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Abstract The study of sediment‐riverflow interactions during discrete hydrological events is vital for
enhancing our understanding of the hydrological cycle. Hysteresis analysis, relying on high‐resolution,
continuous monitoring of suspended sediment concentration (SSC) and discharge (Q) data, is an effective tool
for investigating complex hydrological events. It captures differing sediment dynamic at the same discharge
level, which results from the asynchrony between the hydrograph and sediment graph during different phases of
the event. However, there has been no comprehensive review systematically addressing the utility and
significance of hysteresis analysis in soil and water management. This review synthesizes findings from over
500 global studies, providing a detailed examination of current research. We trace the development and
application of hysteresis analysis in hydrology, illustrating its role in classifying and characterizing events, as
well as uncovering sediment sources and transport mechanisms. Furthermore, hysteresis analysis has proven
effective in identifying critical hydrological events, offering valuable insights for targeted watershed
management. Our spatiotemporal analysis of global hysteresis research shows that over 70% of studies are
located in semi‐arid and Mediterranean climate zones, with an increasing focus on alpine and tropical regions
due to climate change. This review also highlights critical limitations, including the scarcity of high‐resolution
data, inconsistent use of quantitative indices, and limited integration of hysteresis patterns into predictive
hydrological approaches. Future research should focus on developing region‐specific hydrological models that
incorporate hysteresis dynamics, along with standardizing methodologies to apply hysteresis analysis across
diverse climatic and geomorphic settings.

1. Introduction
Suspended sediment (SS) plays a crucial role in hydrological systems, contributing to landform development,
ecosystem sustainability, and nutrient transport (Achite & Ouillon, 2016; Vercruysse et al., 2017). Significant
changes in SS dynamics have been observed across various time scales, spanning from decadal trends to episodic
events, attributed to the intensification of climate change and human activities (Overeem et al., 2017; Syvitski
et al., 2022; Walling, 2006). Examining the relationship between suspended sediment concentration (SSC) and
river discharge (Q) is essential for understanding SS dynamics, offering key insights into sediment sources,
transport pathways, and deposition processes within fluvial systems (Collins & Walling, 2004; Gao et al., 2018;
Rustomji et al., 2008). This relationship becomes especially critical during hydrological events, which have
increased in both frequency and intensity in recent years, contributing significantly to overall sediment transport
(Rose & Karwan, 2021; Speir et al., 2024; Zarnaghsh & Husic, 2023). Therefore, analyzing the SSC‐Q re-
lationships during hydrological events proves invaluable for devising sustainable watershed management
strategies.

The traditional sediment rating curve (SRC) method has been widely used in large‐scale studies of SSC‐Q re-
lationships and is effective under stable conditions, as it estimates SSC based on a power function of Q (Aguilera
& Melack, 2018; Gao & Josefson, 2012; Horowitz et al., 2015). However, SRCs often fail to accurately capture
the highly variable and nonlinear sediment transport processes that occur during hydrological events (Di Pillo
et al., 2023; Pietron et al., 2015; Rodriguez‐Blanco et al., 2018; Rose et al., 2018). These limitations are
particularly pronounced in dynamic flood conditions, where sediment supply and transport capacity fluctuate
between the rising and falling limbs of the hydrograph due to shifting hydrological and geomorphological factors
(Coch et al., 2018; Domingo et al., 2021; Dupas et al., 2015; Garcia‐Rama et al., 2016; Speir et al., 2024).
The inherent variability in the transport rates of water and sediment during hydrological events often leads to lag
effects, which traditional SRCs struggle to account for effectively.
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The complexity of hydrological events is largely driven by the differential transport rates of water and sediment,
which results in lag (Fortesa et al., 2021; Hudson, 2003; Rose & Karwan, 2021; Sammori et al., 2004). To capture
these dynamics, researchers since the mid‐twentieth century introduced the concept of hysteresis loops, where
SSC is plotted against river discharge (Q) over time (Banasik et al., 2005; Banasik &Walling, 1996; Heidel, 1956;
Klein, 1984; Rendon‐Herrero, 1978; Williams, 1989). This approach reveals variations in sediment transport
between the rising and falling limbs of the hydrograph, providing a more nuanced view of sediment dynamic
during hydrological events (Baker & Showers, 2019; Lenzi & Marchi, 2000; Ziegler et al., 2014). Hysteresis
loops are typically classified into distinct patterns—such as clockwise, counterclockwise, figure‐eight, and more
complex forms—based on their direction and shape (Baloul et al., 2024; Buendia et al., 2016; Hamshaw
et al., 2018; Keesstra et al., 2019; Lloyd et al., 2016a; Oeurng et al., 2010; Pellegrini et al., 2023; Safdar
et al., 2024; Zarnaghsh & Husic, 2021). These patterns offer valuable insights into sediment sources, transport
pathways, and depositional processes, facilitating a more detailed classification of hydrological events and
improving understanding of sediment transport mechanisms (Bowes et al., 2005; Hu et al., 2019; Lefrancois
et al., 2007; Rodriguez‐Blanco et al., 2018).

Graphical hysteresis loops have been valuable for qualitatively illustrating the temporal relationship between SSC
and Q during hydrological events, but they have notable limitations (Buendia et al., 2016; Lannergard et al., 2021;
Lefrancois et al., 2007). A primary issue is that the identification of hysteresis patterns often relies on subjective
interpretation, which can introduce inconsistencies and reduce analytical precision (Al Sawaf et al., 2024; Herrero
et al., 2018; Tolorza et al., 2014). Additionally, graphical loops alone do not provide sufficient quantitative in-
sights into the drivers of different hysteresis patterns, particularly when sediment sources and transport pathways
vary across events or between watersheds with distinct hydrological conditions. To address these shortcomings,
hydrologists in the early 21st century introduced quantitative indices, such as the hysteresis index (HI) (Langlois
et al., 2005). The HI offers a more objective and precise means of quantifying hysteresis loops, with its sign
indicating the direction of the loop and its absolute value representing the degree of lag between SSC and Q
(Wilcox et al., 2024). Over the years, the calculation methods for the hysteresis index have been refined,
improving its accuracy and making it applicable to a broader range of hydrological settings (Aich et al., 2014;
Lawler et al., 2006; Zuecco et al., 2016). The combination of qualitative graphical loops and quantitative hys-
teresis indices has now become an established method in hydrological research, providing a more rigorous and
comprehensive framework for analyzing the complex, nonlinear interactions between SSC and Q during hy-
drological events (Baniya et al., 2024; Doomen et al., 2008; Dupas et al., 2015; Favaro & Lamoureux, 2015; Liu
et al., 2021).

In recent years, the increasing frequency and variability of hydrological events—driven by climate change and
human activities—have garnered growing attention from hydrologists (Heathwaite & Bieroza, 2021; Lopez‐
Tarazon et al., 2009; Zuecco et al., 2016). Despite the recognition of hysteresis analysis as a valuable tool
for investigating SSC‐Q interactions during such events, systematic evaluations of its application remain
limited, particularly concerning the selection and calculation of appropriate hysteresis indices (Gao &
Josefson, 2012; Garcia‐Comendador et al., 2021; Rovira & Batalla, 2006; Sadeghi et al., 2008a, 2008b;
Sadeghi & Saeidi, 2010; Sun et al., 2016). A growing body of research has incorporated hysteresis indices
alongside traditional runoff and sediment metrics to assess the influence of environmental factors—such as
climate, watershed characteristics, and anthropogenic activities—on flood dynamic (Lopez‐Tarazon &
Estrany, 2017; Pulley et al., 2019). However, the intricate interplay between these factors, along with the
limitations of current quantitative indices in fully capturing the complexity of hydrological events, suggests
substantial opportunities for advancing this method.

