摘要
城市化的加剧导致城市河流水质恶化、栖息地丧失及生态系统退化,对鱼类等水生生物群落产生了显著影响。解析随机性过程和确定性过程在群落组装中的相对影响对于鱼类保护至关重要。本研究采用环境DNA(eDNA)技术和传统调查方法,对广州市城市河流30个点位进行鱼类监测,进一步分析鱼类群落特征及其组装机制。结果表明:(1)广州市城市河流鱼类群落呈现出高多样性特征,eDNA技术监测到15目39科139种,传统调查方法监测到6目10科32种属,以鲤形目(Cypriniformes)、虾虎鱼目(Gobiiformes)和鲇形目(Siluriformes)为主,外来物种如齐氏罗非鱼(Coptodon zillii)等占据优势。(2)环境因子对eDNA技术和传统调查方法鱼类群落结构差异的解释率分别为49.26%和61.15%,其中pH、溶解氧以及高锰酸盐指数等对鱼类群落结构变化有显著影响,这表明水质参数在塑造鱼类群落多样性和分布方面起着关键作用。(3)群落组装机制分析表明,确定性过程在广州河流鱼类群落组装中占主导地位,但扩散限制等随机过程的影响亦不可忽视。
Abstract
The deterioration of water quality, loss of habitats, and degradation of ecosystems in urban rivers, caused by intensified urbanization, have significantly impacted aquatic biological communities, including fish. In order to establish effective conservation strategies for fish populations, it is imperative to undertake a comprehensive analysis of the relative contributions of stochastic and deterministic processes in community assembly. In this study, fish monitoring was conducted at 30 sampling sites in Guangzhou's urban rivers using both environmental DNA (eDNA) and traditional survey methods. The subsequent analysis focused on the composition and assembly mechanisms of fish communities. The results demonstrated that: (1) The fish communities inhabiting the urban rivers of Guangzhou demonstrated notable biodiversity. The eDNA monitoring survey identified 15 orders, 39 families, and 139 species, whereas the conventional survey recorded 6 orders, 10 families, and 32 species (genera). The fish assemblage was predominantly composed of Cypriniformes, Gobiiformes, and Siluriformes, with invasive species such as Coptodon zillii demonstrating ecological dominance. (2) The analysis revealed that environmental factors accounted for 49.26% and 61.15% of the observed variance in community structure, as measured by eDNA and traditional survey data, respectively. Key water quality