汉江流域河流pCO2时空格局及其控制因子
DOI:
CSTR:
作者:
作者单位:

1.武汉大学水资源工程与调度全国重点实验室;2.南京水利科学研究院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(U2340207, 52394233)和湖北省自然科学基金项目(2022CFA094)


Research on the Spatiotemporal Pattern of Riverine pCO2 and Its Controlling Factors in the Hanjiang River Basin
Author:
Affiliation:

1.State Key Laboratory of Water Resources Engineering and Management, Wuhan University;2.Nanjing Hydraulic Research Institute

Fund Project:

National Natural Science Foundation of China (U2340207, 52394233) and Natural Science Foundation of Hubei Province of China (2022CFA094)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    河流是连接陆地、大气和海洋三大“碳库”之间生物地球化学过程的纽带,是全球水循环和碳循环过程的重要参与者。河流二氧化碳分压(pCO2)是反映河流水-气界面CO2交换过程的关键指标,受多种自然和人为因素综合影响而表现出复杂的时空变化,但目前对河流pCO2主要控制因子及其作用的认识仍十分有限。研究以汉江流域为例,基于高空间分辨率月尺度数据识别了河流pCO2的时空分布特征,使用可解释性机器学习方法(增强回归树模型(BRT)和累积局域效应(ALE))量化了潜在控制因子的相对贡献率并解析了其控制作用。结果表明,汉江流域多年平均河流pCO2呈现出从上游到下游的递增趋势,且高于大气平均值。基于k-Shape聚类算法,汉江流域多年月平均河流pCO2的波动类型分为平稳(T1)、单峰(T2)和双峰(T3)结构三类。BRT模型很好地模拟了汉江流域河流pCO2的多年平均值和多年月平均值,在重复实验中表现出较高的模拟效果(r > 0.86, NSE > 0.75)和可接受的误差(MAE < 212.18 μatm, RMSE < 274.16 μatm)。多年平均河流pCO2主要受温度要素控制,总相对贡献率约66.1%。多年月平均河流pCO2的控制因子相对贡献率在不同类型间差异较大,但温度要素仍发挥着关键作用(约26.6% ~ 46.9%)。植被和水量要素分别在类型T2和T3中具有较高的贡献率,而水质要素的重要性相对有限(小于约20.1%)。ALE分析结果揭示了河流pCO2与潜在控制因子之间的非线性、非单调关系,且在多年平均和多年月平均尺度之间、不同波动类型之间均表现出较大差异。研究揭示了汉江流域河流pCO2的主要控制因子及其作用的复杂时空变化,提高了对河流碳循环过程的认识。

    Abstract:

    Rivers are links connecting the biogeochemical processes among terrestrial, oceanic, and atmospheric carbon pools, and are important participants in the global water and carbon cycles. Riverine partial pressure of carbon dioxide (pCO2) is a key indicator reflecting the CO2 exchange process at the riverine water-air interface, which exhibits complex spatiotemporal variations due to the co-impacts of various natural and anthropogenic factors. However, the current understanding of the main controlling factors and their effects on riverine pCO2 is still very limited. In this study, the spatiotemporal distribution characteristics of riverine pCO2 were identified, and the relative contributions and controlling effects of the potential controlling factors were quantified and revealed using an interpretable machine learning method (boost regression tree (BRT) and accumulated local effects (ALE)), based on monthly datasets with high spatial resolution in the Han River Basin (HRB). Results indicated that multi-year average riverine pCO2 in the HRB showed an increasing trend from upstream to downstream, and was higher than the atmospheric average. The fluctuation type of multi-year monthly average riverine pCO2 in the HRB could be classified into three types based on the k-Shape clustering algorithm, with stationary (T1), unimodal (T2), and bimodal (T3) structures, respectively. The BRT model effectively simulated the multi-year average and multi-year monthly average values of riverine pCO2 in the HRB, showing high performances (r > 0.86, NSE > 0.75) and acceptable errors (MAE < 212.18 μatm, RMSE < 274.16 μatm) in replicate experiments. Multi-year average riverine pCO2 was mainly controlled by temperature factors, with a total relative contribution rate of about 66.1%. Relative contributions of controlling factors for multi-year monthly average riverine pCO2 varied greatly among each fluctuation type, while temperature factors still played a critical role (approximately 26.6% ~ 46.9%). Vegetation and water quantity factors had high contributions in type T2 and T3, respectively, while the importance of water quality factors was relatively limited (less than about 20.1%). The nonlinear and non-monotonic relationships between riverine pCO2 and its potential controlling factors were revealed based on ALE analysis results, and showed significant differences between multi-year average and multi-year monthly average scales, as well as between different fluctuation types. This study revealed the complex spatiotemporal variations of the main controlling factors and their effects on riverine pCO2 in the HRB, improving the understanding of riverine carbon cycle process.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-01-15
  • 最后修改日期:2025-04-09
  • 录用日期:2025-04-14
  • 在线发布日期: 2025-07-02
  • 出版日期:
文章二维码
您是第    位访问者
地址:南京市江宁区麒麟街道创展路299号    邮政编码:211135
电话:025-86882041;86882040     传真:025-57714759     Email:jlakes@niglas.ac.cn
Copyright:中国科学院南京地理与湖泊研究所《湖泊科学》 版权所有:All Rights Reserved
技术支持:北京勤云科技发展有限公司

苏公网安备 32010202010073号

     苏ICP备09024011号-2