for the lower St. Lucie site (S-80) were obtained from the Allapattah
Tract weather station (ACRAWX, ~14.5 km west 93.9◦ of S-80). Wind
data were available from S78W and ACRAWXwhich was applied to sites

S79 and S80, respectively, as well as from four sites within the lake
(Fig. 1) which were extrapolated to the nearest site where data were not
available. Satellite imagery of Lake Okeechobee from the Harmful Algal
Bloom Forecasting Branch of the National Centers for Coastal Ocean
Science (NCCOS; Harmful Algal Bloom Monitoring System - NCCOS
Coastal ScienceWebsite (noaa.gov)) were downloaded for each of the 32
months sampled for comparison to spatial and temporal distribution of
algal biomass estimated through remote sensing (Fig. S1). The images
were derived from Copernicus Sentinel-3 satellite data from the Euro-
pean Organisation for the Exploitation of Meteorological Satellites
(EUMETSAT) and were processed by NCCOS.

2.3. Statistical analysis

Multidimensional, nonparametric statistical tools in PRIMER-e v7
software (Clarke and Gorley, 2015; Anderson et al., 2008) were used to
investigate spatial and temporal patterns of phytoplankton assemblage
structure and construct models describing the abiotic drivers of those
patterns. Phytoplankton abundance (cells mL-1) data from all 639 sam-
ples collected over 32 months from 21 sampling locations were averaged
across months for each site (integrating temporal variability) and across
sites for each month (MMYY; integrating spatial variability) to sepa-
rately investigate spatial and temporal patterns. Abundance data were
fourth-root transformed and separate Bray-Curtis resemblance matrices
were constructed from the spatial and temporal datasets.
Hierarchical unconstrained binary divisive clustering (UNCTREE)

and a similarity profile test (SIMPROF) were run on the spatial resem-
blance matrix to test for multivariate structure among sampling sites and
identify clusters of sites with significantly (P< 0.05) distinct phyto-
plankton assemblages. A three-way crossed analysis of similarity
(ANOSIM) was used to test for significant (P< 0.05) assemblage
dissimilarity within three temporal factors: the two precipitation

Fig. 1. Map of the Lake Okeechobee, Florida (USA) study area and surrounding land use. The locations of the twenty-one stations where phytoplankton and water
quality samples were taken are shown along with the location of weather stations with icons indicating what meteorological data were available at each. The three
major river connections to Lake Okeechobee are the Caloosahatchee River flowing west into the Gulf of Mexico, the St. Lucie River flowing east into the Atlantic
Ocean, and the Kissimmee River flowing south into northern Lake Okeechobee near station KISSR0.0. The land use feature layer was obtained from the South Florida
Water Management District’s Geospatial Open Data Portal.
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seasons (wet season: May – October and dry season: November – April),
the four meteorological seasons (spring: March, April, May; summer:
June, July, August; fall: September, October, November; winter:
December, January, February), and the years sampled (2019, 2020, and
2021). Additionally, a one-way and a three-way analysis of variance
(ANOVA, RStudio 2023.09.0, anova_test {rstatix}) was used to test for
significant differences (p< 0.05) in three univariate algal abundance
metrics - total phytoplankton cell concentration, total phytoplankton
biovolume, and Chl-a among spatial (lake zones) and temporal (pre-
cipitation season, meteorological season, year) factors, respectively.
Bonferroni adjusted post hoc pairwise tests were performed on all
ANOVAs having more than three factors to identify differences between
each pair of factors.
Distance-based linear models (DISTLM) and redundancy analysis

(dbRDA) were used to explore the spatial and temporal relationship
between the multivariate taxa abundance data and 16 abiotic explana-
tory variables. Spatial tests were performed on time-averaged sample
data for each site (n = 21) while temporal tests were performed on site-
averaged sample data for each sampling month (n = 32). Marginal tests
identified variables individually explaining a significant (P< 0.05)
proportion of the total phytoplankton assemblage variation while
sequential conditional tests selected the combination of variables that
cumulatively explained the greatest proportion of the total variation. In
addition to the multivariate assemblage models, DISTLMs were also run
on Chl-a to identify the best explanatory variables describing the spatial
and temporal patterns of this commonly used algal abundance metric.
The most parsimonious models were determined using a forward-
selection procedure based on adjusted R2 section criterion. Histograms
were examined to determine appropriate statistical transformations for
individual explanatory variables. Draftsman plots and Pearson correla-
tion matrices were examined to search for spatial and temporal collin-
earity between explanatory variables. The strength of the Pearson
correlation coefficient (r) was interpreted as follows: r< 0.25 = no
relationship, 0.25< r< 0.5=weak relationship, 0.5< r< 0.75 = mod-
erate relationship, and r> 0.75 = strong relationship. Draftsman plots
and Pearson correlation matrices of spatial and temporal relationships
between Chl-a, total cell concentration, and biovolume abundance
metrics and the 16 abiotic variables were also examined to identify re-
lationships between the three total abundance metrics and the explan-
atory variables. Plots of all untransformed abiotic variables averaged
across sites and sampling dates were used to study site-specific spatial
trends and monthly temporal trends of the chemical and physical con-
ditions during the study.
Threshold Indicator Taxa Analysis (TITAN, Baker et al. 2020; Baker

et al., 2023) was performed in R (TITAN2 package, R Core Team, 2023)
along the gradients of the abiotic variables identified by the DISTLM as
significant explanatory variables of phytoplankton assemblage structure
to detect species-level and assemblage-level thresholds to each explan-
atory variable. TITAN calculates the environmental change point (CP),
indicator value (IndVal) and its z-score (z), and the purity and reliability
of each taxon classifying them as either negative (z-) or positive (z+)
taxa. Negative indicator taxa (z-) are those whose frequency and
abundance decline moving up the environmental gradient while positive
indicator taxa (z+) increase moving up the gradient. Because raw IndVal
scores will favor the most frequent and abundant taxa, IndVal z-scores
are used to standardize the distribution thereby emphasizing the con-
tributions of taxa with low occurrence frequencies but high sensitivity to
the gradient. Purity is defined as the proportion of bootstrap replicates
with CP directions (decreasing z− or increasing z+) that agree with the
observed response direction while reliability is the proportion of boot-
strap CPs with significant IndVal scores (p< 0.05) so that taxa with
repeatable and consistently large IndVal scores are deemed reliable.
Taxa with frequencies ≤ 3 or a frequency of 100 must be excluded from
the analysis.