parameters, including pH, dissolved oxygen, and the permanganate index, exerted significant effects on the restructuring of fish communities. This underscores their pivotal role in shaping community diversity and spatial distribution patterns. (3) Analysis of community assembly mechanisms indicated that deterministic processes primarily governed the assembly of fish communities in Guangzhou's rivers, while the impact of stochastic processes, including dispersal limitation, remained significant.
Keywords
鱼类作为水生生态系统中的关键指示物种[1],其物种多样性和群落结构不仅是评估水体生态健康的重要生物指标,更是水域生态恢复与管理的核心内容[2-3]。深入解析确定性过程(如环境过滤)和随机过程(如扩散限制、生态漂变等)对群落组装的相对贡献,对于制定科学的鱼类保护策略具有重要的理论指导意义[4-5]。研究表明,强烈的环境过滤效应会使鱼类仅在适宜的栖息地中出现,并导致鱼类功能特征趋于聚集[6-7]。而当随机过程占主导地位时,鱼类的空间分布表现出更大的随机性,促进了鱼类功能性状的分化[8]。鱼类群落组装主要受环境过滤效应驱动时,即物种的分布格局和共存机制主要取决于环境因子的筛选作用,这强调了通过改善水质、恢复栖息地等环境治理措施来保护鱼类多样性的重要性[9]。然而,当随机过程在群落组装中起主导作用时,保护策略应着重考虑维持景观连通性、消除人为屏障以及保护物种扩散廊道等空间管理措施[10]。因此,明确鱼类群落组装的主导机制,不仅有助于深化对群落生态学理论的理解,更能为制定区域差异化的保护策略提供科学依据,从而更有效地维持鱼类多样性和生态系统功能的完整性[11]。
近年来,量化确定性过程与随机性过程对群落构建相对贡献的方法学显著发展[12],其理论框架主要源于生态位理论和中性理论的整合[13]。生态位理论认为,群落结构的形成由确定性过程决定[14]。相对地,中性理论则认为群落结构是由随机过程形成的[15]。生态位理论和中性理论的验证可通过多种工具和算法实现。生态位理论可通过生态位宽度、生态位重叠、功能性状分析等方法,量化环境过滤和生态位分化的作用[16];中性理论则多采用Hubbell中性模型拟合、距离衰减分析等方法,评估随机过程的影响[17-18]。但同时,准确评估群落多样性水平是探究组装机制的前提,环境DNA(eDNA)技术作为一种新兴的生物监测手段,克服了传统方法的局限性,能够对水生生态系统中的鱼类多样性进行全面、快速和非侵入性评估[19-20]。Li等[21]通过eDNA技术揭示了云南热带河流鱼类群落组成对人类活动强度的响应,并通过中性模型分析表明,人类活动会增强确定性过程在群落构建中的相对贡献。Giam等[22]基于零模型分析了温带溪流鱼类群落的组装机制,为非随机结构提供了有力证据,表明鱼类群落组装主要受环境过滤控制。Chen等[23]通过eDNA宏条形码揭示人为干扰河口中本地和非本地鱼类群落特征,并进一步通过中性模型和零模型分析,揭示二者对人为压力存在分化的群落构建机制响应。目前,人们普遍认识到生态群落是由确定性过程和随机过程共同塑造的,但这两个过程的相对重要性在不同栖息地中有所差异[24]。
城市河流作为城市水体的关键组成部分,不仅承担着复杂的生态功能,还在维持人类社会生活质量方面发挥着重要作用[25]。然而,快速城市化与高强度人类活动显著加剧了水体污染程度,城市河流常面临“城市溪流综合症”等复合环境问题[26-27],主要表现为营养物质和污染物浓度升高、栖息地结构的通道简化和均质化、生物丰富度降低以及耐受物种的优势增加[28-29],这些已导致全球生态系统面临重要威胁,对鱼类群落产生了显著影响[30-31]。然而,在城市河流生态系统中,鱼类群落组装机制的研究尚显不足[32-33]。
