湖泊科学   2018, Vol. 30 Issue (6): 1616-1624.  DOI: 10.18307/2018.0613.
0

研究论文

引用本文 [复制中英文]

王瑞杰, 裘钱玲琳, 李国祥, 纵亚男, 唐剑锋, 徐耀阳, 宁波月湖水体中抗生素的分布与生态风险评价. 湖泊科学, 2018, 30(6): 1616-1624. DOI: 10.18307/2018.0613.
[复制中文]
WANG Ruijie, QIUQIAN Linglin, LI Guoxiang, ZONG Yanan, TANG Jianfeng, XU Yaoyang. Distribution characteristics and ecological risk assessment of selected antibiotics in Moon Lake, Ningbo City. Journal of Lake Sciences, 2018, 30(6): 1616-1624. DOI: 10.18307/2018.0613.
[复制英文]

基金项目

中国科学院城市环境与健康重点实验室项目(KLUEH-C-201701)和宁波市重大科技计划项目(2015C110001)联合资助

作者简介

王瑞杰(1990~), 女, 硕士研究生; E-mail:rjwang@iue.ac.cn

通信作者

唐剑锋, E-mail:jftang@iue.ac.cn

文章历史

2018-03-01 收稿
2018-04-06 收修改稿

码上扫一扫

宁波月湖水体中抗生素的分布与生态风险评价
王瑞杰 1,2,3, 裘钱玲琳 1,2,3, 李国祥 1,2,3, 纵亚男 4, 唐剑锋 1,3, 徐耀阳 1,3     
(1: 中国科学院城市环境研究所城市环境与健康重点实验室, 厦门 361021)
(2: 中国科学院大学, 北京 100049)
(3: 中国科学院宁波城市环境观测研究站, 宁波 315800)
(4: 安徽师范大学生命科学学院, 芜湖 241000)
摘要:为探讨城市湖泊中抗生素的污染分布特征和生态风险,以宁波月湖为研究对象,利用固相萃取、超高效液相色谱串联质谱法(HPLC-MS/MS)对月湖水体抗生素进行分析,并采用生态风险熵值法(RQ)和混合抗生素的风险法(MRQ)评价磺胺类、大环内酯类、喹诺酮类、β-内酰胺类、林可霉素(LIN)等10种抗生素的生态风险情况.结果表明:氨苄西林(AMS)的检出浓度最高,浓度变化范围在ND~382.0 ng/L;其次为头孢氨苄(LEX)、诺氟沙星(NOR)、磺胺间甲氧嘧啶(SMM)、LIN、阿奇霉素(AZM)、磺胺噻唑(STZ)、磺胺甲恶唑(SMX)、泰乐菌素(TYL)和磺胺嘧啶(SDZ),浓度范围分别为ND~283.0、ND~267.0、ND~219.0、31.50~209.0、ND~147.0、7.34~109.0、ND~104.0、ND~80.50和20.40~57.30 ng/L.月湖水体中10种目标抗生素的水平总体上高于自然湖泊,尤其β-内酰胺类和LIN在城市湖泊中广泛存在.生态风险评估的结果表明,LIN、TYL、SMX、NOR、AMS的生态风险值(RQ)值均大于1,具有高的生态风险;其余5种抗生素处于中或低的生态风险水平.本研究为城市湖泊抗生素生态风险问题的深入研究提供了一定的科学依据和基础.
关键词宁波月湖    抗生素    污染分布    生态风险    
Distribution characteristics and ecological risk assessment of selected antibiotics in Moon Lake, Ningbo City
WANG Ruijie 1,2,3, QIUQIAN Linglin 1,2,3, LI Guoxiang 1,2,3, ZONG Yanan 4, TANG Jianfeng 1,3, XU Yaoyang 1,3     
(1: Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China)
(2: University of Chinese Academy of Sciences, Beijing 100049, P. R. China)
(3: Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo 315800, P. R. China)
(4: College of Life Science, Anhui Normal University, Wuhu 241000, P. R. China)
Abstract: The main objective of this study is focused on distribution characteristics, ecological risk assessment of selected antibiotics in the typical urban Moon Lake, which is situated in the center of Ningbo City. Water samples were concentrated by solid-phase extraction and determined by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The environmental quotients posed by the selected antibiotics were assessed by using the methods of ecological risk quotients (RQ) and mixture risk quotients (MRQ). Composition analysis indicated that human-derived drugs significantly contributed to the total contamination of antibiotics in the lake. The ampicillin (AMS) was detected the highest concentration in the antibiotics and the range of concentration was ND to 382.0 ng/L. The maximum concentrations of cephalexin (LEX) and norfloxacin (NOR) were 283.0 ng/L and 267.0 ng/L, respectively, which were relatively lower than AMS concentration levels. The detected concentration range of sulfamonomethoxine (SMM), lincomycin (LIN), azithromycin (AZM), sulfathiazole (STZ), sulfamethoxazole (SMX), tylosintartrate (TYL) and sulfadiazine (SDZ) were ND-219.0 ng/L, 31.50-209.0 ng/L, ND-147.0 ng/L, 7.34-109.0 ng/L, ND-104.0 ng/L, ND-80.50 ng/L and 20.40-57.30 ng/L, respectively. In comparison, the maximum concentration of most antibiotics in our investigated area were higher than natural lakes. The results of ecological risk assessment showed that the RQ values of LIN, TYL, SMX, NOR and AMS were higher than 1. That means these antibiotics have high ecological risks and the remaining five antibiotics are at low or intermediate ecological risk. However, the calculated MRQ value for each sampling site was obviously higher than those from individual antibiotics, which suggested antibiotic mixtures could cause a higher detrimental effect to environment than individual antibiotic. This study will provide a scientific basis and foundation for the further study on the ecological risk of antibiotics in urban lakes.
Keywords: Moon Lake    Ningbo City    antibiotics    pollution distribution    ecological risk    