Hysteresis analysis offers a significant advantage over traditional runoff and sediment metrics by capturing the
temporal dynamic throughout the entire process of a hydrological event (Garcia‐Rama et al., 2016; Liu
et al., 2021; Malutta et al., 2020; Sadeghi et al., 2017). Unlike conventional models, which predominantly focus
on conditions at the watershed outlet and often treat internal processes as a “black box,” hysteresis analysis can
provide valuable insights into the evolving nature of flood processes (Di Pillo et al., 2023; Geeraert et al., 2015;
Ghimire et al., 2024; Shojaeezadeh et al., 2022; Speir et al., 2024). Integrating hysteresis dynamics into
contemporary hydrological models holds great potential for overcoming the limitations of traditional approaches,
thereby enhancing hydrological event analysis and prediction in future research.
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This review synthesizes findings from over 400 studies on hysteresis analysis, focusing on its evolution, current
applications in hydrology, and limitations. The primary aim is to offer clearer guidance on the use of hysteresis
methods, identify existing research gaps, and propose directions for future research. By emphasizing the inte-
gration of hysteresis dynamics into predictive hydrological models, this review seeks to contribute to more robust
hydrological event analysis and sediment management in the face of future environment change.

2. The Evolution of Methods for SSC‐Q Relationship Analysis
The analysis of SSC‐Q relationships is essential for understanding sediment transport processes and mechanisms
within river systems. By examining how sediment fluctuates with riverflow under varying conditions, researchers
can identify key factors that drive sediment mobilization, such as hydrological variability, land‐use practices, and
geomorphological changes (Doomen et al., 2008; Herrero et al., 2018; Juez et al., 2018; Yibeltal et al., 2023).
Furthermore, quantifying the relationship between sediment and riverflow is critical for developing predictive
models that forecast sediment yield and aid in managing sediment budgets (Landers & Sturm, 2013; Long
et al., 2024). These models are invaluable for projecting future trends and promoting sustainable watershed
management. Over the past few decades, methods for analyzing SSC‐Q relationships during hydrological events
have undergone significant evolution and refinement (Collins, 1981; Gao et al., 2018; Rustomji et al., 2008).
Beginning with traditional sediment rating curves, the field has advanced to incorporate both qualitative and
quantitative hysteresis analysis, which has become increasingly prominent in hydrological studies of hydrological
events (Rose & Karwan, 2021; Zarnaghsh & Husic, 2021). This chapter provides an overview of the historical
development of these methods, tracing their progression from early approaches to more advanced techniques, and
presents a global perspective on the spatiotemporal distribution of research related to hysteresis analysis.

2.1. Sediment Rating Curves

The sediment rating curve (SRC) has been a prevalent method for analyzing the relationship between suspended
sediment concentration (SSC) and discharge (Q) in river systems (Collins, 1981; di Cenzo & Luk, 1997;
Walling, 1977). Expressed as a power function, SSC = aQb, it defines two parameters: a, indicating sediment
availability, and b, representing the sediment transport capacity as discharge increases (Banasik &Walling, 1996;
Horowitz et al., 2015; Krajewski et al., 2018; Vercruysse et al., 2017). This empirical model has been widely
applied at various temporal scales—annual, monthly, and daily (Ahn & Steinschneider, 2018; Asselman, 1999;
Dumitriu, 2020; Irvine & Drake, 1987; Sadeghi et al., 2008a, 2008b, 2019)—providing a practical approach for
estimating long‐term sediment loads and transport patterns.

However, its limitations become apparent during hydrological events, where rapid fluctuations in discharge and
sediment supply introduce significant variability that the SRC model cannot capture (Baloul et al., 2024; De
Girolamo et al., 2015; Katebikord et al., 2024; Speir et al., 2024). A key issue is the lag effect, where SSC and Q
peaks do not coincide (Banasik et al., 2005; Banasik & Hejduk, 2015; Jansson, 1996, 2002; Jeje et al., 1991). SSC
peaks may occur before, during, or after the discharge peak, causing scatter and poor fits to the power function
(Rodriguez‐Blanco et al., 2010; Stubblefield et al., 2007; Williams, 1989; Yang & Lee, 2018). This asynchronous
behavior, particularly in high‐intensity floods, undermines the assumption of a steady relationship between
sediment and riverflow. Hydrological events also involve dynamic shifts in sediment availability and transport
mechanisms, especially between the rising and falling limbs of the flood hydrograph (Lopez‐Tarazon et al., 2009;
Sidle & Campbell, 1985). The static relationship between SSC and Q fails to account for these changes, leading to
inaccurate sediment load estimates and underrepresenting variability in transport processes (Alexandrov
et al., 2007; Hapsari et al., 2019; Lopez‐Tarazon & Estrany, 2017). This is particularly problematic in watersheds
where large, intense floods disproportionately contribute to sediment yield. As a result, more sophisticated ap-
proaches are needed to improve sediment load estimation during hydrological events.

2.2. Qualitative Analysis of Hysteresis Loops

In the mid‐twentieth century, researchers identified discrepancies between hydrograph and sediment graph during
hydrological events, particularly in the timing of their peaks (Heidel, 1956; Paustian & Beschta, 1979;
Wood, 1977). These lag effects led to the development of hysteresis loops, which plot SSC against Q over time
(Collins, 1981; Grimshaw & Lewin, 1980). Initially, hysteresis loops were simple graphical tools that highlighted
the timing differences between sediment and riverflow, revealing variability in sediment transport during
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hydrological events (Richards, 1984; Walling, 1977). Early studies categorized hysteresis as clockwise or
counter‐clockwise, depending on whether the SSC peak preceded or followed the Q peak (Burt et al., 1983;
Klein, 1984). As the understanding of flood dynamic grew, more complex hysteresis patterns emerged. In 1989,
Williams first classified hysteresis loops into five types systematically: single‐line, clockwise, counter‐clockwise,
single‐line with hysteresis, and figure‐eight (Williams, 1989). Since then, numerous variations have been iden-
tified, expanding the understanding of sediment transport during floods. Today, four main patterns dominate
hydrological studies: clockwise, counter‐clockwise, figure‐eight, and complex (Figure 1).

Clockwise hysteresis occurs when the sediment graph rises and falls faster than the hydrograph, creating a loop
where SSC peaks before Q. On the graph, SSC decreases sharply during the falling limb, even when discharge
remains high (Buendia et al., 2016; Gellis, 2013; Pulley et al., 2019; Varvani et al., 2019). In contrast, counter‐
clockwise hysteresis occurs when Q peaks before SSC, with SSC lagging during the recession of the hydrograph,
producing a flatter loop on the falling limb (Burt et al., 2015; Millares & Monino, 2020; Yeshaneh et al., 2014).
The figure‐eight hysteresis results from multiple peaks in SSC and Q during a flood, combining clockwise and
counter‐clockwise loops. It can be categorized into two types: a figure‐eight with counter‐clockwise loops at low
discharge and clockwise loops at high discharge, and a reverse figure‐eight with the opposite pattern (Hu
et al., 2019; Ram & Terry, 2016; Ranjan & Roshni, 2024; Ziegler et al., 2014). These loops reflect the complex
interactions between sediment availability and transport, as SSC and Q cross paths to form the characteristic “8”
shape (Lopez‐Tarazon et al., 2009; Richards & Moore, 2003; Shojaeezadeh et al., 2022; Tananaev, 2012).
Complex hysteresis, characterized by multiple SSC and Q peaks, arises from a combination of different hysteresis
patterns, often seen during consecutive or prolonged storms (Pulley et al., 2019; Upadhayay et al., 2021; Yibeltal
et al., 2023). Irregular precipitation patterns and diverse sediment sources contribute to its non‐repetitive shape.
Due to its variability and complexity, this pattern is less frequently studied and remains poorly understood.