广州作为中国城市化进程快速发展的代表性城市,其河流鱼类群落正面临显著威胁[34-35]。因此,本研究主要通过eDNA技术,辅以传统调查方法对河流鱼类群落组成及其多样性进行评估,进而探讨城市化背景下鱼类群落多样性的环境驱动因素,并运用中性群落模型揭示鱼类群落组装机制,为河流生态系统的保护与恢复提供理论支持。
1 材料与方法
1.1 研究区域概况
为探究城市化背景下河流鱼类群落特征及其组装机制,本研究在广州市域内选取珠江干流、流溪河、增江及近珠江口六大水道(顺德、市桥、沙湾、蕉门、虎门、洪奇沥水道)构建采样网络,布设30个样点(图1,附表I)。样点设计基于水文连通性、生态功能梯度及人类活动强度的空间异质性,遵循以下原则:平衡可达性与生态代表性,确保实际操作的可行性以及样点充分反映研究区域的生态特征;覆盖水系结构关键节点,包括干流与支流交汇区、上游源头区、中游城市过渡带及下游河口敏感区;衔接现有生态环境监测断面,增强数据可比性。其中,流溪河布设9个点位(S1~S9);增江布设5个点位(S10~S14);珠江广州段布设9个点位(S15~S23);顺德水道布设1个点位(S24);市桥水道布设1个点位(S25);沙湾水道布设1个点位(S26);蕉门水道布设2个点位(S27、S30);虎门水道布设1个点位(S28);洪奇沥水道布设1个点位(S29)。

图1采样点分布
Fig.1Distribution of sampling sites
1.2 样品采集与处理
1.2.1 样品采集与测定
于2024年4—5月采用系统性分层混合采样策略,在目标水域预设样点进行eDNA样品采集。在采样点的不同位置(如深水区、浅水区等)使用采水器沿水流方向采集足够的水样,以确保样品能够代表该区域的物种信息,采样前用纯净水润洗采水器3次以减少交叉污染,采样时保持进样口位于水面下5~6 cm避免表层干扰。采集的水样均匀混合分装至3个1 L无菌采水袋中,以降低平行样本间的变异性以及提高检测的灵敏度。为评估采样过程中的潜在污染,每天设置2~3个野外阴性,即用润洗后的采水器采集纯净水并装入采样瓶中。所有水样冷藏保存并在当天使用0.45 μm混合纤维素滤膜进行真空抽滤,并将滤膜保存在-80℃下,以待后续DNA提取。
传统鱼类调查整合地笼捕捞与市场数据采集。在每个采样点,当天放置2~3个地笼,第2天回收,确保连续作业时间不少于12 h。此外,还通过走访当地集市、码头的渔民和鱼贩,系统收集了捕捞记录(包括渔获物种类组成和捕获频次等),以补充地笼采样数据的时空局限性。在野外对收集到的鱼类个体进行鉴定、计数和称重(精确到克),无法当场鉴定的鱼类样品浸泡在10%福尔马林缓冲液中,带回实验室进行鉴定。
同时使用便携式水质参数仪对每个样点的水温、pH、电导率、溶解氧(DO)等水质参数进行现场测定,保证测量过程中,设备与水体保持稳定接触,避免剧烈搅动水体。水体中总磷(TP)浓度采用钼酸铵分光光度法测定(GB/T11893—1989);BOD5采用稀释与接种法测定(HJ 505—2009);总氮(TN)浓度采用碱性过硫酸钾消解紫外分光光度法测定(HJ 636—2012);氨氮(NH3-N)浓度采用纳氏试剂分光光度法(HJ 535—2009);高锰酸盐指数(CODMn)根据GB/T11892—1989测定。
1.2.2 DNA提取与PCR扩增
为防止人为污染,DNA提取和PCR扩增过程中严格遵循实验室方案,佩戴一次性手套和干净的实验服,用75%酒精擦洗实验台,并对实验室进行紫外线照射30 min。使用DNeasy Blood & Tissue Kit(Qiagen,Germany)对样品进行DNA提取,使用超微量分光光度计(北京凯奥科技发展有限公司)检测提取的DNA浓度。随后采用鱼类通用引物(Tele02-F:5′-AAACTCGTGCCAGCCACC-3′;Tele02-R:5′-GGGTATCTAATCCCAGTTTG-3′)对12S rRNA区域进行扩增。引物由上海生物工程技术有限公司合成。每个样本在3次重复的PCR重复中扩增,随后合并用于下一个步骤。所有PCR检测均采用阴性对照(无核酸酶水为DNA模板)。PCR反应体系共20 μL,包含10 μL酶mix,6 μL DEPC,上、下游引物各1 μL,DNA模板2 μL。95℃预变性5 min,95℃变性 15 s,56℃退火 20 s,72℃延伸 15 s,72℃彻底延伸5 min,35个循环。取5 μL PCR产物在2%琼脂糖凝胶电泳上观察,剩下的产物用于下一代测序。测序数据从本地服务器下载,用obitools v4进行生信分析。