抗生素是生物(包括微生物、植物和动物)在其生命活动过程中所产生的(或由其他方法获得的)有机代谢产物,它能在低微浓度下选择性地抑制或影响其他生物的次级代谢产物及其衍生物.近年来,抗生素在水体中的危害引起了广泛的关注.研究结果表明,水体中的抗生素可以对动物和植物直接产生毒性,并且在低浓度下也可以诱导抗药性的细菌或基因,通过食物链增加健康和生态风险[1-2].抗生素在湖泊水中的污染已相当普遍,如北美洲五大湖[3]和美国日内瓦湖[4]调查结果显示其抗生素最高浓度分别达到了61.00和130.0 ng/L.目前国内对自然湖泊中抗生素的分布特征和生态风险研究也有大量报道,如太湖[5]水体中检出39种抗生素,其最高浓度和最高风险熵分别为35.40 ng/L和0.01;对洪湖[6]、鄱阳湖[7]水体中抗生素的调查结果显示,其最高浓度分别为2796.6、56.20 ng/L,生态风险熵分别为中高风险、低风险;此外,还有对白洋淀[8]、太湖贡湖湾水域[9]、洞庭湖[10]、博斯腾湖[11]的研究.

前期大量研究聚焦在自然湖泊,城市湖泊作为城市中重要的景观系统,它既是景观工程又是旅游胜地,也起到调蓄洪水、防洪减灾、保护生物多样性、维持生态平衡、保存淡水资源、补充地下水、调节气候、降解污染物等作用,具有良好的生态、社会、经济、环境效益[12].近年来随着城市化的快速发展,高浓度的外源性营养盐输入到城市湖泊,除了引发水体富营养化,还可能伴随着与人畜排泄密切相关的抗生素污染的输入[13].城市湖泊抗生素的污染问题也越来越严重.关于抗生素在城市湖泊水体中的浓度和生态风险已有部分报道,如Li等[14]研究了北京市8个湖泊中抗生素的浓度和生态风险水平,结果表明这8个城市湖泊中抗生素的浓度处于较高水平,最高浓度达到990.0 ng/L,并且对藻类具有较高的风险.丁惠君等[13]对南昌城市湖泊中抗生素的研究结果表明红霉素(E)和林可霉素(LIN)是南昌城市湖泊中的主要抗生素类型,最高浓度分别为98.40和54.70 ng/L.谭芳等[15]对武汉市武昌区6个湖泊中磺胺甲恶唑(SMX)的污染情况进行研究,结果表明最高浓度可达885.2 ng/L.由于所处的地理位置、功能定位和污染输入的不同,使得城市型浅水湖泊水体的演变过程和污染现状同远离城市的湖泊有较大差异.总体而言,对城市湖泊中抗生素污染和生态风险的研究还很薄弱.