2.3. Quantitative Analysis of Hysteresis Loops

To enhance the analysis of hysteresis mechanisms, researchers developed quantitative indices to address the
limitations of graphical hysteresis loops. While visual comparisons offer valuable insights into sediment transport
(Asselman, 1999; Williams, 1989), they are insufficient for comparing hydrological and sediment processes
across different hydrological events and watersheds (Lawler et al., 2006). In response, indices such as the hys-
teresis index (HI) and flushing index (FI) were introduced to quantify the direction, magnitude, and sediment
mobilization processes (Heathwaite & Bieroza, 2021).

Figure 1. Different patterns of hysteresis loops. For each pattern, the left panel shows hydrographs and sediment graphs, while the corresponding hysteresis loop is
displayed in the right panel. In the left panel, the Q is represented by the blue line; the solid orange line depicts the SSC peaking asynchronously with Q; the orange
dotted line in the clockwise and counter‐clockwise loops signifies SSC peaking synchronously with Q. Red dots indicate the same Q, while red squares denote the SSC
at the same Q.
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Langlois et al. (2005) first proposed the proportional HI, using logarithmic and exponential fits to Q and SSC data
from the rising and falling limbs of the hydrograph. The index quantifies the area ratio between the fitted curves,
providing insights into both direction and magnitude. However, it requires extensive data for reliable curve fitting
and is sensitive to outliers, making it more suited to simple, clockwise, or counter‐clockwise loops.

To simplify the calculation, Lawler et al. (2006) introduced the median discharge HI, which focuses on SSC at the
midpoint of discharge (Qmid). This method avoids noisy data at the onset and end of the event but is sensitive to
event magnitude, limiting its reliability for comparing events of different scales. It also struggles with figure‐eight
and complex patterns.

Aich et al. (2014) addressed event magnitude variability by proposing a normalized HI, which standardizes Q and
SSC to enable direct comparisons across events and watersheds. This index is especially useful for capturing the
“first flush” effect and provides separate calculations for the rising and falling limbs. However, its complexity and
limitations with figure‐eight loops restrict broader applications.

Lloyd et al. (2016a) refined these approaches with the differential HI, which divides discharge into intervals and
calculates the average SSC difference between the rising and falling limbs for each interval. This method is well‐
suited to complex patterns, including multi‐peak and figure‐eight loops, providing greater accuracy by consid-
ering more data points across the hydrograph.

The Flushing Index (FI), introduced by Vaughan et al. (2017), compares sediment concentrations at the beginning
of an event and at peak discharge, distinguishing between source‐ and transport‐limited sediment mobilization.
Combined with HI, FI offers a more comprehensive analysis of hydrological dynamics and SSC‐Q relationships
during hydrological events.

These quantitative indices aim to automatically detect hysteresis direction and magnitude (Misset et al., 2019).
They enhance the capacity to analyze complex patterns, facilitating comparisons across diverse events and
watersheds (Wang et al., 2022). The HI developed by Lloyd et al. (2016a) and the FI by Vaughan et al. (2017) are
widely adopted for investigating flood hydrodynamics (Lannergard et al., 2021; Pickering & Ford, 2021; Vale &
Dymond, 2020;Wang et al., 2022; Zuecco et al., 2016). In practice, selecting the appropriate index depends on the
complexity of observed patterns and data availability. For simpler, unidirectional loops, the proportional HI or
median discharge HI offers quick insights. For complex, multi‐peak, or figure‐eight patterns, the differential HI
provides a more robust analysis. In cases of intense sediment mobilization, where sediment is either source‐ or
transport‐limited, the FI is most appropriate. These indices enable not only event comparison but also provide
critical tools for understanding the mechanisms underlying different hysteresis patterns (Table 1). It should be
noted that these indices are based on idealized hysteresis loops, and actual sediment dynamic in hydrological
events may exhibit more complex variations due to factors such as rainfall intensity, watershed characteristics,
and sediment availability.

3. Global Spatiotemporal Distribution of Hysteresis Research
Hysteresis analysis has become a crucial tool in understanding sediment transport dynamics during hydrological
events, with a significant increase in research volume over the past few decades. A total of 514 articles related to
event‐scale hysteresis analysis in hydrology were identified globally (Text S1 in Supporting Information S2),
reflecting the growing importance of this method in studying sediment dynamic.

3.1. Temporal Trends in Hysteresis Research

The evolution of hysteresis research can be divided into several key phases, each marked by advancements in both
methodology and research focus. Initially, during the 1950s–1970s, researchers primarily relied on sediment
rating curves to analyze the relationship between SSC and discharge (Q) (Heidel, 1956; Rendon‐Herrero, 1974,
1978;Wood, 1977). However, as studies began to recognize discrepancies between the timing of hydrographs and
sediment graphs, the concept of hysteresis emerged. The 1980s saw the development of more systematic studies
on hysteresis loops, culminating in the classification of hysteresis patterns, which initiated the qualitative phase of
hysteresis analysis (Asselman, 1999; Kelly, 1992; Whiting et al., 1999; Williams, 1989). By 2005, with the
introduction of the hysteresis index, hysteresis analysis transitioned to the quantitative phase, allowing for more
precise and comparable analyses of sediment transport across different hydrological events and watersheds
(Langlois et al., 2005; Lawler et al., 2006).
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Table 1
Summary of the Development and Comparison of Quantitative Indices Characterizing Hysteresis Loops

Graphical schematic Advantages Limitations Reference

• Simple and intuitive to quantify
both direction and magnitude
of hysteresis loops;

• Requires a large amount of data
for fitting equations, which
makes it vulnerable to
outliers;

(Langlois et al., 2005)

• Well‐suited for identifying
basic clockwise and counter‐
clockwise hysteresis.

• Difficult to apply to more
complex hysteresis patterns
like figure‐eight loops due to
its dependency on fitted
curves.

HI = ∫
Qpeak
Qmin SSCrising/∫

Qpeak
Qmin SSCfalling Applicable Conditions: Best suited for cases with ample data where separate analysis of the rising and

falling limbs of the flood hydrograph is required. Ideal for situations where the temporal dynamics
of sediment transport need to be differentiated for each phase of the event.

• A straightforward approach that
avoids noisy data points at the
beginning and end of events;

• Sensitive to event magnitude,
meaning that it might
underestimate the hysteresis
index for high SSC values;

(Lawler et al., 2006)

• More practical for most
applications as it avoids
reliance on full‐fitting curves.

• Like Langlois' index, it is
unsuitable for complex
hysteresis patterns such as
figure‐eight.

Qmid = 0.5 ∗ (Qpeak − Qmin) + Qmin Applicable Conditions: Ideal for situations with limited monitoring data. This index provides reliable
results even when data collection is sparse or incomplete, making it suitable for cases where data
precision or availability is constrained.

HI =
⎧⎨

⎩

SSCrising/SSCfalling − 1 SSCrising > SSCfalling
1 − SSCfalling/SSCrising SSCrising ≤ SSCfalling

• Facilitates direct comparison
between different events and
watersheds due to its
normalization of SSC and Q
values;

• Despite its strengths, this index
remains unsuitable for
complex hysteresis patterns
like figure‐eight;

(Aich et al., 2014)

• Accounts for the first flush
phenomenon, separating the
analysis of the rising and
falling limbs.

• The calculation can be intricate
due to the need for detailed
rising and falling limb
analysis.

Qi,norm = Qi/Qpeak, SSCi,norm = SSCi/SSCpeak Applicable Conditions: Suitable for comparing different magnitudes of hydrological events or across
various watershed scales. Best used when cross‐event or cross‐watershed comparison is necessary,
providing a robust framework for analyzing variations in sediment dynamics.