3. Results

3.1. Objective 1 – Identify the spatial and temporal patterns of
phytoplankton assemblage structure and univariate abundance metrics

The phytoplankton assemblages of the Lake Okeechobee system
were strongly spatially structured. Seven lake zones with significant
phytoplankton assemblage dissimilarity were identified by the
UNCTREE and SIMPROF tests (Fig. 2A, B). The two lower riverine sites
S-79 and S-80, respectively named West Coast and East Coast, had
distinct phytoplankton assemblages from each other and all other sites.
A cluster named “Northwest (NW) Lake” zone containing the 5 sites
closest to the main water inflow areas for Lake Okeechobee was iden-
tified. The sites included LZ2, KISSR0.0, and L001 (nearest to inflows
from the Kissimmee River, Taylor Creek, Mosquito Creek, and Nubbin
Slough), plus POLESOUT located downstream of the C-40 canal inflow
and L005 located downstream of water inflows from the C-41 canal and
Fisheating Creek. The central portion of Lake Okeechobee was split
between a “MidWest Lake” zone containing L008, PALMOUT, and the S-
77 Caloosahatchee River outflow site and a “MidEast Lake” zone con-
taining S-308, the St. Lucie outflow site, and CLV10A, L004, and LZ40.
The southern portion of Lake Okeechobee is dominated by water out-
flows directed south through the S354 and S351 spillways into the Ev-
erglades Agricultural Area, Water Conservation Areas, and eventually
Everglades National Park. Two clusters were identified in this area –
“South (S) Lake” containing L006, LZ30, L007, LZ25A, and PELBAY3
and “S Lake 2″ comprised of POLE3S and RITTAE2. A gradient of
increasing phytoplankton abundance from south to north was observed
(Fig. 2C). The NW Lake zone had significantly greater total cell con-
centrations, total biovolume, and Chl-a concentrations compared to all
other lake zones (post-hoc pairwise Bonferroni adjusted p < 0.05). The
MidWest and MidEast Lake zones had significantly higher cell concen-
trations, biovolumes, and Chl-a compared to the South Lake and South
lake 2 zones. The East and West Coast zones did not differ significantly
from each other in any of the algal abundance metrics and were only
significantly different from the NW Lake zone.
Temporal patterns of assemblage structure were more variable and

less defined than spatial patterns (Fig. 3). Significant compositional
dissimilarity was present across years 2019, 2020, and 2021 (ANOSIM R
= 0.632, P = 0.001), but there were no significant differences between
wet and dry seasons (ANOSIM R= -0.4, P = 0.21) or between any of the
meteorological seasons (ANOSIM R = 0.255, P = 0.06). The univariate
metrics of phytoplankton abundance examined – total cell concentra-
tion, biovolume, and Chl-a – exhibited stronger temporal trends than the
multivariate assemblages. Significant differences in all three metrics
occurred between years and precipitation season (ANOVA p < 0.05)
with all metrics increasing from 2019 to 2021 and higher values
recorded during the wet season. Total cell concentration exhibited sig-
nificant differences between the meteorological seasons, particularly
between fall when cell density was highest and spring when it was
lowest (ANOVA p < 0.05). Mean Chl-a and biovolume were highest in
the summer despite the non-significant p-values returned by the 3-way
ANOVAs.
Chl-a > 20 μg L-1, cell concentration > 100,000 cells mL-1, and

supporting satellite imagery were used to infer the presence of a bloom.
Monthly NOAA satellite imagery (Harmful Algal Bloom Monitoring
System - NCCOS Coastal Science Website (noaa.gov)) showed mild to
moderate blooms occurring in June – August 2019, June – September
2020, and May – October 2021, and a major HAB event in May 2021.
The May 2021 HAB covered the entire lake, but obvious hot spots
occurred in the NW Lake zone shoreline and along the eastern shoreline
of Lake Okeechobee (Fig. S1). Cell density and Chl-a data reflected the
spatial patchiness of the bloom with the greatest cell concentrations
(~300,000 cells mL-1) measured at CLV10A, located in the MidEast zone
near the eastern shoreline, and LZ2, located in the NW Lake zone near
the mouth of the Kissimmee River. Cell concentrations between 100,000
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and 150,000 cells mL-1 were recorded at three other NW Lake zone sites,
L001, KISSR0.0, and POLESOUT, during the May 2021 HAB event and at
the MidEast zone site S-308 adjacent to the Port Mayaca Lock and
Spillway controlling water releases from Lake Okeechobee to the St.
Lucie River.
A total of 74 unique taxonomic identifications were made across the

21 sites and 32-month sampling period, 19 of which were cyanobacteria.
Cyanobacteria abundance dominated the phytoplankton assemblages in
all lake zones and over the entire study period (Figs. 2C and 3A). Mer-
ismopedia, Aphanocapsa, and Planktolyngbya were the most abundant
taxa across time and space, although Planktolyngbya abundance was
noticeably lower at both lower riverine sites compared to zones within
the lake (Fig. 2D and 3B). The relative abundances of Merismopedia and
Aphanocapsa were evenly distributed across all spatial zones, but there
was a shift in dominance from Merismopedia in 2019 through May 2020
to Aphanocapsa from June 2020 through October 2021 (Fig. 3B). Mer-
ismopedia and Aphanocapsa are both colonial genera in the order
Chroococcales, family Microcystaceae and both are potential micro-
cystin producers (Bernard et al., 2016; de J Magalhães et al., 2019),
while Planktolyngbya is a filamentous genus within the order Lep-
tolyngbyales for which toxin production has not been reported. The
toxin-producing taxa Microcystis, Dolichospermum, Raphidiopsis, and
Aphanizomenon, and the taste and odor-producing Pseudanabaena were
also conspicuously present but at lower concentrations and frequency
(Figs. 2D and 3B). Green algae, diatoms, and taxa <9 µm were the next
most abundant phytoplankton groups after cyanobacteria.