月湖是宁波现代城市景观与历史人文积淀的相互交融的见证,同时也是供市民休闲娱乐和观光旅游于一体的生态型湖泊,对于宁波市生态环境和经济发展起着极其重要的作用,属于典型的城市湖泊.本文以宁波月湖为研究对象,对常见10种抗生素(氨苄西林(AMS)、头孢氨苄(LEX)、诺氟沙星(NOR)、磺胺间甲氧嘧啶(SMM)、LIN、阿奇霉素(AZM)、磺胺噻唑(STZ)、SMX、泰乐菌素(TYL)和磺胺嘧啶(SDZ)的污染特征、生态风险水平展开调查和研究,并且与其他类型湖泊进行了对比,以揭示抗生素在月湖水体中的分布和污染现状.

1 材料与方法 1.1 实验材料

仪器:超高效液相串联三重四级杆质谱仪(美国,ABI 3200 Q TRAP);24孔固相萃取仪(美国,Waters公司);BridgeTM C18色谱柱(2.1 mm × 50 mm,5 μm,美国,Waters);N-EVAPTM 111氮吹浓缩仪(美国,Berlin);Oasis HLB小柱(6 cc/200 mg,Waters公司);pH计(FE20K, 梅特勒-托利多上海仪器有限公司);Q-POD型MILLI-Q Integral 3超纯水仪(德国,Millipore).

试剂:丙酮(分析纯,美国,Tedia公司),甲醇(分析纯,德国),乙酸(分析纯,中国),蚁酸(分析纯,J & K),乙二胺四乙酸二钠(分析纯,中国);玻璃纤维滤膜(GF/F,英国Whatman公司);0.22 μm针头式过滤器(有机,河南曙光汇知康生物股份有限公司);实验用水均为超纯水.本文选取的10种抗生素标准品(表 1)均购自Dr. Ehrenstorfer GmbH(德国).

表 1 本研究选取的目标抗生素及其理化性质、方法检出限和定量限* Tab.1 The selected target antibiotics and their physico-chemical properties, method detection limit and method quantity limit in this study
1.2 样品的采集

月湖(29°51'56″~29°52'27″N,121°32'8.62″~121°32'25.18″E)位于宁波老城区,占地面积2.80×105 m2,水域9×104 m2,水域面积占总面积的31.50 %.为了全面了解月湖水体中抗生素污染状况及其生态风险程度,共布设6个采样点(S1~S6,图 1),其中S1为游船码头,S2位于居民区,S3靠近景区入口,S4的湖面最开阔,S5紧邻学校,S6靠近交通要道. 2017年2月使用有机玻璃采水器分别采集6个采样点表层水样4 L,每个样品均由样点周围4个水样混合后采集.所有水样均在24 h内运输至实验室,储存在实验室的4℃阴凉柜中直至样品处理.

图 1 宁波月湖水体抗生素采样点分布 Fig.1 Distribution of sampling sites of antibiotics in Moon Lake, Ningbo City
1.3 样品的处理

抗生素的萃取富集参照Zhang等的方法[16],取1 L水样经0.45 μm玻璃纤维滤膜过滤,用10 %的乙酸调pH至3.0,加入0.2 g的乙二胺四乙酸二钠(Na2EDTA), 充分混匀后用Oasis HLB小柱进行固相萃取富集.萃取前,Oasis HLB柱依次用6 ml丙酮、6 ml甲醇、6 ml乙酸铵、6 ml超纯水呈水滴状滴落进行活化平衡;活化柱子之后用10 ml超纯水淋洗HLB柱,然后在负压下抽干20 min;水样以5 ml/min的流速通过Oasis HLB柱进行萃取富集;富集后用6 ml甲醇洗脱,洗脱液收集于10 ml具塞离心管中.洗脱液在室温下用氮吹至近干,以10 %的甲醇溶液定容至1 ml,经0.22 μm针头式过滤器过滤于琥珀进样瓶中,样品检测前保存于-20℃冰箱中.

1.4 仪器分析与回收率测定

利用HPLC-MS/MS(ABI 3200 Q TRAP)进行抗生素的定性定量分析,色谱条件:采用Inertsil ODS-SP液相色谱柱(4.60 mm×150 mm,5 μm);柱温为40℃;流动相A为0.2 %甲酸水溶液,B为甲醇:乙腈=4 :6(体积比).采用梯度洗脱进行分离,程序设置为[t分钟(A)]:t0=88 %,t0.5=88 %,t6.0=70 %,t9.0=50 %,t12.5=5 %,t12.7=88 %,t15=88 %;流速为1 ml/min,进样体积为10 μl.质谱条件:采用LC-MS/MS的多反应监测(MRM)模式. ESI电离源,离子源Ⅰ(GS1)和Ⅱ(GS2)气流量分别为50和60 ml/min,电离电压5500 V,辅助加热气温度550℃.