1.3 数据分析
将同一样品中的相同序列进行合并后,为去除测序和扩增过程中产生的错误、嵌合序列,使用Obitools v4进行降噪处理。根据不同样品中重复出现的相似序列的相似度和读数,将高度相似且读数较低的序列进行清除,得到ZOTUs(也可称为ASVs/ESVs)。过滤低丰度(<10读数)的分子分类单元(可能为假阳性、污染序列或未去除的嵌合体)。物种注释通过BLAST比对本地化参考数据库完成,设置最低相似度阈值为97%。最终生成的ZOTUs需满足以下标准:ZOTUs需在至少2/3的生物重复样品中检出;对于序列数低于空白值的ZOTUs,将其序列数赋值0,视为在该采样点未出现;所有ZOTUs在所有采样点的总序列数低于总序列数的0.001%,视为不可靠数据,ZOTUs给予删除。
在ArcGIS 10.3中完成采样点位制图。鱼类群落差异通过冗余分析(RDA)解析,原始物种丰度数据经Hellinger转换(R包“vegan”)以消除零膨胀偏差,基于Bray-Curtis相异度矩阵构建排序模型,揭示环境梯度与群落组成的关联性;距离衰减效应采用线性混合模型量化,对样本地理距离与群落组成相似性(基于Bray-Curtis距离)进行线性回归,并通过Mantel检验(999次置换)评估显著性;为区分群落组装机制,通过中性模型(NCM)评估确定性过程和随机性过程在鱼类群落组装中的相对重要性;校正随机率通过 R4.2.2中的“NST”包计算。
2 结果
2.1 鱼类群落物种组成
传统调查方法共捕获鱼类294尾,隶属于6目10科32种属(附表Ⅱ)。eDNA技术监测共获得原始序列数509823条,经过筛选后获得有效序列391613条,隶属于15目39科139种(附表Ⅲ)。在eDNA技术监测结果中,鲤形目(Cypriniformes)占据了主导地位,共有75种,占比达到53.96%,其次是虾虎鱼目(Gobiiformes)和鲇形目(Siluriformes),分别有20种和9种,占比分别为14.39%和6.47%。在传统调查中,鲤形目同样占主导地位,有22种,占比为68.75%,其次是鲇形目和虾虎鱼目,分别有5种和3种,占比分别为15.63%和9.38%。此外,研究观察到河流中存在大量非本地鱼类物种,传统调查方法共检测到4种外来鱼类,包括麦瑞加拉鲮(Cirrhinus mrigala)、尼罗罗非鱼(Oreochromis niloticus)、齐氏罗非鱼(Coptodon zillii)和伽利略罗非鱼(Oreochromis galilaea),其中齐氏罗非鱼在各个采样点的出现频次最高(图2)。在eDNA监测中,齐氏罗非鱼和尼罗罗非鱼的相对丰度也占据着绝对优势,且eDNA技术捕获到了更多外来种,如下口鲶“清道夫”(Hypostomus plecostomus)和蟾胡鲇(Clarias batrachus)等。

图2各物种在所有监测点位中的检出频次
Fig.2Detection frequency of each species at all monitoring sites
通过两种调查方法在属水平上共获得105属,其中eDNA技术获得99属,传统调查法获得27属,其中21属为共有属,eDNA技术对传统调查方法的覆盖度达77.78%;在种水平上共获得鱼类154种,其中eDNA技术获得139种,传统调查法获得32种,其中17种为共有种,eDNA技术对传统调查方法的覆盖度达53.13%(图3,附表Ⅳ)。

图3基于eDNA技术和传统调查法监测到的鱼类对比
Fig.3Comparison of fish monitored by eDNA technology and traditional survey method
2.2 鱼类群落多样性变化及其影响因素
传统调查方法中各点位监测到的物种数量普遍较少,最多仅监测到4种(图4),且有5个点位未监测到鱼类;珠江广州段未考虑点位分布,9个点位共监测到了16种鱼类。eDNA技术监测到的物种多样性更为丰富,其中,S4点位的物种数最多,共91种鱼类,水道中S27点位物种数最低,仅监测到7种。与城市化程度较高的珠江干流和水道相比,人类活动相对较少的流溪河和增江的物种多样性更高。

图4各区域物种数分析
Fig.4Analysis of the number of species in each region