3.2. Objective 2 – Identify explanatory variables of spatiotemporal
patterns of phytoplankton assemblage structure and chlorophyll-α

The DISTLM performed on time-averaged samples for each site
(n= 21) determined that NO3+NO2–N individually explained the
greatest proportion (44.9 %, P = 0.001) of the total spatial variation in
the phytoplankton assemblage (Table 1). Other variables that signifi-
cantly explained the spatial structure of the phytoplankton assemblage

when considered alone where TA (36.7 %, P = 0.001), ortho-P (33.4 %,
P = 0.001), SpCond (23.9 %, P = 0.003), turbidity (18.2 %, P = 0.03),
and temp (18.7 %, P = 0.016). Conditional tests revealed that after ac-
counting for the variation explained by NO3+NO2-N, the addition of TP
(23.7 %, P= 0.001),+WNDS (11.5 %, P= 0.001), +SpCond (4.1 %, P=

0.003),+turbidity (3.5 %, P= 0.001),+ortho-P (3.2 %, P= 0.001),+TA
(1.3 %, 0.026), +DO (1.1 %, P = 0.045) cumulatively explained 93.3 %
of the total spatial variation (Table 1, Table S4). The model was visu-
alized in ordination space by distance-based redundancy analysis
(dbRDA) and overlayed with vectors for the 8 significant explanatory
variables selected by the conditional tests (Fig. 4). Together dbRDA axes
1 and 2 explained 83.9 % of the fitted variation and 81.4 % of the total
variation.
The DISTLM performed on the site-averaged samples for each month

(n = 32) revealed that only a small proportion of the variation in tem-
poral assemblage structure was explained by any one variable individ-
ually with ortho-P explaining the greatest (13.8 %, P = 0.001), followed
by depth (13.5 %, P = 0.001), turbidity (12.4 %, P = 0.002), and TA
(12.1%, P= 0.001, Table S1). Themost parsimonious conditional model
which included ortho-P, +depth (12.5 %, P = 0.001), +WNDD (8.7 %, P
= 0.001), +precip (8.8 %, P = 0.001), and TN (4 %, P = 0.043) cumu-
latively explained 48 % of the total temporal variation in phytoplankton
assemblages (Table S1, Table S4).
In addition to the models describing multivariate phytoplankton

assemblage structure, DISTLM was also used to identify the best
explanatory variables of the univariate phytoplankton biomass metric
Chl-a. NO3+NO2–N (62 %, P = 0.001), ortho-P (51 %, P = 0.002), and
temp (31 %, p = 0.008) individually explained the largest proportion of
Chl-a spatial variability (Table S2). The most parsimonious model,
which included NO3+NO2-N,+TP (17.5 %, P= 0.002),+temp (0.07 %,
P = 0.008), +depth (3.2 %, P = 0.036), and +DO (4 %, P = 0.007),
cumulatively accounted for 93.7 % of the total Chl-a spatial variation
(Table S2, Table S4).
The temporal model for Chl-a performed slightly better than the

temporal model of assemblage structure (Table S3). In marginal tests,

Fig. 2. Spatial patterns of phytoplankton assemblage structure. A) Dendrogram of the hierarchical unconstrained binary divisive clustering (UNCTREE) with sig-
nificant groupings identified by SIMPROF displayed with red dotted lines. Lake zones identified by SIMPROF are defined as Northwest Lake (NW Lake), Mid-West
Lake (MidWest), Mid-East Lake (MidEast), South Lake (S Lake), South Lake 2 (S Lake 2), West Coast (W coast), and East Coast. B) Map showing the geographic
location of SIMPROF lake zones and the flow directions of primary waterways in the Lake Okeechobee watershed. C) Bar plot showing the relative contribution of
different phytoplankton groups to the total phytoplankton cell concentration at each lake zone. D) Bar plot showing the relative contribution of individual cya-
nobacteria taxa to the total cyanobacterial cell concentration at each lake zone. Aphanizomenon-Chryso.-Sphaero = Aphanizomenon-Chrysosporum-Sphaer-
ospermopsis. The color scheme of the legend corresponds to order in the bars. Some phytoplankton groups and cyanobacteria taxa listed in legends were present in
very low abundance and may not be discernable in the plots.
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NO3+NO2–N explained the largest proportion of temporal Chl-a vari-
ation on its own (48.8 %, P = 0.001), followed by temp (48 %, P =

0.001), NH3-N (39.3 %, P = 0.001), DO (37.3 %, P = 0.001), and precip
(31 %, P = 0.002). The most parsimonious conditional model included
NO3+NO2–N (49%, P= 0.001),+NH3-N (8.2 %, P= 0.022),+TSR (6.6
%, P = 0.31) which together explained 64 % of the total temporal
variation (Table S3, Table S4).
Chl-a, total cell concentration, and total biovolume abundance

metrics exhibited moderate negative spatial correlations with
NO3+NO2–N, ortho-P, and TA (Fig S2A). NO3+NO2–N, ortho-P, TA,
and SpCond were lowest in the NW Lake zone where all three phyto-
plankton abundance metrics were highest (Fig. S2A and S3A).
NO3+NO2–N displayed a conspicuous seasonal trend of decreasing
concentrations during the summer wet season months and increasing
into the fall reaching peak concentrations in the dry season winter and
spring months (Fig. S2A and S3B). This seasonal NO3+NO2–N pattern
was inversely related to phytoplankton abundance seasonal patterns
which typically peaked during months when NO3+NO2–N was lowest.
In fact, the major HAB event that occurred in May 2021 was preceded by
the highest mean NO3+NO2–N concentrations measured over the study
period, which then crashed during the bloom (Fig. S3B). Ortho-P fluc-
tuated from month to month without obvious seasonal cycles, but the
highest concentration outliers were observed in summer and fall (Fig

S3B). Conspicuous peaks in NH3-N were observed in the summer
particularly at the two lake outflow sites (S-77 and S-308) and at the site
closest to the mouth of the Kissimmee River (KISSR0.0). TSR was highest
in spring and summer while temp and precip were highest in summer
and fall coincident with lowest DO, turbidity, pH, and TA measure-
ments. The average depth of the Lake Okeechobee system tended to
increase in the fall and winter accompanied by declines in SpCond
following the summer rainy season. Temporally, WNDD and WNDS had
slight negative correlations to all abundance metrics though these re-
lationships were not strong (Fig. S2B).