采用外标法对样品的质量浓度进行定量分析,线性浓度范围由30、70、100、150、200、300 ng/L共6个浓度组成,抗生素的标准曲线R2>0.99,通过与标准曲线对比,得各种抗生素浓度.以3倍信噪比为抗生素质量浓度的检出限,10倍信噪比为定量限,各种抗生素的检出限和定量限如表 1所示.为了检验该方法的准确性,按照样品前处理的方法,取磺胺类(浓度为500.0 μg/L)和其他抗生素(浓度为1000 μg/L)的100 μl的混合标准溶液,加入到1 L湖水水样中(即磺胺类的浓度为50.00 ng/L,其他抗生素浓度为100.0 ng/L)进行加标回收实验.各种抗生素回收率变化范围为64.45 % ~107.59 %,标准差(RSD)均小于20 %.检测实际月湖水样中抗生素时,数据结果不再进行回收率的校正.

1.5 生态风险评价方法

水体中抗生素的生态风险可以通过风险熵值(RQ)来评价[17].根据欧洲联盟技术指导文件和欧洲化学品管理局准则评价月湖水体中高检出率、高浓度抗生素的生态风险,RQ是环境实测浓度(MEC)和预测无效应浓度(PNEC)的比值,计算公式如下:

$ RQ = MEC/PNEC $ (1)
$ PNEC = L{C_{50}}/AF( 或者= E{C_{50}}/AF) $ (2)

式中,MEC为抗生素在水环境中的实测质量浓度(ng/L);PNEC为预测无效应浓度(ng/L),PNEC值通过查阅文献获得(表 2),或者通过收集急性或者慢性毒理实验数据与评估因子计算得来;LC50为半致死浓度(ng/L),EC50为半数效应浓度(ng/L),LC50EC50均由文献中[23-29]取得;AF为评价因子,本研究急性和慢性的评价因子取1000或者100[18-19].

表 2 10种抗生素毒理数据 Tab.2 Toxicity data values for 10 antibiotics

此外,Backhaus和Faust[20]提出了两种评价混合抗生素的生态风险方法,该方法使用MRQ模型,用MRQMEC/PNECMRQSTU来表示,计算公式如下:

$ MR{Q_{MEC/PNEC}} = \mathop \sum \limits_{i = 1}^n \frac{{ME{C_i}}}{{PNE{C_i}}} = \mathop \sum \limits_{i = 1}^n \frac{{ME{C_i}}}{{\min {{(E{C_{{\rm{50algae}}}}, E{C_{{\rm{50daphnids}}}}, E{C_{{\rm{50fish}}}})}_i} \cdot (1/A{F_i})}} $ (3)
$ \begin{array}{l} MR{Q_{STU}} = \max \left( {ST{U_{{\rm{algae}}}}, ST{U_{{\rm{daphnids}}}}, ST{U_{{\rm{fish}}}}} \right) \cdot AF = \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\max (\mathop \sum \limits_{i = 1}^n \frac{{ME{C_i}}}{{E{C_{50i, {\rm{algae}}}}}} \cdot A{F_i}, \mathop \sum \limits_{i = 1}^n \frac{{ME{C_i}}}{{E{C_{50i, {\rm{daphnids}}}}}} \cdot A{F_i}, \mathop \sum \limits_{i = 1}^n \frac{{ME{C_i}}}{{E{C_{50i, {\rm{fish}}}}}} \cdot A{F_i}) \end{array} $ (4)

式中,TU(TU=MEC/EC50)和STU分别代表毒性值(MEC/EC50)和总毒性值,公式(3)和(4)中的参数MECEC50AF值与公式(1)和(2)中的相同[21-22].由于MRQ数据是从RQ数据中所得,所以它们有相同的评价标准,其分析标准为:0.01 ≤ RQ < 0.10,低风险;0.10 ≤ RQ < 1,中风险;RQ ≥ 1,高风险.