HI = Drising + Dfalling
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The temporal growth in hysteresis research is depicted in Figure 2, which shows a sharp increase in publications
starting in the early 2000s. The rate of publication continued to rise, reflecting the increasing recognition of
hysteresis analysis as a vital tool for understanding complex sediment dynamic, particularly in flood‐prone re-
gions. The surge in publications from 2020 onwards further underscores the heightened focus on hysteresis
analysis in the context of climate change and more frequent extreme weather events. The increasing precision of
monitoring technologies and the ability to collect high‐frequency data have played a pivotal role in this trend,
enabling more detailed studies of multi‐peak and complex hysteresis loops.

3.2. Spatial Distribution of Hysteresis Research

Spatially, hysteresis research has been concentrated in regions with specific hydrological characteristics, as
shown in Figure 3. A major concentration of research, accounting for over 70% of the studies, is found in arid and
semi‐arid regions and Mediterranean climates, which share similar erosion and sediment transport characteristics.
These regions typically have sufficient sediment availability, and sediment mobilization is heavily influenced by
episodic rainfall events (Alexandrov et al., 2007; Diaf et al., 2020; Gao et al., 2013; Mihiranga et al., 2021). For

Table 1
Continued

Graphical schematic Advantages Limitations Reference

• Suitable for all hysteresis
patterns, including complex
figure‐eight loops.

• The complexity of the
calculations can be a
limitation, requiring a large
amount of precise data to
achieve accurate results.

(Lloyd et al., 2016a)

• Provides a more robust analysis
by examining multiple
sections of the hysteresis
loop.

Qi,norm = (Qi − Qmin)/ (Qpeak − Qmin) Applicable Conditions: Designed for use when high‐precision data is available and the hydrological
event is complex. This index is effective in handling detailed, high‐resolution data, especially when
multiple sediment sources or intricate sediment transport processes are involved.

SSCi,norm = (SSCi − SSCmin)/ (SSCpeak − SSCmin)

HI = ∑
n
i=1 (SSCi,rising − SSCi,falling)/n

• Effectively reflects the
sediment mobilization
intensity and sediment
condition in the watershed;

• Primarily designed for more
specific cases of flushing or
dilution, limiting its general
applicability to other types of
hysteresis.

(Vaughan et al., 2017)

• Works well when combined
with other indices, such as the
HI, to offer a comprehensive
view of sediment transport.

FI = SSCQpeak,norm − SSCinitial,norm Applicable Conditions: Particularly useful for events where sediment availability changes
dramatically during the flood, making it ideal for situations where sediment exhaustion or flushing
processes are key features of the flood dynamics.

Note. The hysteresis loops and formulations presented are idealized representations. Actual sediment concentration and discharge dynamics in hydrological events may
exhibit more complex variations.

Water Resources Research 10.1029/2024WR037216

JING ET AL. 7 of 24

 19447973, 2025, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024W

R
037216 by N

anjing Institution O
f G

eo, W
iley O

nline L
ibrary on [06/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



example, in the United States, much of the research has focused on regions where flash floods and intense rainfall
events trigger rapid sediment mobilization (Javed et al., 2021; Marin‐Ramirez et al., 2024). Similarly, in China,
large river systems such as the Yellow River and the Yangtze have been central to studies of sediment dynamics,
particularly in response to human activities like dam construction, deforestation, and agricultural practices (Li
et al., 2024; Ren et al., 2020; Zhao et al., 2017). Mediterranean regions, such as Spain, Italy, and France, share
similar characteristics, where the dynamic shifts in sediment transport during episodic storms are of primary
concern. These regions, too, have seen increased research into how droughts followed by heavy rainfall affect
sediment dynamics and flood processes (Esteves et al., 2019; Pagano et al., 2019; Tuset et al., 2022).

Beyond these areas, tropical regions have also seen increasing research activity, driven by the growing frequency
and intensity of extreme events. In countries like Brazil, Ethiopia, and Malaysia, the frequency of intense rainfall
events has been increasing due to climate change, leading to more frequent and severe floods. In Brazil, research
has focused on the impact of deforestation and land‐use changes on sediment fluxes during floods, highlighting
the importance of hysteresis analysis in understanding sediment mobilization in rapidly changing landscapes (de
Menezes et al., 2020; Londero et al., 2018). Similarly, in Ethiopia and other parts of Southeast Asia, studies have

Figure 2. Development trends in hysteresis analysis research and distribution of key words (1950s–2020s).

Figure 3. Spatial distribution of hysteresis research globally.
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explored the effects of rainfall variability and land‐use changes on sediment transport during hydrological events,
further underlining the role of hysteresis analysis in capturing complex sediment dynamics in tropical regions
(Dominic et al., 2015; Yeshaneh et al., 2014; Yibeltal et al., 2023). Additionally, high‐altitude regions such as the
Alps, Himalayas, and Andes are increasingly becoming focal points for hysteresis research. These areas, which
experience snowmelt‐driven runoff and freeze‐thaw cycles, display unique hysteresis patterns that differ from
those found in lower‐altitude regions. Snowmelt and ice dynamics are particularly important factors influencing
sediment transport in these regions, and hysteresis patterns often reflect delayed sediment transport and complex
interactions between water and sediment (Carrillo & Mao, 2020; Engel et al., 2024; Manseau et al., 2022; Swift
et al., 2021). The growing frequency of extreme hydrological events in these high‐altitude regions, also exac-
erbated by climate change, has led to increased interest in understanding the dynamics of sediment mobilization,
particularly in snowmelt‐driven events. As these areas experience more frequent hydrological events due to
climate change, hysteresis analysis becomes increasingly critical for understanding sediment dynamics in these
vulnerable regions.

4. Applications of Hysteresis Analysis in Hydrological Research
Hysteresis analysis has become an essential tool in the hydrological study of hydrological events, serving not only
as a method for classifying different flood types but also as a means of characterizing the distinct features of these
events (Valente et al., 2021; Zou et al., 2022). By categorizing floods based on hysteresis patterns, researchers can
gain deeper insights into the environmental factors shaping these patterns and evaluate the sediment transport
capacity of each flood type (Rustomji et al., 2008). This approach enables the identification of key hydrological
events and their underlying mechanisms, offering valuable information for effective watershed and river
management.

4.1. Characterization and Classification of Hydrological Events

Hydrological events are complex hydrological processes influenced by a combination of meteorological and
geomorphological factors. Effectively characterizing and classifying these events is essential for understanding
sediment transport dynamic and developing sustainable watershed management strategies (Pietron et al., 2015;
Ranjan & Roshni, 2024). Characterization focuses on quantifying both pre‐event conditions and hydrological
responses during the event, while classification groups hydrological events based on shared characteristics, of-
fering deeper insights into the mechanisms driving sediment transport.

Accurate hydrological event characterization involves assessing pre‐event conditions and event magnitude
through a set of hydrological, meteorological, and sediment‐related variables (Table 2). As outlined in Table 2,
these variables capture both the antecedent conditions and the overall dynamic. Precipitation variables such as
total precipitation (P), precipitation intensity (PI), maximum 30‐min intensity (I30), and accumulated precipi-
tation over 1, 5, and 10 days before the event (AP1, AP5, AP10) describe the meteorological factors that set the
stage for the flood. Coupled with baseflow (Qb), these indicators help assess the watershed moisture state, which
is crucial for understanding how it responds to subsequent rainfall (Baker & Showers, 2019; Oeurng et al., 2010).
Hydrological variables—including runoff depth (H), runoff coefficient (Rc), mean discharge (Q), peak discharge
(Qpeak), and event duration (T), along with the durations of the rising (Tr) and falling (Tf) limbs—capture the flow
characteristics during the flood. These factors reveal the intensity, duration, and variability of the hydrological
event (Nadal‐Romero et al., 2008; Oeurng et al., 2011). Sediment properties such as total sediment yield (SSY),
mean SSC, and peak SSC (SSCpeak) provide insights into the amount and timing of sediment transport (Pagano
et al., 2019; Tian et al., 2016).