3.3. Objective 3 - Identify Indicator Species and Thresholds using

TITAN was performed on the gradients of abiotic variables identified
by the DISTLM marginal test as explaining the greatest proportion of
spatial variation in phytoplankton assemblage structure when examined
individually: NO3+NO2–N, ortho-P, and TA (Table 1). The gradient of
each variable is the range of values observed across the 21 sites over the
32-month sampling period. The NO3+NO2–N gradient ranged from 0.5
– 585 µg L-1, the ortho-P gradient ranged from 0.5 – 244 µg L-1, and the
TA gradient ranged from 27.5 – 161mg L-1. The analysis identified 39
negative (z-) pure and reliable indicator taxa for NO3+NO2–N and a
community threshold (i.e. change point = CP) at 179 µg L-1 (Fig. 5,

Fig. 3. Temporal patterns of phytoplankton assemblage structure. A) Bar plot showing the relative contribution of different algal functional groups to the total
phytoplankton cell concentration during each of the 32 months samples (month-year). B) Bar plot showing the relative contribution of individual cyanobacteria taxa
to the total cyanobacterial cell concentration during each of the 32 months samples. Aphanizomenon-Chryso.-Sphaero = Aphanizomenon-Chrysosporum-Sphaer-
ospermopsis. The color scheme of the legend corresponds to order in the bars. Some phytoplankton groups and cyanobacteria taxa listed in legends were present in
very low abundance and may not be discernable in the plots.
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Table 2). There were no positive (z+) pure and reliable indicator taxa for
NO3+NO2–N. For ortho-P, TITAN returned 34 z- indicator taxa with a
community threshold of 50 µg L-1 and 5 z+ indicator taxa with a com-
munity threshold of 94 µg L-1 (Fig. 5, Table 2). However, z+ indicators
had relatively low IndVal z-scores and wide confidence intervals indi-
cating large uncertainty around the CP. For the TA gradient, TITAN
returned 41 z- indicator taxa with a community change point of 92mg L-
1 and zero z+ indicator taxa (Fig. 5, Table 2). The prevalence of negative
responder indicator taxa is supported by the negative correlations
measured between total abundance metrics and NO3+NO2-N, ortho-P,
and TA.

Negative indicator taxa with CPs at the lower end of the driver
gradients are ones whose abundance declines at low nutrients and TA,
while those with CPs at the upper end of the gradient decline in abun-
dance when nutrients and TA are high. Given that high nutrients and TA
were correlated to low algal abundance, conditions associated with the
absence of bloom or the “bust” phase of the bloom cycle, taxa that
declined in abundance during the bust phase represent bloom-associated
taxa (Figs. 5 and 6). Therefore, z- taxa having CPs at the upper end of the
environmental gradients are associated with blooms whether they be the
dominant bloom formers or simply form an association with the bloom
forming taxa. Z- taxa with CPs at the lower end of the gradient are ones

Table 1
Distance-based linear model (DISTLM) results for time-averaged spatial patterns in phytoplankton assemblage structure. Marginal tests report statistics for each of the
16 explanatory variables individually and conditional tests report statistics for variables selected by the forward selection model that cumulatively explain the greatest
proportion of total spatial variation. SS(regression) = sum of squares for the regression; Pseudo-F= pseudo-F statistic, Prop. (R^2) = proportion of explained variation,
Cumul.Prop = cumulative proportion of explained variation; res.df = residual degrees of freedom. Sqr() denoted a square-root transformation and Log() denotes a
logarithmic transformation.

Marginal tests   
Variable SS(regression) Pseudo-F P-value Prop. (R^2)   

Sqr(NH3-N) 320.8 1.3 0.262 0.065   
Sqr(NO3+NO2-N) 2219.4 15.5 0.001 0.449   
Log(TN) 832.3 3.8 0.028 0.168   
Log(TP) 622.0 2.7 0.074 0.126   
Log(Turbidity) 901.7 4.2 0.022 0.182   
Sqr(Ortho-P) 1653.0 9.5 0.001 0.334   
TA 1814.4 11.0 0.001 0.367   
Depth 347.7 1.4 0.232 0.070   
DO 247.7 1.0 0.357 0.050   
pH 287.6 1.2 0.312 0.058   
SpCond 1179.2 6.0 0.005 0.239   
Temp 922.2 4.4 0.022 0.187   
Sqr(Precip) 316.3 1.3 0.261 0.064   
TSR 516.9 2.2 0.107 0.105   
WNDD 243.2 1.0 0.362 0.049   
WNDS 506.5 2.2 0.087 0.102   
Total SS ¼ 4942.5

Conditional tests
Variable Adj R^2 SS(regression) Pseudo-F P-value Prop. (R^2) Cumul.Prop. res.df

+Sqr(NO3+NO2-N) 0.420 2219.4 15.5 0.001 0.449 0.449 19
+LOG(TP) 0.651 1170.5 13.6 0.001 0.237 0.686 18
+WNDS 0.766 568.6 9.8 0.001 0.115 0.801 17
+SpCond 0.802 200.6 4.1 0.003 0.041 0.841 16
+LOG(Turbidity) 0.836 173.7 4.3 0.001 0.035 0.877 15
+Sqr(Ortho-P) 0.869 156.9 4.9 0.001 0.032 0.908 14
+TA 0.879 63.9 2.1 0.026 0.013 0.921 13
+DO 0.888 56.4 2.0 0.045 0.011 0.933 12
Residual SS = 225.8