2 结果与讨论 2.1 月湖水体中抗生素的浓度水平

在宁波月湖6个样点中共检出磺胺类(SMM、STZ、SMX、SDZ,浓度范围分别是31.50~219.0、ND~109.0、ND~104.0、20.40~57.30 ng/L)、大环内酯类(AZM和TYL,浓度范围分别是ND~147.0和ND~80.50 ng/L)、喹诺酮类(NOR,浓度范围是ND~267.0 ng/L)、β-内酰胺类(AMS和LEX,浓度范围分别是ND~328.0和ND~283.0 ng/L)、LIN(浓度范围是31.50~209.0 ng/L)10种目标抗生素(图 2).检出浓度最高的为采样点S1的AMS,最大浓度为328.0 ng/L,其次为采样点S2的LEX,最高浓度为283.0 ng/L,β-内酰胺类是月湖城市湖泊中的主要抗生素类型;磺胺类次之,磺胺类主要为SMM和STZ,最高浓度分别在采样点S3(219.0 ng/L)和S5(109.0 ng/L);喹诺酮类和大环内酯类浓度相对较低,最高浓度分别位于采样点S2(NOR,267.0 ng/L)和S3(AZM,147.0 ng/L);LIN的最高浓度位于采样点S5(209.0 ng/L).

图 2 宁波月湖各采样点抗生素的总浓度 Fig.2 Total concentration of antibiotics residues in Moon Lake, Ningbo City

与其他自然湖泊相比(表 3),SMX(104.0 ng/L)和STZ(109.0 ng/L)在月湖水体中的最大浓度均分别低于太湖水体中SMX(114.7 ng/L)和STZ(134.5 ng/L)的最大浓度,分别高于鄱阳湖和密西根湖(14.50和16.70 ng/L,7.00和8.000 ng/L);SDZ、NOR的最大浓度都高于鄱阳湖、太湖、白洋淀、博斯腾湖、巢湖;月湖中的SDZ、SMX、STZ最大浓度均大于密西根湖.与城市湖泊研究相比,月湖水体中的SDZ和SMX最高浓度均低于洪湖,而月湖水体中的SDZ和LIN均高于艾溪湖、瑶湖、青山湖和象湖.在自然湖泊中很少检测到LIN、AMS和LEX的残留,而南昌城市湖泊、深圳市石岩水库[30]中均检测出LIN(最高浓度分别为54.71和3.200 ng/L),深圳市石岩水库[30]和城市污水[31]中都有LEX的检出,它们的最高浓度分别为68.00和1174 ng/L.总体上,宁波月湖水体中抗生素的最大浓度高于其他湖泊抗生素的最大浓度.

表 3 城市湖泊与自然湖泊的主要抗生素浓度对比* Tab.3 Concentration comparison of the main antibiotics in urban lakes and nature lakes
2.2 月湖水体中抗生素来源分析

环境中抗生素的分布特征和含量主要与其使用量、使用模式、使用地区和环境因子等有关[33].抗生素的来源通常有两条途径,一是人的排泄物进入污水中,二是含有抗生素的剩余食品进入污水中.月湖主要供市民休闲娱乐和观光旅游,生活污水的排放、居民药用抗生素的残留和游客行为等有可能是月湖水体中抗生素的输入来源.头孢类抗生素是国内外临床应用最多的一类抗感染药物[34],月湖水体中头孢类抗生素(主要是LEX)总浓度为1052 ng/L,占β-内酰胺类抗生素总浓度的72 %.据报道LEX在牛奶、鸡蛋和肉类等食物中都有检测出[35].抗生素浓度也受到游客的强烈影响,由于游客的行为,导致药品及个人护理品的购买量以及使用量具有较大幅度的变化,从而影响环境中相应污染物的浓度[36],采样点S1靠近游客码头,所以月湖游客的消费可能导致采样点S1的β-内酰胺类明显高于其他采样点.

SMM、STZ和SMX在磺胺类抗生素中的浓度最高,这些磺胺类药物和LIN稳定性较高,亲水性强,很容易通过排泄和雨水冲刷等方式进入水环境.同时,由于现有城市污水处理厂的处理方法不能对污水中抗生素进行深度去除[37],甚至出水中浓度高于进水中浓度也有报道[38].由于采样点S5紧邻中学,人口相对密集,产生含有抗生素的生活污水排入月湖导致磺胺类抗生素和LIN在该点的检出浓度较高.

大环内酯类抗生素主要用于人类治疗,大环内酯类抗生素具有高疏水性和易吸附在沉积物的特性,导致该类抗生素在水环境中的浓度相对较低[39],采样点S2位于居民区,它的高检出浓度说明了大环内酯类抗生素在该区域普遍使用.

