
nature geoscience Volume 18 | February 2025 | 112–114 | 112

https://doi.org/10.1038/s41561-025-01639-x

Comment

Explainability can foster trust in artificial  
intelligence in geoscience
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Uptake of explainable artificial intelligence 
(XAI) methods in geoscience is currently 
limited. We argue that such methods that 
reveal the decision processes of AI models can 
foster trust in their results and facilitate the 
broader adoption of AI.

Artificial intelligence (AI) offers unparalleled opportunities for analys-
ing multidimensional data and solving complex and nonlinear prob-
lems in geoscience1–3. However, as the complexity and potentially the 
predictive skill of an AI model increases, its interpretability — the ability 
to understand the model and its predictions from a physical perspec-
tive — may decrease3,4. In critical situations, such as scenarios caused 
by natural hazards, the resulting lack of understanding of how a model 
works and consequent lack of trust in its results can become a barrier to 
its implementation5. Here we argue that explainable AI (XAI) methods, 
which enhance the human-comprehensible understanding and inter-
pretation of opaque ‘black-box’ AI models, can build trust in AI model 
results and encourage greater adoption of AI methods in geoscience6.

Benefits of XAI
Trust is crucial to the adoption of AI1,7. Thus some researchers advocate 
for inherently interpretable AI models; in other words, models that 
provide their own explanations7,8. Others, however, prefer to retain 
the predictive capabilities of deep neural networks — models able 
to capture highly complex and nonlinear patterns in data but with 
limited interpretability — and to circumvent black-box issues through 
XAI methods, which provide “an explanation to the user that justi-
fies its recommendation, decision, or action”9. These methods can 
provide insight into an AI system, identifying issues related to data 
or the model. For example, XAI can detect spurious correlations in 
training data and otherwise imperceptible perturbations to remote 
sensing images10. In this sense, XAI can be regarded as a magnifying 
lens, enabling the human expert to analyse data through the ‘eyes’ 
of the model so that the dominant prediction strategies — and any 
undesired behaviours — can be understood11. Another benefit of XAI 
is that it can highlight linkages between input variables and model 
predictions, which may motivate further research3,12 and support an 
enhanced understanding of features as well as spatiotemporal pro-
cesses. For example, researchers have used XAI on an inventory of land-
slide data to understand why AI models classify slopes as susceptible 
(or not) to failure and to gain insight into failure mechanisms13. XAI has 
also been applied to time series of a meteorological drought index to 

determine the importance of climatic variables such as precipitation 
for meteorological drought prediction14. In the latter example, the 
results aligned with physical model interpretations, emphasizing the 
need to include specific climatic variables as predictors in the model. 
Figure 1 demonstrates the possible benefits of XAI across different 
dimensions, using natural hazards as an example domain.

Uptake of XAI in geoscience
Given these benefits, we were curious to see how the geoscience 
community is applying XAI. To acquire an overview, we extracted 
geoscience-related articles from a corpus of 2.3 million arXiv abstracts 
published between 2007 and 2022. We found that while references to 
AI and XAI increase with time, considerably fewer papers reference XAI 
(6.1%) than AI (25.5%), with the relative proportion generally remain-
ing constant, and that those mentioning XAI are mostly in the fields of 
geoinformatics (including remote sensing) and geophysics (including 
seismology and volcanology) (Box 1).

To further explore the use of XAI, we focused on a specific area 
of geoscience, natural hazards, for which we had access to use cases 
curated by the International Telecommunication Union/World Meteor-
ological Organization/UN Environment Focus Group on AI for Natural 
Disaster Management2. These use cases exemplify how AI can be used to 
detect, monitor, forecast, and communicate (for example, via hazard 
maps and early warning systems) various types of natural hazards. We 
surveyed the researchers of these use cases and found that motivations 
for applying XAI were consistent with the benefits detailed above: 
some use cases aimed to achieve trust, some hoped to acquire insight 
into data or AI issues or to make them more efficient, and most applied 
XAI to make discoveries about the underlying processes. Of those use 
cases that did not apply XAI, many acknowledged the value of XAI for 
lending interpretability to and ensuring the proper functioning of AI 
models, and revealing underlying processes. Furthermore, almost all 
respondents indicated plans to apply it at a later stage, but had not done 
so in part because of the effort, time, and resources that XAI requires.

Challenges and solutions to increasing XAI adoption
Based on our literature review and researcher survey, we suggest that 
unless an AI end user (for example, those paying for an AI-based opera-
tional forecast) explicitly demands explainability, researchers may be 
tempted to forgo this step to avoid investing effort and already scarce 
time and resources. When AI is purely used for academic research, it 
mainly falls on the funding agencies and the scientific community to 
insist on this additional step.

Another challenge relates to the relevance, accuracy, and  
reliability of existing XAI methods for geoscience applications. Tradi-
tionally, most XAI methods have been applied to image data, which are 
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applicability of interpretable or explainable models. Such approaches 
may also help research meet requirements relating to transparency.