The introduction of quantitative hysteresis indices, such as the hysteresis index (HI) and flushing index (FI), has
enhanced the ability to characterize hydrological events. These indices capture the nonlinear interactions between
SSC and Q, adding depth to traditional metrics by reflecting how sediment transport changes during the different
phases of a flood (Heathwaite & Bieroza, 2021; Hu et al., 2019; Liu et al., 2021; Millares & Monino, 2020). This
comprehensive set of variables, when considered together, offers a robust framework for describing hydrological
events and their sediment dynamics.

Traditionally, flood classification has relied on hydrological and meteorological variables to group events with
similar characteristics, often using clustering techniques to analyze patterns in flood behavior (Jansson, 2002; Lyu
et al., 2020; Oeurng et al., 2011; Pagano et al., 2019). This approach provides a general understanding of flood
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magnitude and hydrological responses. However, the incorporation of hysteresis analysis has expanded the scope
of classification by adding sediment dynamics into the mix. Hysteresis patterns—clockwise, counterclockwise,
figure‐eight, and complex loops—provide key insights into the timing and source of sediment transport during
hydrological events (Duvert et al., 2010; Esteves et al., 2019; Gao et al., 2018). These patterns can distinguish
between floods where sediment is mobilized early (clockwise) or late (counter‐clockwise) in the event, revealing
important differences in sediment transport mechanisms (Cao et al., 2021; Oeurng et al., 2010). As a result,
hysteresis analysis allows for a more refined classification of floods based on the relationship between SSC and Q.

In recent years, the integration of traditional flood classification methods with hysteresis analysis has led to a
more holistic approach to understanding flood dynamics. By combining conventional metrics with hysteresis
insights, researchers can better identify the drivers of different sediment transport behaviors. Furthermore, ad-
vances in machine learning and artificial intelligence, such as artificial neural networks, have allowed for even
more precise classification by capturing finer details in the hydrographs of water and sediment (Hamshaw
et al., 2018). These developments have expanded the ability to classify hydrological events beyond the four
primary hysteresis patterns, providing a more nuanced understanding of flood processes.

4.2. Revelation of Sediment Sources and Transport Processes

Various hydrometeorological factors, along with watershed characteristics and human activities, play critical
roles in shaping hydrological events and their hydrological processes (Fortesa et al., 2020; Wenng et al., 2021;
Zhao et al., 2017). Suspended sediment (SS) dynamics during hydrological events can be broadly categorized into
sediment sources and transportation processes before reaching the watershed outlet. These stages are influenced
by factors that regulate sediment availability and hydrological connectivity, leading to different hysteresis pat-
terns (Figure S1) (Cheraghi et al., 2016; Lannergard et al., 2021; Vercruysse & Grabowski, 2019). In this study,
we classify and analyze the potential factors affecting hysteresis, focusing on hydrometeorological conditions,
watershed properties, and human activities. A detailed list of references for each influencing factor is provided in
Table 3.

Table 2
Variables Used to Characterize Hydrological Events

Variables Abbreviation Explanation

Precipitation properties Precipitation (mm) P Total precipitation

Precipitation intensity (mm h− 1) PI Precipitation intensity

Precipitation intensity in 30 min (mm h− 1) I30 Maximum 30 min precipitation intensity

Antecedent 1 day precipitation (mm) AP1 Accumulated precipitation of 1 day prior to the event

Antecedent 5 days precipitation (mm) AP5 Accumulated precipitation of 5 days prior to the event

Antecedent 10 days precipitation (mm) AP10 Accumulated precipitation of 10 days prior to the event

Hydrology properties Baseflow (m3 s− 1) Qb Baseline discharge between two different event

Runoff depth (mm) H The ratio between total runoff and watershed area

Runoff coefficient (%) Rc The ratio between runoff depth and total precipitation

Discharge (m3 s− 1) Q Mean discharge

Peak discharge (m3 s− 1) Qpeak Maximum discharge

Duration (h) T Duration of the whole event

Duration of rising limb (h) Tr Duration of the event rising stage

Duration of falling limb (h) Tf Duration of the event recession stage

Sediment properties Sediment yield (t km− 2) SSY Total sediment load

Suspended sediment concentration (kg m− 3) SSC Mean suspended sediment concentration

Peak suspended sediment concentration (kg m− 3) SSCpeak Maximum suspended sediment concentration
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Table 3
Influencing Factors of Hysteresis Patterns and References

Influencing factors Influencing type Mechanisms References

Hydrometeorological
factors

Precipitation
distribution

Positive/Negative • Localized precipitation near the basin outlet
quickly mobilizes proximal sediment,
leading to clockwise hysteresis;

Al Sawaf et al. (2024), Fortesa et al. (2021),
Rose and Karwan (2021), Fang (2019),
Ziegler et al. (2014)

• Widespread rainfall across the basin
activates multiple distant sediment
sources, delaying transport and creating
counter‐clockwise or complex hysteresis
patterns.

Precipitation
magnitude

Positive • High‐intensity rainfall generates immediate
runoff, rapidly mobilizing nearby
sediment, causing clockwise hysteresis;

Yu et al. (2023), Zhu et al. (2023),
Haddadchi and Hicks (2021), Vale and
Dymond (2020), Wymore et al. (2019),
Ares et al. (2016), Perks et al. (2015),
Ziegler et al. (2014), Fang et al. (2011),
Oeurng et al. (2011), Rodriguez‐Blanco
et al. (2010), Mano et al. (2009),
Sadeghi et al. (2008a, 2008b),
Alexandrov et al. (2007), Rovira and
Batalla (2006), Sammori et al. (2004),
Goodwin et al. (2003), Jeje et al. (1991)

• Larger storms can transport sediment from
upstream areas, resulting in delayed
sediment peaks and counter‐clockwise or
figure‐eight hysteresis.

Antecedent
moisture

Positive • High antecedent soil moisture reduces
infiltration, increasing surface runoff and
accelerating sediment transport, leading
to quick sediment responses and
clockwise hysteresis;

Rose and Karwan (2021), Vale and
Dymond (2020), Bieroza and
Heathwaite (2015), Dominic
et al. (2015), Gimenez et al. (2012),
Soler et al. (2008), Langlois et al. (2005)

• Drier conditions increase soil absorption,
slowing sediment movement, resulting in
counter‐clockwise hysteresis as sediment
lags behind discharge.

Events timing Positive/Negative • Early wet season storms flush accumulated
sediment from dry channels, leading to
strong clockwise hysteresis;

Alavez‐Vargas et al. (2021), Lannergard
et al. (2021), Buendia et al. (2016),
Perks et al. (2015), Dominic
et al. (2015), Tananaev (2015), Fan
et al. (2013), Megnounif et al. (2013),
Gao and Josefson (2012), Fang
et al. (2008), Rovira and Batalla (2006)

• Later in the season, sediment depletion can
result in counter‐clockwise hysteresis,
especially if only distant sources are
mobilized.

Events sequence Negative • Small initial events deposit sediment in
channels, increasing sediment
availability for subsequent floods,
leading to clockwise hysteresis;

Xue et al. (2024), Martin et al. (2014),
Wilson et al. (2012), Rodriguez‐Blanco
et al. (2010), Smith and
Dragovich (2009), Baca (2008), Rovira
and Batalla (2006)

• Large events deplete sediment, reducing
the transport capacity in later events and
leading to weaker or counter‐clockwise
hysteresis.

Watershed properties Topography Positive • Steep slopes accelerate runoff and sediment
movement, promoting clockwise
hysteresis as sediment is quickly
mobilized and transported downstream;

Xiao et al. (2024), Keesstra et al. (2019),
Pagano et al. (2019)
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4.2.1. Hydrometeorological Factors

Hydrometeorological factors, particularly precipitation intensity, distribution, event timing, and sequence, are key
drivers of hysteresis patterns. Precipitation is the primary force controlling soil erosion and sediment transport
during hydrological events. It directly influences the availability of sediment and the hydrological connectivity
within a watershed.