喹诺酮类抗生素属于广谱抗菌药,具有疗效好、价格便宜,使用极其广泛的特点.月湖位于宁波市市中心,周边居民区密布,生活污水排放较多,生活污水收集不完全和雨水对生活区生活垃圾、地面尘土的面源冲刷,都有可能导致该类水体中抗生素(尤其是喹诺酮类)高浓度.已有研究表明,城市水体中喹诺酮类抗生素残留量与生活污水排放量有关[40],采样点S2位于生活区,护城河水体的排放、污水与雨水管道的渗漏可能是造成该点抗生素种类和浓度都比其他采样点高的主要原因.采样点S4的NOR浓度仅次于采样点S2,所以周边居民的消费是该点抗生素的主要来源.

2.3 月湖抗生素生态风险评价

LIN、TYL、SMX、NOR、AMS的RQ值均大于1,喹诺酮类、大环内酯类、β-内酰胺类表现出较高的风险值. LEX的RQ值介于0.10~1,属于中风险;AZM的RQ值介于0.01~0.10,属于低风险;STZ、SMM、SDZ的RQ值小于0.01,即属于无风险(图 3).

图 3 宁波月湖水体中各采样点的抗生素风险熵 Fig.3 Calculated risk quotients(RQ) for the detected antibiotics in different sampling sites in Moon Lake, Ningbo City

实际情况中,多种抗生素混合分布在水环境中,本研究我们利用MRQMEC/PNECMRQSTU来评价各个采样点的联合风险熵.根据公式(3)和(4)计算得出采样点S1~S6的MRQ分别为6.78、6.85、2.40、3.36、8.21、5.84.结果表明多种抗生素联合效应处于较高的风险水平,为此应该采取措施控制抗生素进入月湖,并降低抗生素的联合效应,从而保护和维持月湖水生态系统的安全和稳定.有研究表明[14],抗生素的分布受人类活动影响较大.月湖位于市中心,又是人群密集的区域,周边的居民、学校、酒店等较多,这可能导致月湖水体中抗生素浓度较其他湖泊高,从而导致较高的水生态风险.总之,大部分的抗生素在月湖水环境中处于较高生态风险水平,因此抗生素在月湖水环境中的污染不容忽视.

3 结论

1) 10种目标抗生素,从检出浓度方面来看,氨苄西林、头孢氨苄和诺氟沙星是月湖水体中的主要抗生素类型.各个采样点抗生素检出结果与污染来源基本一致.

2) 月湖水体中10种目标抗生素的污染水平总体上高于自然湖泊,尤其β-内酰胺类和林可霉素在城市湖泊中广泛存在,β-内酰胺类和林可霉素在城市中的使用应该更加关注.

3) 根据风险评价标准,林可霉素、泰乐菌素、磺胺甲恶唑、诺氟沙星、氨苄西林的RQ值均大于1,处于高风险;其余5种抗生素处于中低风险以下;各采样点多种抗生素的联合风险熵均大于1,表明抗生素对月湖生态存在较大的威胁.