Fig. 4. Distance-based redundancy analysis (dbRDA) ordination for the most parsimonious model explaining the spatial patterns in phytoplankton assemblage
structure. The significant environmental explanatory variables (transformed) identified by the model are plotted as vectors in red. Bubble size represent nitrate
concentrations (µg L-1, untransformed,) at each site as this variable explained the greatest amount of the spatial variation in phytoplankton assemblage structure.
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that decline under “boom” conditions, when nutrients and alkalinity are
lowest, and represent non-bloom-associated taxa (Figs. 5 and 6). The
assemblage-level threshold was used as the cutoff between non-bloom
and bloom associated taxa (Table 2).
The top ten pure and reliable indicator taxa (highest IndVal z-scores)

of NO3+NO2–N were the green algae Ankistrodesmus, Oocystis, Pedias-
trum, Desmodesmus-Scenedesmus, Tetraedron, and Coelastrum and the
desmids Cosmarium and Staurastrum along with centric diatoms and the
cyanobacteria Aphanizomenon (Fig. 5, Table 2). The chlorophytes and
centric diatoms were associated with bloom conditions, having CPs at
concentrations above the assemblage-level threshold (179 µg L-1), while
the two desmids, Cosmarium and Staurastrum, were associated with non-
bloom conditions having change points of declining abundance at
20 µg L-1. The top 10 ortho-P indicator taxa also included Ankistrodesmus
(CP= 21 µg L-1), Pediastrum (CP = 35 µg L-1), Oocystis (CP= 51 µg L-1),
Desmodesmus-Scenedesmus (CP = 54 µg L-1), Staurastrum (CP= 33 µg L-1)
and Aphanizomenon (CP = 49 µg L-1), but also the cyanobacteria
Chroococcus (CP = 39 µg L-1), Gomphospheria-Snowella (CP = 3 µg L-1),
Cuspidothrix (CP = 49 µg L-1), and Dolichospermum (CP = 56 µg L-1,
Fig. 5, Table 2). Green algae and desmids were the top indicator taxa for
TA including Cosmarium (CP = 53mg L-1) and Staurastrum (CP = 74mg
L-1), and Pediastrum (CP = 90mg L-1), Ankistrodesmus (CP = 90mg L-1),
Tetraedron (CP = 92mg L-1), Crucigenia-Crucigeniella (CP = 95mg L-1),
Desmodesmus-Scenedesmus (CP = 96mg L-1), Quadrigula-Elakatothrix (CP
= 53mg L-1), and Monoraphidium (CP = 96mg L-1) as well as the
euglenid Lepocinclis (CP = 71mg L-1, Fig. 5, Table 2).

4. Discussion

This study (1) examined the spatial and temporal structure of
phytoplankton assemblages in Lake Okeechobee and the two outflowing
rivers connecting it to the western and eastern coasts of Florida, (2)
identified explanatory abiotic variables shaping phytoplankton assem-
blage and HAB patterns, and (3) defined indicator species and their
thresholds along the gradients of the strongest explanatory variables. As
hypothesized, strong spatial structuring of phytoplankton assemblages
by species-sorting and environmental filtering was observed.
NO3+NO2–N, ortho-P, and TA were identified as the strongest abiotic

variables driving spatial assemblage dissimilarity. Temporal phyto-
plankton variability was less deterministic at the whole-system scale
perhaps due to the strong geographic zonation of assemblages, unex-
amined variables excluded from the models, the relatively short dura-
tion of this study (32 months), or stochastic processes. Assemblage-level
and taxon-specific (i.e. indicator species) thresholds along the gradients
of the top three explanatory variables of spatial assemblage patterns
were identified allowing inferences regarding genera associated with
“boom” and “bust” phases of HAB cycles, characterized by low and high
NO3+NO2–N, ortho-P, and TA, respectively.
Seven distinct lake zones with significantly dissimilar phytoplankton

assemblages and a trend of decreasing biomass from north to south were
identified. The deterministic process of species sorting through abiotic
environmental filters was largely responsible for the spatial structuring
of assemblages as evidenced by the DISTLM model which explained 93
% of the total spatial assemblage variability. The significant explanatory
variables selected by the most parsimonious conditional model repre-
sent the set of abiotic filters through which the regional phytoplankton
pool passes before being sorted into these 7 geographic zones. The
classification of lake zones based on distinct phytoplankton assemblages
described here generally aligns with previously classified limnological
zones in Lake Okeechobee based on Chl-a and other water quality
metrics (Phlips et al., 1993). Chl-a in the northwestern region of the lake
remains significantly higher than other regions, supporting recent
findings (Wachnicka et al., 2023; Krausfeldt et al., 2024) as well as
studies going back three decades (Phlips et al., 1993; Havens et al.,
1994). Total phytoplankton cell concentration and biovolume were also
elevated in this region; these metrics of algal abundance provide addi-
tional information about the quantity of phytoplankton. Chl-a is
commonly used as a proxy for algal biomass but its content varies intra-
and interspecifically preventing a direct correlation to the number of
cells per unit volume, a more accurate measure of abundance, while
biovolume estimates the 3D space occupied by those cells given different
cells sizes and shapes. The NW lake was also characterized by signifi-
cantly dissimilar phytoplankton assemblages from the rest of the lake, a
finding supported by Krausfeldt et al. (2024) who reported significantly
distinct cyanobacterial assemblages based on 16S rRNA gene sequencing
in the nearshore, northwest area of the lake correlated to distinct

Fig. 5. Change point (CP) values for pure and reliable indicator taxa of nitrate (NO3 + NO2-N), ortho-Phosphate (ortho–P), and total alkalinity plotted as probability
density functions with central tendency signaling the value of x resulting in the greatest indicator z value. Taxa with higher z-score values have a higher indicator
value (Table 2). The red dotted lines represent community thresholds (i.e., CPs) where there is a synchronous response by indicator taxa. Negative indicator taxa with
CPs to the left of the community threshold (red dotted line) are considered associated with non-bloom conditions while taxa to the right of the community thresholds
are considered bloom-associated taxa.
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Table 2
TITAN results of taxon and community-level change points (CP) for pure and reliable indicator species (≥0.95) along the NO3+NO2-N, ortho-P, and total alkalinity
gradients observed across the 21 sites and over the 32-month sampling period. Taxon-specific indicator value z-scores (zscore), taxon frequency (Freq), and classi-
fication as positive (z+) or negative (z-) responder are also provided. Differences in taxa frequencies for each gradient are due to lower sample sizes for the NO3+NO2-N
and ortho-P gradients where samples with zero or negative values were removed (n = 526 for NO3+NO2-N; n = 600 for ortho-P; n = 639 for total alkalinity which had
no zero values).