Table 3
Continued

Influencing factors Influencing type Mechanisms References

• Flat terrain slows sediment transport,
leading to delayed sediment peaks and
counter‐clockwise hysteresis.

Soil properties Negative • Coarse‐grained soils (e.g., sandy soils)
allow high infiltration, reducing runoff
and sediment detachment, resulting in
weaker hysteresis or linear SSC‐Q
relationships;.

Long et al. (2024), Fortesa et al. (2021),
Cheraghi et al. (2016), Hudson (2003)

• Fine‐grained soils (e.g., clay) increase
surface runoff and sediment transport,
contributing to stronger clockwise
hysteresis during intense rainfall events

Basin size Negative • Small basins have shorter sediment
transport distances, allowing quick
sediment mobilization and transport,
often leading to clockwise hysteresis;

Bolade and Hansen (2023), Wang
et al. (2022), Fortesa et al. (2021), Tena
et al. (2014), Fang et al. (2011),
Jansson (2002), Steegen et al. (2000),
Heidel (1956)

• Large basins have longer transport
distances, delaying sediment peaks and
leading to counter‐clockwise hysteresis.
Larger basins may also produce figure‐
eight hysteresis due to multiple tributaries
and variable sediment sources.

Human activities Land‐use Positive/Negative • Urbanized areas and agricultural practices
create impermeable surfaces and increase
sediment connectivity, leading to rapid
sediment transport and clockwise
hysteresis during hydrological events;

Safdar et al. (2024), Yu et al. (2023), Zhou
et al. (2023), Haddadchi and
Hicks (2021), Zarnaghsh and
Husic (2021), Chen and Chang (2019),
Hu et al. (2019), Bender et al. (2018),
Liu et al. (2017), Yeshaneh et al. (2014),
Gellis (2013), Hughes et al. (2012),
Lenzi and Marchi (2000)

• Forested and vegetated areas slow sediment
movement by intercepting runoff and
reducing sediment availability, resulting
in delayed sediment transport and
counter‐clockwise hysteresis, especially
during high‐magnitude events.

Dam and reservoir
construction

Negative • Dams and reservoirs trap sediment
upstream, delaying its transport
downstream and causing counter‐
clockwise hysteresis as sediment peaks
occur after discharge peaks;

Ghosh and Munoz‐Arriola (2023), Lyu
et al. (2020), Ren et al. (2020), Huang
et al. (2018), Tena et al. (2014), Fan
et al. (2013)

• Regulated water and sediment flows from
reservoirs alter natural sediment transport
processes, potentially creating complex
or figure‐eight hysteresis patterns.
Seasonal regulation can reverse normal
sediment timing and transport.
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Intense rainfall events result in the rapid mobilization of sediment, leading to clockwise hysteresis patterns, where
the peak SSC precedes the peak discharge (Q) (Jansson, 2002). This pattern typically reflects the quick response
of nearby sediment sources, often located close to the river channel (Geeraert et al., 2015; Hudson, 2003; Strauch
et al., 2018). For example, during small magnitude hydrological events, the sediment is often mobilized from
proximal sources such as riverbanks, contributing to a swift sediment response (El Azzi et al., 2016; Perks
et al., 2015; Rose &Karwan, 2021). Conversely, during larger hydrological events, when precipitation intensity is
higher and more widespread, distant sediment sources are mobilized, resulting in counter‐clockwise hysteresis
(Garcia‐Comendador et al., 2021; Lefrancois et al., 2007). In such cases, the sediment lag is due to the time
required to transport eroded material from upstream or distant parts of the watershed (Fortesa et al., 2021; Oeurng
et al., 2011). The occurrence of counter‐clockwise hysteresis in larger events is also linked to processes such as
bank collapse, which tends to occur during the falling limb of the hydrograph when stream power decreases
(Lannergard et al., 2021).

Precipitation distribution also plays a significant role in hysteresis patterns. When localized precipitation occurs
near the watershed outlet, sediment from nearby sources is mobilized quickly, producing clockwise hysteresis
even in small events (Huang et al., 2018; Sadeghi et al., 2017). In contrast, when the precipitation center is farther
upstream, sediment from distant sources is mobilized, which often leads to counter‐clockwise hysteresis as the
sediment takes longer to reach the outlet (Doomen et al., 2008; Fang, 2019; Hu et al., 2019). Widespread pre-
cipitation across a watershed, especially during high‐intensity storms, can activate multiple sediment sources
simultaneously, giving rise to complex or figure‐eight hysteresis patterns, as these events involve both near and
distant sources of sediment (Rose & Karwan, 2021).

The timing and sequence of hydrological events are additional factors that influence sediment transport. At the
onset of the wet season, when large amounts of sediment have accumulated during the dry period, early hy-
drological events tend to flush this material into the river channels, producing strong clockwise hysteresis
(Alavez‐Vargas et al., 2021; Duvert et al., 2010; Gray et al., 2014). As the wet season progresses and sediment
becomes depleted, subsequent hydrological events may begin to draw from more distant sources, resulting in
counter‐clockwise hysteresis (Coch et al., 2018; Salant et al., 2008; Zou et al., 2022). Additionally, the sequence
of hydrological events impacts the availability of sediment: smaller events can lead to sediment accumulation,
increasing the availability of sediment for larger, subsequent events. On the other hand, larger initial floods can
deplete sediment stores, leading to lower sediment concentrations in later events, despite higher discharge, and
producing more complex hysteresis patterns (Figure S2) (Martin et al., 2014; Rovira & Batalla, 2006).

4.2.2. Watershed Properties

Watershed characteristics, including topography, soil properties, and watershed size, play critical roles in shaping
the transport paths of sediment and the hysteresis patterns that result during hydrological events. These properties
govern how quickly and efficiently sediment is mobilized and transported from different parts of the watershed to
the river channel.

Topography is one of the most important factors influencing sediment transport. Steeper slopes increase surface
runoff and enhance the energy available to mobilize sediment, leading to more rapid transport and clockwise
hysteresis (Li et al., 2019; Richards & Moore, 2003). In contrast, flatter terrain slows sediment transport, often
resulting in counter‐clockwise hysteresis as sediment peaks lag behind discharge peaks (Garcia‐Comendador
et al., 2021; Sun et al., 2024). In watersheds with high drainage density, hydrological connectivity is stronger,
which facilitates the continuous transport of sediment throughout the hydrological event, often prolonging the
falling limb and contributing to counter‐clockwise hysteresis (Cao et al., 2021; Sherriff et al., 2016). In regions
with complex topography, the timing and magnitude of sediment transport can vary widely, leading to more
intricate hysteresis patterns, such as figure‐eight loops (Misset et al., 2019).

Soil properties are another key determinant of sediment availability and transport. Coarse‐grained soils, which
promote infiltration, often reduce the amount of surface runoff and the detachment of sediment, resulting in
weaker hysteresis effects or even linear SSC‐Q relationships (Bettel et al., 2022; Fang et al., 2015; Sadeghi
et al., 2018). In contrast, fine‐grained soils, such as clay and silt, tend to increase surface runoff and sediment
detachment, leading to more pronounced clockwise hysteresis patterns (Juez et al., 2018; Landers & Sturm, 2013;
Serra et al., 2022; Upadhayay et al., 2021). The heterogeneity of soil particle sizes within a watershed can further
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influence hysteresis patterns, with finer particles being more readily transported over longer distances, resulting in
a delayed sediment response during larger hydrological events (Cheraghi et al., 2016; Pulley et al., 2019).