为评估环境变量对鱼类群落组成的影响,首先对数据进行了消除趋势对应分析(detrended correspondence analysis,DCA)。结果表明,基于eDNA分析的数据中,梯度长度的第一轴值小于4;而在传统调查分析中,第一轴值小于3。根据DCA分析结果的标准,本研究采用冗余分析(redundancy analysis,RDA)进行后续分析。RDA分析结果如图5所示。RDA1对eDNA监测的鱼类群落结构变异的解释率为28.83%,RDA2的解释率为20.43%,其中,pH、DO以及CODMn对鱼类群落结构的变化有显著影响。RDA1对传统调查监测的鱼类群落结构差异的解释率为46.74%,RDA2对鱼类群落结构差异的解释率为14.41%。其中,DO、TN以及CODMn对鱼类群落结构的变化有显著影响。

图5鱼类群落结构环境影响因素分析
Fig.5Analysis of environmental factors influencing fish community structure
2.3 鱼类群落组装机制
为探究地理因子对鱼类群落组装过程的影响,采用距离衰减模型分析方法分别对eDNA技术和传统调查方法获得的鱼类群落Bray-Curtis相似性与径流距离进行线性回归分析。结果表明,eDNA技术监测的鱼类群落结构相似性呈现显著的随径流距离增加而衰减的模式(R2=0.017,P=0.05),而传统调查方法无明显趋势(图6)。
为进一步解析鱼类群落组装机制,对eDNA技术和传统调查法数据分别应用了中性群落模型。结果表明,中性群落模型对eDNA技术和传统调查法获得的鱼类群落结构变化的解释率分别为55.4%和34.4%。中性群落模型对eDNA数据的拟合效果优于传统调查数据,然而两种方法的物种迁移率(Nm值)均较低。在物种迁移率较低的背景下,鱼类群落的空间分布可能受到环境或生态位选择的限制。这一结果与距离衰减模型的分析结果一致,表明鱼类群落的空间分布受限于物种的迁移能力。由于标准随机率(NST)在分析过程中出现了大于1的情况,研究采用校正随机率(MST)来量化随机性过程和确定性过程在鱼类群落组装过程中的相对贡献,结果显示MST值大部分集中在0~0.5区间,进一步表明鱼类群落结构变化主要受到确定性过程的影响(图7)。总体而言,随机性过程和确定性过程在不同程度上影响着广州市河流鱼类的群落组装,但确定性过程略占主导地位。

图6鱼类群落相似度与径流距离之间的线性回归
Fig.6Linear regression of fish community similarity and runoff distance

图7基于中性群落模型和校正随机率探究鱼类群落组装机制
Fig.7Exploring fish community assembly mechanisms based on the neutral community model and modified stochasticity ratio
3 讨论
广州城市河流鱼类群落呈现出高多样性特征,但存在外来物种扩张与本地物种衰退的趋势。两种方法共获得鱼类154种,其中eDNA技术共监测到139种鱼类,传统调查捕获到了32种。进一步对鱼类群落分析发现,外来物种具有高检出频率,齐氏罗非鱼为优势度最高的物种,而本地物种丰度普遍下降,表明生物入侵已对本地鱼类群落构成严重生态威胁。这与夏雨果等[36]的研究结果大致吻合,即广东省江河鱼类在2010年后出现的种类为223种,约39%的历史本地种类未出现,本地鱼类资源明显衰退。已有研究发现城市化导致外来物种丰富度的增加超过了本地物种的损失,这导致分类多样性的整体增加[37]。但外来物种的持续存在可能通过改变营养结构[38]、触发生态位重构及种间杂交导致的基因侵蚀等途径,威胁区域生态系统稳定性[39-40]。相较于传统调查方法,eDNA技术检测到了更多的鱼类,主要考虑到传统调查方法受到捕捞设备的局限,地笼主要捕获中下层水域鱼类,对复杂微生境(如沉水植被区、深潭区)及敏感物种的监测存在明显盲区,建议未来研究整合刺网、声呐探测等多维技术手段,以全面覆盖不同栖息地类型和鱼类生态习性[41]。