NO3þNO2–N ortho-P Total alkalinity

Algal group Indicator taxa CP
(µg/
L)

Freq zscore -/þ CP
(µg/
L)

Freq zscore -/þ CP
(mg/
L)

Freq zscore -/þ

Cyanobacteria Anabaenopsis – – –  2.0 17 12.1 z- – – – –
Cyanobacteria Aphanizomenon 175.5 214 14.2 z- 49.0 275 17.2 z- 90.0 311 9.1 z-
Cyanobacteria Aphanocapsa-

Aphanothece
378.5 520 6.3 z- 64.0 594 6.6 z- 101.8 633 12.9 z-

Cyanobacteria Chroococcus 58.8 187 10.9 z- 39.0 242 16.0 z- 86.3 276 15.1 z-
Cyanobacteria Cuspidothrix 53.5 127 9.3 z- 49.0 170 15.0 z- 98.5 196 6.9 z-
Cyanobacteria Cyanophyta – – – – 38.5 65 4.4 z- – – – –
Cyanobacteria Dolichospermum 207.3 332 9.5 z- 55.8 396 13.1 z- 105.0 434 5.9 z-
Cyanobacteria Gomphosphaeria-

Snowella
– – – – 3.3 23 16.0 z- 38.0 27 6.7 z-

Cyanobacteria Merismopedia 264.0 525 5.4 z- 48.9 598 12.4 z- 90.0 637 7.8 z-
Cyanobacteria Microcystis 278.5 411 5.9 z- 78.0 480 3.6 z- – – – –
Cyanobacteria Planktolyngbya 209.0 502 7.9 z- 55.0 572 12.3 z- 96.0 608 9.0 z-
Cyanobacteria Planktothrix 41.6 44 9.2 z- – – – – 98.0 64 6.6 z-
Cyanobacteria Pseudanabaena 220.5 389 10.7 z- 46.6 450 9.4 z- 92.3 486 9.2 z-
Cyanobacteria Raphidiopsis 178.8 160 9.9 z- 28.0 197 11.5 z- 90.0 229 10.5 z-
Cyanobacteria Romeria 50.0 60 6.2 z- – – – – 78.8 71 14.6 z-
Cyanobacteria Woronichinia – – – – 3.5 6 6.9 z- – – – –
Diatom Aulacoseira 260.5 457 8.2 z- 52.3 521 11.8 z- 93.3 554 8.9 z-
Diatom Cymbella-Encyonema – – – – 51.3 20 12.6 z- – – – –
Diatom Fragilaria-Ulnaria-

Tabellaria
162.9 386 5.5 z- 78.0 447 7.0 z+ 92.0 481 11.0 z-

Diatom Navicula-Nitzschia 291.5 478 8.7 z- 48.8 550 9.4 z- 83.3 588 7.1 z-
Diatom Skeletonema 267.5 171 5.8 z-     96.0 194 12.1 z-
Diatom Centric Diatoms 287.0 480 13.2 z- 51.5 547 7.6 z- 96.3 581 12.4 z-
Diatoms Pennate Diatoms 170.0 412 9.5 z- 46.0 481 11.7 z- 95.0 516 10.2 z-
Dinoflagellate Gymnodinales – – – – 36.5 51 5.4 z- – – – –
Dinoflagellate Peridiniales 7.8 150 4.4 z- 93.9 172 8.3 z+ 96.0 182 9.5 z-
Euglenid Euglena 116.3 56 4.6 z- – – – – – – – –
Euglenid Lepocinclis 29.5 91 5.2 z- – – – – 70.8 107 15.9 z-
Euglenid Trachelomonas – – – – 159.5 22 7.9 z+ 38.5 24 7.3 z-
Green algae Actinastrum 169.0 57 6.3 z- 32.3 79 6.5 z- 97.0 83 10.3 z-
Green algae Ankistrodesmus 175.0 95 15.7 z- 21.0 133 20.7 z- 90.0 153 23.0 z-
Green algae Botryococcus 16.8 34 10.4 z- 29.0 40 6.6 z- 49.3 44 15.9 z-
Green algae Coelastrum 170.0 83 11.4 z- 50.8 105 8.7 z- 64.0 112 14.5 z-
Green algae Crucigenia-

Crucigeniella
276.5 350 10.6 z- 50.5 410 11.9 z- 95.0 438 17.7 z-

Green algae Desmodesmus-
Scenedesmus

230.0 489 12.3 z- 53.8 562 14.3 z- 96.0 601 17.3 z-

Green algae Micractinium 184.3 82 6.0 z- 46.0 97 8.4 z- 99.0 104 8.9 z-
Green algae Monoraphidium 175.0 442 11.1 z- – – – – 96.3 531 16.6 z-
Green algae Oocystis 222.5 251 15.6 z- 51.0 309 17.2 z- 83.5 342 13.9 z-
Green algae Pandorina – – – – – – – – 96.0 41 8.2 z-
Green algae Pediastrum 175.0 210 13.6 z- 34.5 263 20.3 z- 90.0 290 23.2 z-
Green algae Quadrigula-

Elakatothrix
135.5 25 8.1 z- 28.0 35 6.5 z- 53.3 40 17.0 z-

Green algae Schroederia 230.0 350 6.5 z- – – – – 98.0 419 7.0 z-
Green algae Sphaerocystis 26.0 10 6.1 z- 6.0 19 6.6 z- – – – –
Green algae Tetraedron 186.3 325 11.5 z- 34.0 382 12.3 z- 92.0 413 19.4 z-
Green algae Tetraselmis-