The size of the watershed also plays a crucial role in determining sediment transport dynamics. In smaller wa-
tersheds, sediment sources are located closer to the river outlet, leading to rapid sediment mobilization and
transport, often resulting in clockwise hysteresis (Heidel, 1956). Larger watersheds, however, encompass more
complex tributary networks and have longer sediment transport distances, resulting in delayed sediment delivery
and counter‐clockwise hysteresis patterns as sediment from distant sources reaches the river channel after the
discharge peak (Blothe & Hoffmann, 2022; Oeurng et al., 2010). In some cases, large watersheds can exhibit
figure‐eight hysteresis patterns, particularly when multiple sediment sources are activated at different stages of
the hydrological event (Tena et al., 2014).

4.2.3. Human Activities

Human activities, such as land‐use changes, vegetation cover, and the construction of dams and reservoirs,
significantly alter the natural sediment transport processes in a watershed. These activities modify both the
availability of sediment and the pathways through which it is transported, leading to changes in hysteresis
patterns.

Land‐use practices, such as agriculture and urbanization, increase sediment availability and connectivity by
reducing vegetation cover and increasing impermeable surfaces. This often results in faster sediment mobilization
and clockwise hysteresis during hydrological events (Ram & Terry, 2016; Safdar et al., 2024; Zarnaghsh &
Husic, 2021). Agricultural practices, such as tillage, can loosen soil, making it more susceptible to erosion and
transport, while urban areas, with their extensive drainage networks, enhance connectivity between sediment
sources and the river channel, further accelerating sediment transport (Haddadchi & Hicks, 2021; Singh
et al., 2020). Conversely, areas with high vegetation cover, such as forests or restored ecosystems, tend to stabilize
soil, reducing sediment detachment and leading to delayed sediment peaks and counter‐clockwise hysteresis
during larger hydrological events (Valente et al., 2021; Zhou et al., 2023). In these cases, sediment is often trapped
by vegetation during smaller events, while larger floods may mobilize sediment from more distant sources.

The construction of dams and reservoirs has a particularly strong impact on sediment transport. These structures
trap sediment upstream, disrupting the natural sediment flux and often producing counter‐clockwise hysteresis as
sediment transport lags behind discharge (Geeraert et al., 2015; Singh et al., 2020; Tolorza et al., 2014). Reservoir
operations, particularly the timing of water releases, can further complicate sediment dynamics, leading to more
complex hysteresis patterns depending on how sediment is managed. Seasonal flow regulation can also reverse
the natural timing of sediment transport, with sediment being transported during periods of low natural flow,
altering the overall hydrological response of the watershed (Ren et al., 2020; Soler et al., 2008). This dynamic is
highlighted in Figure S2, which shows how reservoir construction alters sediment transport processes.

These human activities not only affect sediment availability and transport but also influence the broader hy-
drological and sediment connectivity of the watershed. By analyzing the impacts of land‐use and dam con-
struction on hysteresis patterns, researchers can better understand the role of human interventions in shaping
sediment dynamics during hydrological events.

The interplay between hydrometeorological conditions, watershed properties, and human activities forms a
complex network influencing sediment transport and hysteresis during hydrological events. These factors rarely
act in isolation, instead interacting synergistically or competitively to shape sediment responses (Heathwaite &
Bieroza, 2021; Stubblefield et al., 2007; Tsyplenkov et al., 2020; Ziegler et al., 2014). Identifying the primary
drivers of these processes is critical for effective watershed management. Recent advances in hydrological
research have employed techniques such as Principal Component Analysis, Partial Least Squares‐Structural
Equation Modeling, and machine learning to disentangle dominant factors influencing hydrological events in
specific watersheds (Yu et al., 2023; Zarnaghsh & Husic, 2021). These approaches not only deepen our under-
standing of the interactions between natural and anthropogenic forces but also provide actionable insights for
optimizing watershed management and mitigating the impacts of extreme hydrological events.
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4.3. Evaluation of Different Hysteresis Patterns

Building on the classification of hydrological events and identification of key influencing factors, numerous
studies have examined the relationship between hysteresis patterns and their respective contributions to total
sediment yield. This analysis highlights the most erosion‐prone flood types and their associated sediment
transport processes, providing valuable insights for river watershed management.

Within a specific watershed, the distribution of hysteresis patterns and their sediment yield contributions often
vary significantly over time, revealing distinct sediment transport characteristics for each pattern (Bieroza &
Heathwaite, 2015; Esteves et al., 2019; Nadal‐Romero et al., 2008). For example, while clockwise hysteresis is
frequently observed, its contribution to total sediment yield is typically small. In contrast, complex and figure‐
eight patterns, though less common, tend to yield higher sediment loads due to their longer duration and
higher sediment transport capacity from multiple peak events (Dominic et al., 2015; Megnounif et al., 2013;
Tsyplenkov et al., 2020).

Counter‐clockwise hysteresis events often result in greater sediment transport compared to clockwise events
under similar discharge conditions (Lannergard et al., 2021). A study in a Russian mountainous watershed found
that nearly 50% of the total sediment yield was transported by just 10% of counter‐clockwise events (Tsyplenkov
et al., 2020). Similarly, Haddadchi and Hicks (2021) demonstrated that while counter‐clockwise events
comprised 40% of all events, they accounted for over 90% of sediment transport. This discrepancy is likely due to
the ability of counter‐clockwise events, driven by intense rainfall, to mobilize sediment from distant sources
within the watershed. During these events, sediment delivery lags behind river discharge, with continued sedi-
ment supply during the falling limb of the hydrograph, unlike clockwise events.

Counter‐clockwise and complex hysteresis patterns are generally considered the most efficient for sediment
transport (Esteves et al., 2019), primarily due to their ability to sustain sediment delivery over longer periods,
particularly in large‐scale hydrological events. Therefore, assessing hysteresis patterns based solely on frequency
is insufficient. A more informative approach evaluates each pattern's contribution to total sediment load, which is
essential for identifying high‐risk hydrological events and prioritizing management efforts.

By analyzing these contributions and understanding which flood types dominate sediment transport, researchers
and water resource managers can better predict which hydrological events are most likely to cause significant
erosion and sediment deposition, allowing for more targeted and effective watershed management strategies.

5. Limitations and Prospects
The hysteresis method has been instrumental in revealing sediment responses to highly variable discharge during
hydrological events, yielding valuable insights into sediment transport dynamics. However, several key chal-
lenges remain, particularly in the collection of high‐resolution data. Continuous and simultaneous monitoring of
suspended sediment concentration (SSC) and discharge (Q) is critical for accurately capturing the temporal
evolution of sediment transport processes. The absence of reliable, real‐time data, especially during high‐flow
conditions, limits the ability to develop robust models and conduct thorough hysteresis analyses. Current data
collection practices, often intermittent and event‐specific, fall short of representing the full variability and
complexity of sediment transport. This presents a significant technical challenge, impeding researchers' capacity
to assess sediment transport across different hydrological events and watersheds.

In addition to this technical barrier, two primary research gaps persist that hinder the broader application of
hysteresis methods. In the following sections, we discuss these challenges and propose prospective directions to
address them, focusing on both methodological advancements and practical implementation strategies.

5.1. Optimized Hysteresis Index (HI) for Various Hysteresis Patterns

The existing hysteresis indices commonly exhibit notable limitations, such as restricted applicability to events of
varying magnitudes and difficulties in quantifying complicated hysteresis patterns. These issues were addressed
by normalizing the observed values of Q and SSC and dividing Q into multiple intervals. The hysteresis index for
each Q interval was individually calculated and then averaged to derive the final hysteresis index (HI). This
methodology not only improved result accuracy but also demonstrated versatility across diverse hysteresis
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patterns, making it the most widely employed HI presently. However, our literature review suggests that its
optimal performance is predominantly observed when applied to simple uni‐directional hysteresis patterns
(clockwise and counter‐clockwise).

