Abstract:The sediment peak regulation (SPR) in the Three Gorges Reservoir (TGR) during flood season can significantly improve the sediment discharge effect. Studying the control indicators of SPR is of great importance for ensuring the safety of reservoir storage capacity and improving the comprehensive benefits of reservoir. On the basis of data recorded at hydrological stations in the TGR between 2003 and 2023, the characteristics of sediment transport during flood season in the reservoir were identified. After the impoundment of cascade reservoirs in the lower reaches of Jinsha River, the start-up control and process regulation indicators of the SPR in the TGR were discussed. The results indicate that the amount of sediment entering the TGR was greatly reduced since the cascade reservoirs in the lower reaches of Jinsha River were impounded. Sediment transport in the TGR occurred mainly during flood events. The main consideration is to start the SPR for the floods with forecasted peak discharge at Cuntan station not less than 50,000 m3/s or forecasted peak sediment concentration at Cuntan station not less than 1.5 kg/m3, and forecasted 7-day average sediment concentration at Cuntan station not less than 0.5kg/m3. With flood control safety as the premise, and taking into account the multi-objective benefit of the reservoir and the measured flow and sediment conditions during the SPR, dynamic scheduling can be implemented according to the dispatching strategies of the three periods: water discharge peak blocking, sediment transport in the reservoir, and sediment discharge in front of the dam. In addition, real-time monitoring and forecasting of sediment during flood season is the basis of SPR. It is necessary to continuously optimize the sediment monitoring and forecasting technologies, so as to accurately control the start time and regulation process of SPR, and improve the comprehensive benefits of the TGR. This study can provide technical support for the optimization and refinement of SPR in the TGR during flood season.