Pyramichlamys
– – – – 116.5 85 7.3 z+ 96.0 89 8.8 z-

Desmid Arthrodesmus – – – – 39.0 12 4.0 z- – – – –
Desmid Cosmarium 20.0 52 14.1 z- – – – – 53.3 81 33.5 z-
Desmid Staurastrum 19.8 82 13.1 z- 32.8 107 12.7 z- 74.0 124 27.0 z-
Chrysophyte Chrysophyta 350.0 306 4.7 z- 101.7 336 4.2 z+ 102.0 350 8.3 z-
Chrysophyte Mallomonas – – – – – – – – 97.0 64 8.0 z-
Haptophyte Haptophyta 250.3 267 8.0 z- – – – – 97.0 321 14.6 z-
 Community-level

threshold
CP 0.05

quantile
0.95
quantile

 CP 0.05
quantile

0.95
quantile

 CP 0.05
quantile

0.95
quantile



 fsumz- (negative
responder
community)

178.8 162.9 226.6  50.3 30.0 51.5  92.0 84.5 96.8 

 fsumz+ (positive
responder
community)

NA NA NA  94.0 80.0 153.7  NA NA NA 
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chemical and physical limnological characteristics compared to the
pelagic region. The finding of distinct zones within this highly connected
and relatively small-scale aquatic system, extending ~145 km east-west
and ~50 km north-south, suggests environmental filtering and species
sorting may override the especially high dispersal and homogenization
potential for microorganisms at this scale, where individuals are
constantly shuffled by natural process as well as actively transported by
hydrological management schedules (Van der Gucht et al., 2007; Soi-
ninen, 2014; Mazzei and Gaiser, 2018).
Temporal patterns of assemblage structure were also examined but

no evidence of seasonal succession was found across meteorological
seasons or subtropical wet/dry seasons. The most parsimonious DISTLM
model only accounted for 48 % of the total temporal variation and
cannot be expected to reliably predict assemblage patterns; nonetheless
it offers insights into which variables may play a role in seasonal vari-
ability. We theorize that the strong geographic zonation of phyto-
plankton assemblages discovered in this study obscures whole lake
succession patterns and that temporal turnover of assemblages may be
occurring separately within each lake zone, but this remains to be tested.
However, temporal stochasticity of factors such as major weather events
or hydrological management decisions that affect many of the envi-
ronmental variables shaping phytoplankton assemblages may also be
responsible for seasonal unpredictability. A study by Deng et al. (2014)
examined annual spring succession of phytoplankton in Lake Taihu,
China, a large, shallow, subtropical lake similar to Lake Okeechobee.
They found that nutrients and temperature were largely responsible for
year-to-year differences in spring assemblages thus demonstrating the
unpredictability of assemblages within a given season across years. In
our study, significant phytoplankton assemblage dissimilarity was

present between 2019 and 2021, however there was no clear link to any
of the variables examined. Unaccounted for abiotic, physical, or bio-
logical variables like concentrations of different dissolved inorganic
carbon species or trace metals, underwater photosynthetically active
radiation (PAR), and grazing may also be responsible for the absence of
significant seasonal succession patterns. Although previous studies have
demonstrated that grazing pressure does not play a significant role in
phytoplankton dynamics in Lake Okeechobee (Havens et al., 1996), the
influence of top-down control by grazing should be reexamined.
Furthermore, higher frequency (e.g. daily), long-term phytoplankton
assemblage and environmental data collection would greatly aid in the
accurate detection of successional patterns and the identification of
triggers leading to the development of HABs, but there are many chal-
lenges to implementing this type of monitoring (Johnston et al., 2024).
Although no evidence of predictable seasonal succession was found,
total abundance metrics did exhibit significant temporal trends consis-
tent with typical phytoplankton growth patterns for subtropical systems
where algal abundance is highest during the summer and fall months of
the wet season (Havens et al., 1994; Phlips et al., 1997, 2012;Wachnicka
et al., 2022, 2023). The results imply that significant seasonal trends in
total abundance (i.e. Chl-a, cell density, and biovolume) do not neces-
sarily correspond to significant turnover of phytoplankton assemblages
but rather that dominant taxa remain consistently dominant across
seasons and changes in their abundance drive the significant increases in
total phytoplankton abundance during summer/fall wet seasons.
Inorganic nutrients were important explanatory variables of both

spatial and temporal assemblage and Chl-a patterns. The inverse rela-
tionship between algal abundance and NO3+NO2–N and ortho-P may
seem counterintuitive but is well documented in the Lake Okeechobee
system (McPherson and Rose, 1981; Havens et al. 1994; James et al.,
2011; Wachnicka et al., 2022; Krausfeldt et al., 2024) and other eutro-
phic lakes (Filstrup and Downing, 2017). This phenomenon can be
attributed to a lag between peak inorganic nutrient availability and peak
abundance during phytoplankton “boom-and-bust” periods in systems
that are chronically enriched with both N and P. As phytoplankton reach
carrying capacity during the “boom” phase, they deplete nutrients in the
water column and reduce light availability by self-shading leading to
declines in biomass as the bloom senesces and eventually dies off or
“busts.” This in turn replenishes the nutrient pool as the organic matter
decomposes and light availability increases, setting up conditions for the
next “boom” phase. Havens et al. (1994) proposed an alternative
mechanism for the inverse relationship between P and Chl-a and blooms
in Lake Okeechobee whereby periods of high wind velocity resuspend
P-rich sediments in the shallow lake simultaneously reducing light
availability which limits algal growth and prevent bloom development
despite elevated P. High concentration of legacy P stored in Lake
Okeechobee sediments is a well-studied characteristic of the system
(Missimer et al., 2021). Likely due to the much shorter duration of our
study, wind and light were not strong explanatory variables of phyto-
plankton dynamics, though wind speed was positively correlated to
ortho-P and turbidity but negatively correlated to algal abundance
which supports, or at least does not refute, the Havens et al. theory.
Nevertheless, our results point to a greater role of external nutrient loads
and rapid nutrient recycling during boom-to-bust phases in determining
HAB dynamics, particularly in the nearshore, northwestern section of
the lake. Higher algal abundance and prevalence of HABs in the NW lake
zone are generally thought to be driven by the high volumes of
nutrient-rich water delivered via watershed runoff and point source
releases from the Kissimmee River and several canals and creeks
draining the surrounding agricultural areas (Ma et al., 2020; Wachnicka
et al., 2022; Zhang et al., 2022). Low NO3+NO2–N and ortho-P con-
centrations in the NW lake zone despite large inputs of nutrient-rich
water supports the idea that nutrients are rapidly assimilated into
algal and plant biomass. The lag between inorganic nutrient highs and
algal abundance highs was especially apparent during the May 2021
HAB event which occurred following a peak in NO3+NO2–N