On the one hand, calculating Q at specific intervals adds complexity to the computation process. Lloyd
et al. (2016a) proposed that enhancing precision in results is achievable by increasing the number of Q intervals.
Dividing Q into 10% intervals is suitable for 95% of events, and 5% intervals cover 100% of events, although this
necessitates a substantial amount of measured data. Moreover, for figure‐eight and complex hysteresis patterns,
instances of elevated and diminished SSC during the rising limb compared to the falling limb are observed across
various intervals along the entire hydrograph. This leads to the possibility of obtaining HI values that can be either
positive or negative, contingent upon the duration during which the rising limb's SSC is higher or lower than that
of the falling limb. In practical applications, to distinguish these patterns from clockwise hysteresis (positive
value), counter‐clockwise hysteresis (negative value), and no hysteresis (zero value), a detailed examination is
required to assess whether both positive and negative hysteresis indices simultaneously occur within the selected
time intervals. This process is crucial for ultimately determining the specific hysteresis pattern.

On the other hand, the essence of HI encompasses two crucial aspects: the sign (indicating the hysteresis loop
direction) and the magnitude (representing the hysteresis extent). A positive value denotes clockwise hysteresis,
while a negative value indicates counter‐clockwise hysteresis. A larger absolute value implies a more pronounced
hysteresis effect, signifying a greater difference in SSC between the rising and falling limbs under the same Q. As
a result, quantified HI is often employed in attribution analysis to explore its correlation with influencing factors.
However, empirical studies have shown that correlations between influencing factors and HI tend to degrade
when figure‐eight and complex hysteresis patterns constitute a significant proportion. This degradation is
attributed to significant variability in SSC in the rising and falling limbs for both of these hysteresis patterns. The
average HI, calculated based on multiple Q intervals, does not adequately capture their dynamic variations. When
analyzing the correlation with influencing factors, distinguishing between complex hysteresis patterns (figure‐
eight, complex) and simple hysteresis patterns (clockwise, counter‐clockwise) becomes challenging, leading to
potentially confounding results.

Given these limitations, we recommend primarily utilizing the HI for simple uni‐directional clockwise or counter‐
clockwise hysteresis patterns in attribution analysis. This focused approach is anticipated to produce more reliable
results. With the escalating impact of climate change and increasing human activities, the prevalence of figure‐
eight and complex hysteresis patterns is on the rise. These patterns often contribute significantly to both runoff
volume and sediment transport, necessitating further exploration of their influencing factors. Hence, future
research should strive to propose an optimized HI to achieve two goals: (a) accurately calculating HI with minimal
observed data and straightforward methods; (b) effectively characterizing the dynamics of figure‐eight and
complex hysteresis patterns, thereby enhancing their applicability in attribution analysis.

5.2. Spatial Distribution and Trends Prediction of Hysteresis Patterns

Current research on hysteresis patterns in hydrological events is largely based on case studies that focus on
specific watersheds or regions. These studies are valuable for understanding the localized impacts of climatic and
geomorphic factors on sediment transport, but they offer limited insights into the broader spatial distribution of
hysteresis patterns. The primary focus has been on regions such as arid and semi‐arid zones, with limited attention
to other climatic zones like alpine and tropical regions, where different environmental processes may influence
hysteresis patterns. As climate change intensifies, more research is beginning to focus on diverse climatic regions,
including cold alpine areas and tropical zones, where the mechanisms influencing hydrological events and
hysteresis can differ significantly.

However, despite the growing interest in these varied climatic zones, hydrological models have yet to incorporate
hysteresis phenomena into hydrological event simulations and sediment transport predictions. Most current
models fail to account for the dynamic interactions between discharge (Q) and suspended sediment concentration
(SSC), particularly the non‐linear and time‐lag effects that hysteresis patterns reveal. This omission limits the
predictive capabilities of these models, especially under the increasingly extreme weather conditions driven by
climate change.
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The lack of region‐specific models that integrate hysteresis dynamics is a critical gap. Given the distinct envi-
ronmental processes in different climatic and geomorphic regions, there is a clear need to develop regional
predictive models tailored to these areas. Such models should incorporate hysteresis factors into their simulations
to more accurately predict the behavior of future hydrological events and sediment transport in regions with
diverse environmental conditions. For example, the factors driving hysteresis in semi‐arid zones, where rainfall
intensity and sparse vegetation play key roles, differ significantly from those in alpine regions, where snowmelt
and glacial runoff dominate the hydrological response. Similarly, tropical regions, with their distinct precipitation
patterns and land‐use dynamics, require models that reflect their unique hydrological and sediment transport
processes.

In addition to developing regional models, there is also a pressing need to explore the global distribution of
hysteresis patterns, much like existing global‐scale hydrological studies. While significant progress has been
made in understanding local hysteresis patterns, little research has been conducted on how these patterns vary
globally. Understanding the global distribution of hysteresis patterns would provide valuable insights into how
climate zones, geomorphic settings, and land‐use practices interact to influence sediment transport during hy-
drological events. This type of research would enhance our ability to predict future trends in hydrological events
and sediment dynamics on a global scale, contributing to more informed river watershed management and flood
mitigation strategies worldwide.

6. Conclusions
Hysteresis analysis is widely adopted to elucidate the scattered SSC‐Q relationships during hydrological events.
This analytical approach aids in the disclosure of sediment sources and transport mechanisms associated with
distinct flood types. By consolidating research conducted through hysteresis analysis in diverse river watersheds
globally, our review systematically scrutinizes the literature on the principles and applications of this method. The
review offers methodological guidance for future analysis of suspended sediment dynamics in hydrological
events. The key findings are as follows:

1. Hysteresis patterns play a pivotal role in characterizing the sediment transport process during hydrological
events, typically categorized into four main types: clockwise, counter‐clockwise, figure‐eight, and complex.
These diverse hysteresis patterns serve as indicators of distinct sediment source distributions and delivery
paths. Specifically, clockwise hysteresis often signifies proximal sediment sources, whereas counter‐
clockwise hysteresis is commonly associated with upstream or tributary sources. The more intricate sources
contribute to the emergence of the figure‐eight and complex hysteresis patterns.

2. Quantitative indices of hysteresis index (HI) and flushing index (FI) derived from hysteresis loops serve to
characterize the direction, magnitude, and dominance of scouring or deposition within the river channel. This
review presents several commonly used hysteresis indices, highlighting their strengths and weaknesses, and
assesses their suitability for various hydrological conditions. This comparative analysis offers valuable
guidance for researchers in choosing the most appropriate index according to the specific characteristics of
both the hydrological event and the watershed.

3. The hysteresis method has been widely applied in hydrological event hydrological studies, facilitating the
classification and characterization of hydrological events. It also helps identify key factors influencing these
events, such as precipitation intensity, antecedent moisture conditions, and event magnitude, by reflecting
sediment sources and transport processes. Additionally, hysteresis analysis is crucial for understanding the
main erosion‐induced sediment‐producing flood types within a watershed, offering valuable insights for
guiding watershed management strategies.

This review highlights critical insights into the SSC‐Q relationships during hydrological events while
acknowledging key challenges that persist. The primary obstacles include the availability of high‐resolution data,
the development of robust classification methods, and the standardization of quantitative indices for hysteresis
analysis. To address these gaps, future research should prioritize the development of regional hydrological models
that integrate hysteresis dynamics, enabling more accurate predictions of flood trends and sediment transport.
Such advancements are essential for understanding the regional and global distribution of hydrological events,
particularly under the influence of climate change. These efforts will provide invaluable guidance for enhancing
the effectiveness and sustainability of watershed management practices in the face of evolving environmental
conditions.
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Data Availability Statement
This work is a literature review study and does not generate data, models, or code. This review compiles pre‐
existing information from published works. The publications are available through the DOI links in references.
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