城市河流鱼类群落结构显著受到DO、pH、TN及CODMn等水质参数的调控作用。传统调查数据反映的群落结构差异具有更高的环境解释率,这可能源于eDNA技术捕获了更丰富的生物信息,但却易受环境背景噪声干扰。城市化进程对城市河流水环境的影响集中体现在人为干扰引发的水质参数改变。研究证实,未经处理的生活污水和工业废水输入显著增加了水体中氮磷等营养物质及有机化合物负荷[42],微生物降解过程可导致DO浓度急剧下降。同时,城市化显著改变河流底质组成(如沉积物粒径与渗透性)和河岸带植被覆盖度[43],前者通过吸附-解吸等作用调控营养盐循环效率;后者则通过改变光照条件和地表径流,对水体温度、DO时空分布及有机物输入产生级联效应。这些由城市化驱动的水质变化与本研究发现的DO、pH、TN及CODMn等关键调控因子高度耦合,证实了人类活动对河流生态系统的作用路径。作为水生生态系统的重要指示类群[44],鱼类群落的呯吸代谢、营养获取和繁殖行为等关键生理过程对水质参数具有高度敏感性,大量研究已系统论证了水质参数对鱼类群落结构的决定性影响[45-46]。但值得注意的是,气候因素与土地利用等其他因素也可能通过直接或间接途径影响鱼类栖息地适宜性。如降水模式变化可能通过改变水文连通性调控鱼类洄游路径,而流域内不透水地表扩张可能通过加剧地表径流携带污染物输入,与水质参数产生协同效应[47-48]。这些未被量化的环境因子与水质参数的交互作用,可能解释了部分鱼类群落变化中尚未明确的原因。因此,未来研究需构建多尺度环境分析模型以全面解析城市化对水生生物多样性的影响机制。
在城市河流尺度鱼类群落组装的调控机制主要由确定性过程主导。城市中水闸、水泵站等水利设施通过截断水流,创造了不同的局部水文条件,导致栖息地碎片化[49],但同时河流栖息地趋于同质化[50],塑造出有别于传统模式的独特城市河流生态特征[51]。城市化进程中的人类活动,导致了鱼类群落的空间异质性主要由人为因素引起的栖息地差异所驱动,而非单纯依赖于自然的地理分隔[52]。这与Li等[53]在黄河流域和高原河流研究中提出的随机过程主导论形成鲜明对比,这可能源于本研究区人类活动强度显著高于高原河流系统。相关研究证实,随着人类干扰强度增加,环境过滤等确定性过程在群落组装中的权重呈上升趋势,而扩散限制等随机过程的影响力相对减弱[21,54]。一些研究也表明,在城市化强烈的区域,水质和栖息地的改变对物种群落有更大的影响[55]。值得注意的是,确定性过程的实际贡献度仍低于理论预期,有研究表明随机性过程的影响可能被高估了,因为其本质上是多重确定性过程综合作用的结果。因此本研究可能高估了随机性过程的普遍性,但研究结果仍能反映出河流连通性与鱼类适应性机制对生态弹性的维持作用[56]。
基于鱼类群落特征及组装机制,研究提出以多尺度生态修复为核心、适应性管理为保障的河流保护策略。针对广州市河流生态特征,亟需加强对外来物种(特别是高威胁种)的动态监测与管理体系建设,同时改善本地鱼类栖息环境,增强本地鱼类竞争力[57]。确定性过程主导的群落组装机制表明,生态修复需以“改善环境驱动因子”为核心,多尺度(微生境-河段-流域)实施栖息地修复,结合关键物种保护与动态管理重建自然筛选机制[58]。同时,需警惕气候变化等新兴压力源对确定性过程的干扰,推动适应性管理策略的迭代优化[54]。扩散限制等随机过程仍对群落结构有一定影响,恢复水文连通性是鱼类保护的重要补充措施[11]。优先拆除阻碍洄游的闸坝或改建生态鱼道,通过植被缓冲带建设与河道形态修复构建连续生态廊道,促进鱼类迁移扩散与基因交流[59]。为保障修复效能,需建立涵盖鱼类群落结构、水文连通性及水质参数的立体监测网络,确保快速城市化地区城市生态系统的生态完整性和可持续性。
总体而言,研究揭示了在城市河流这一受人类活动强烈干扰的特定生态系统中,确定性过程占据主导地位,为后续相关研究在方法选择与机制分析上提供了重要参考,有助于推动城市河流生态研究的深入发展,为河流生态保护与修复策略的制定提供科学依据。
4 结论
1)广州城市河流鱼类群落呈现出高多样性特征,eDNA技术监测到15目39科139种,传统调查方法监测到6目10科32种属,以鲤形目、虾虎鱼目和鲇形目为主,外来物种齐氏罗非鱼等占据优势。
2)环境因子对eDNA技术和传统调查法鱼类群落结构差异的解释率分别为49.26%和61.15%,其中pH、DO以及CODMn等对鱼类群落结构的改变有显著影响,这表明水质参数在塑造鱼类群落多样性和分布方面起着关键作用,反映了环境质量对鱼类生态系统的深远影响。
3)群落构建机制分析表明,确定性过程在广州河流鱼类群落组装中占主导地位,但扩散限制等随机过程的影响亦不可忽视。
5 附录
附表Ⅰ~Ⅳ见电子版(DOI:10.18307/2025.0408)。