Fig. 6. A conceptual diagram depicting the hypothetical phytoplankton boom-
to-bust feedback loop in Lake Okeechobee. The “boom” phase occurs when
algal abundance peaks resulting in depletion of nutrients and decreased total
alkalinity. Once carrying capacity is reached, high concentrations of algae can
no longer be supported, the bloom begins to senesce, and the system becomes
net heterotrophic as decomposition rates increase and respiration rates exceed
photosynthetic rates. These changes lead into the “bust” phase where algal
biomass declines, nutrients are regenerated, light availability improves, and
phytoplankton are released from resource limitation, setting the stage for the
next “boom” phase. Taxa declining during the boom to bust part of the cycle are
bloom-associated, while those that decline during the bust to boom period are
considered non-bloom associated taxa. Different shades of green arrows
represent increasing (darker) or increasing (lighter) algal biomass. Nutrients
refer to nitrate and orthophosphate. Z- = negative responder indicator taxa
identified by the Threshold Indicator Taxa Analysis (TITAN). Psynth = photo-
synthesis. Resp = respiration.
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concentrations in the prior dry season and a nutrient crash during the
bloom.
Low total alkalinity, one of the strongest explanatory variables of

phytoplankton spatial patterns along with NO3+NO2–N and ortho-P, in
the NW lake zone, could be due to natural hydrogeomorphology but
could also be the result of the frequent high biomass blooms that occur
there. In water where pH is near neutral, bicarbonate (HCO3) is the
dominant inorganic carbon species and algae must convert HCO3 to
carbon dioxide (CO2) intracellularly for use in photosynthesis
(Reynolds, 2006; Falkowski and Raven, 2013). Naturally lower TA may
aid in bloom formation by making the preferred carbon species (CO2)
more abundant (Raven et al., 2020). On the other hand, the high
abundance blooms that occur in this zone might lower TA through the
removal of large quantities of HCO3 for photosynthesis and carbonate
(CO3) by calcite precipitation (Wetzel, 2001). Cyanobacteria are well
known biocalcifiers as are the benthic green macroalgae Chara and
Nitella common in the nearshore areas of the lake (Raven, 2012). High
respiration rates and CO2 production, especially during bloom senes-
cence, could also be contributing to lower TA. Nutrient assimilation and
remineralization during photosynthesis and respiration, respectively,
also alter TA. The relationship between TA and dissolved inorganic
carbon composition with HABs needs to be studied in more detail,
especially in the context of climate change scenarios.
Assemblage-level thresholds, indicator taxa, and taxon-specific

thresholds were identified for the NO3+NO2–N, ortho-P, and TA gra-
dients. Identification of indicator taxa and their environmental thresh-
olds to prevailing environmental gradients is a valuable tool for the
management of specific taxa of interest such as those associated with
bloom and non-bloom conditions (Groffman et al., 2006; Foley et al.,
2015). TITAN provides this information in addition to assemblage-level
thresholds that mark the critical point along a gradient at which the
assemblage synchronistically shifts from one state to another, an
important criterion for ecosystem management that promotes environ-
mental conditions for favorable phytoplankton assemblages (e.g. those
associated with non-bloom conditions). Here, taxa that declined in
abundance towards the upper end of the nutrient and alkalinity gradi-
ents were associated with “boom” phase conditions and decline as the
bloom enters the “bust” phase during which high nutrients and alka-
linity are restored. These included the two most consistently abundant
taxa across space and time, the cyanobacteria Aphanocapsa and Mer-
ismopedia. Both genera belong to the family Microcystaceae along with
Microcystis (Strunecký et al., 2023), also identified as a bloom associated
taxon by TITAN and a ubiquitous HAB-former worldwide (Paerl et al.,
2001; LaPointe et al., 2024). Despite their phylogenetic proximity,
Aphanocapsa is not known to contain aerotopes like Merismopedia and
Microcystis, a trait which is thought to give species an advantage in
forming high-biomass planktonic blooms. Several toxic cyanobacteria of
concern, including Aphanizomenon and Raphidiopsis, were associated
with the “bust” phase or were intermediate between phases, but as toxin
producers these taxa can be hazardous even at low concentrations
(Metcalf and Codd, 2012). Contrasting nutrient requirements and niches
betweenMicrocystis and Raphidiopsis in Lake Okeechobee were reported
by Lefler et al. (2023). In addition to cyanobacteria, chlorophytes,
centric diatoms, and Navicula-Nitzschia species were also significant
indicators of “boom” conditions. Although chlorophytes are not gener-
ally known to produce toxins, they are common causes of high-biomass
nuisance blooms with negative ecological consequences (Watson et al.
2015). Toxin-producing diatoms, while a concern in coastal and marine
systems, are not common in freshwaters, but nontoxic diatoms can also
create high-biomass nuisance blooms in freshwaters (Watson et al.
2015).
This study highlights the complexity of phytoplankton and HAB

dynamics, particularly in heavily managed and impaired lakes where
novel anthropogenic gradients have developed from decades of human
intervention and potential long-term climate changes. Continued efforts
that build upon and expand existing knowledge are necessary to develop

the predictive models for HABs that resource managers need to
adequately adjust strategies for HAB mitigation, and ultimately, pre-
vention. The implementation of high-frequency, high-resolution moni-
toring systems could also greatly improve model-based management
decisions. These goals will likely take a long time to achieve, even after
preventative measures are taken due to legacy effects of nutrient loading
and will require a continuous adaptive management approach as new
information becomes available.

Data availability

Phytoplankton abundance data are available in Mazzei and Sullivan
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USGS Water Data for the Nation).
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