Resources. XAI users should understand how different methods 
function, what they can provide for explanations, and where they 
have limitations, rather than applying them unquestioned. Once an 
XAI method is selected, code libraries can facilitate their application, 
but associated literature and metadata should be carefully reviewed, 
because some common libraries have shortcomings when applied to 
specific data or analyses. Additionally, researchers can quantitatively 
evaluate the performance of their black-box AI models on benchmark 
datasets.

Partnerships. International efforts, such as the United Nations Global 
Initiative on Resilience to Natural Hazards through AI Solutions and the 
European Union-funded Climate Intelligence project, bring together 
geoscience and AI experts and encourage sharing of insights.

Integration. Streamlined workflows are crucial for the standardization 
and interoperability of AI in the domain of natural hazards and disas-
ters, as well as many other branches of the geosciences. To achieve trust, 
such workflows must provide human-comprehensible understanding, 
which can be achieved by integrating XAI into them.

relatively simple. However, geospatial data have specific characteristics 
(for example, spatiotemporal dependence2) and XAI requirements 
(for example, object- and concept-level explanations15). Fortunately, 
the emergence of new techniques specifically tailored for temporal 
data creates new opportunities in, for example, seasonal and decadal 
climate forecasting models.

Traditional XAI is also often still not sufficiently understandable 
by non-specialists. For instance, knowing that a specific pixel in an 
image is relevant for the prediction does not provide any insight into 
the model’s internal representation and inference process, and makes 
it very hard to interpret the model behaviour in terms of physical con-
cepts and phenomena. Recently developed methods, such as concept 
relevance propagation, close this gap and provide more abstract, 
human-understandable explanations by combining perspectives of 
both the data (that is, what information is relevant) and model (that 
is, how it is represented and processed).

Overall, XAI methods have been shown to be suitable for address-
ing many geoscience inquiries, offering valuable insights into intricate 
models and data. To overcome challenges in uptake and facilitate the 
adoption of XAI, we make four recommendations.

Demand. If funding a project, reviewing a paper, or intending to 
deploy an AI system, stakeholders and end users should explore the 

Feature
(what)

Space
(where)

Time
(when)

Where should we 
anticipate tornadoes?

How early can
a volcanic eruption

be predicted?

What are the key factors
that determine

susceptibility to flooding? 

Where and when 
should we expect landslides? 

How does
temperature change

before storms?

Where does
low humidity

contribute to wildfires?

Where and when does 
a lack of precipitation
contribute to drought?

Fig. 1 | The value of explainable artificial intelligence (XAI). Possible benefits of XAI for natural hazard applications include gaining insights into input variables and 
model predictions over time, space, and feature type. 
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It is our hope that given the considerable opportunities presented 
by XAI — to improve underlying datasets and AI models, identify physi-
cal relationships that are captured by data, and build trust among end 
users, which can be lost to the detriment of progress — explainability 
will become part of the standard protocol in applying AI for geoscience.
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BOX 1

Geoscience papers referencing AI and XAI from 2007 to 2022
To compare the number of geoscience papers per year referencing  
AI and XAI, first, a search index based on the Annoy Index  
(https://github.com/spotify/annoy; a version of approximate 
nearest neighbours) coupled with Scientific Paper Embeddings 
using Citation-informed TransformERs was used to identify any 
articles referencing thirty common geoscience fields: atmospheric 
science, meteorology, climate science, palaeoclimatology, 
biogeochemistry, geobiology, geochemistry, geoinformatics, 
remote sensing, geology, geomagnetism, palaeomagnetism, 
geomorphology, glaciology, hydrology, limnology, mineralogy, 
mineral physics, oceanography, palaeoceanography, natural hazards, 
natural disasters, palaeontology, petrology, planetary science, 
geophysics, seismology, volcanology, space physics, and tectonics. 
Among these articles, 12,429 abstracts were sampled based on 
a reverse-keyword match per field and the full manuscripts were 
downloaded for further analysis. We investigated what proportion of 
these geoscience papers reference XAI, how this compares across 
geoscience disciplines, what XAI methods are most commonly 
referenced (and how this changes with time), and how the growth 
in AI through time compares with the growth in XAI. To do so, 
we applied the same tool to search these 12,429 manuscripts for 
expressions commonly associated with XAI: interpretability or 
explainability or explainable AI or XAI or AI model inspection or AI 
model interpretation or AI model visualization. Then, we clustered the 
geoscience fields by topic — atmospheric science or meteorology 

or climate science or palaeoclimatology; biogeochemistry or 
geobiology or geochemistry; geoinformatics or remote sensing; 
geology; geomagnetism or palaeomagnetism; geomorphology; 
glaciology; hydrology or limnology; mineralogy or mineral physics; 
oceanography or palaeoceanography; natural hazards or natural 
disasters; paleontology; petrology; planetary science; geophysics or 
seismology or volcanology; space physics; or tectonics — to identify 
those clusters of geoscience fields most commonly applying XAI. 
In the next step, we searched for common XAI methods6. Finally, we 
calculated the percent of articles per annum referencing artificial 
intelligence versus expressions commonly associated with XAI  
(as described earlier in this paragraph).
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