4 参考文献

[1]
Ye M, Sun M, Feng Y et al. Effect of biochar amendment on the control of soil sulfonamides, antibiotic-resistant bacteria, and gene enrichment in lettuce tissues. Journal of Hazardous Materials, 2016, 309: 219-227. DOI:10.1016/j.jhazmat.2015.10.074
[2]
Sharama VK, Johnson N, Cizmas L et al. A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes. Chemosphere, 2016, 150: 702-714. DOI:10.1016/j.chemosphere.2015.12.084
[3]
Blair BD, Crago JP, Hedman CJ et al. Pharmaceuticals and personal care products found in the Great Lakes above concentrations of environmental concern. Chemosphere, 2013, 93(9): 2116-2123. DOI:10.1016/j.chemosphere.2013.07.057
[4]
Chèvre N. Pharmaceuticals in surface waters: sources, behavior, ecological risk, and possible solutions. Case study of Lake Geneva, Switzerland. Wiley Interdisciplinary Reviews: Water, 2014, 1(1): 69-86. DOI:10.1002/wat2.1006
[5]
Lin T, Yu S, Chen W. Occurrence, removal and risk assessment of pharmaceutical and personal care products(PPCPs) in an advanced drinking water treatment plant(ADWTP) around Taihu Lake in China. Chemosphere, 2016, 152: 1-9. DOI:10.1016/j.chemosphere.2016.02.109
[6]
Wang Z, Du Y, Yang C et al. Occurrence and ecological hazard assessment of selected antibiotics in the surface waters in and around Lake Honghu, China. Science of the Total Environment, 2017, 609: 1423-1432. DOI:10.1016/j.scitotenv.2017.08.009
[7]
Ding HJ, Wu YX, Zhang WH et al. Occurrence, distribution, and risk assessment of antibiotics in the surface water of Poyang Lake, the largest freshwater lake in China. Chemosphere, 2017, 184: 137-147. DOI:10.1016/j.chemosphere.2017.05.148
[8]
Cheng DM, Liu XH, Wang L et al. Seasonal variation and sediment-water exchange of antibiotics in a shallower large lake in North China. Science of the Total Environment, 2014, 476: 266-275.
[9]
Wu XY, Zou H, Zhu R et al. Occurrence, distribution and ecological risk of antibiotics in surface water of the Gonghu Bay, Taihu Lake. Environmental Science, 2016, 37(12): 4596-4604. [武旭跃, 邹华, 朱荣等. 太湖贡湖湾水域抗生素污染特征分析与生态风险评价. 环境科学, 2016, 37(12): 4596-4604.]
[10]
Yang Y, Cao X, Lin H et al. Antibiotics and antibiotic resistance genes in sediment of Honghu Lake and East Dongting Lake, China. Microbial Ecology, 2016, 72(4): 791-801. DOI:10.1007/s00248-016-0814-9
[11]
Lei XN, Lu JJ, Liu ZL et al. Concentration and distribution of antibiotics in water-sediment system of Bosten Lake, Xinjiang. Environmental Science and Pollution Research, 2015, 22(3): 1670-1678. DOI:10.1007/s11356-014-2994-5
[12]
Li SJ, Dou HS, Shu JH et al. Water environmental problems of lakes and water ecosystem recovery in China. China Water Resources, 2006(13): 14-17. [李世杰, 窦鸿身, 舒金华等. 我国湖泊水环境问题与水生态系统修复的探讨. 中国水利, 2006(13): 14-17. DOI:10.3969/j.issn.1000-1123.2006.13.005]
[13]
Ding HJ, Zhong JY, Wu YX et al. Characteristics and ecological risk assessment of antibiotics in five city lakes in Nanchang City, Lake Poyang Catchment. J Lake Sci, 2017, 29(4): 848-858. [丁惠君, 钟家有, 吴亦潇等. 鄱阳湖流域南昌市城市湖泊水体抗生素污染特征及生态风险分析. 湖泊科学, 2017, 29(4): 848-858.]
[14]
Li W, Gao L, Shi Y et al. Occurrence, distribution and risks of antibiotics in urban surface water in Beijing, China. Environmental Science Processes & Impacts, 2015, 17(9): 1611-1619.
[15]
Tan F, Chen GY, Song W. Investigation on residues of antibiotics in lakes in Wuchang district of Wuhan City. Journal of Jianghan University: Natural Science Edition, 2017(5): 406-410. [谭芳, 陈高艺, 宋威. 武汉市武昌区湖泊中抗生素残留状况调查. 江汉大学学报:自然科学版, 2017(5): 406-410.]
[16]
Zhang H, Du MM, Jiang HY et al. Occurrence, seasonal variation and removal efficiency of antibiotics and their metabolites in wastewater treatment plants, Jiulongjiang River Basin, South China. Environmental Science: Process & Impacts, 2015, 17(1): 225-234.
[17]
Verlicchi P, Aukidy AM, Galletti A et al. Hospital effluent: Investigation of the concentrations and distribution of pharmaceuticals and environmental risk assessment. Science of the Total Environment, 2012, 430: 109-118. DOI:10.1016/j.scitotenv.2012.04.055
[18]
Li YX, Zhang XL, Li W et al. The residues and environmental risks of multiple veterinary antibiotics in animal faeces. Environmental Monitoring and Assessment, 2013, 185(3): 2211-2220. DOI:10.1007/s10661-012-2702-1
[19]
Yan CX, Yang Y, Zhou JL et al. Antibiotics in the surface water of the Yangtze Estuary: Occurrence, distribution and risk assessment. Environmental Pollution, 2013, 175: 22-29. DOI:10.1016/j.envpol.2012.12.008
[20]
Backhaus T, Faust M. Predictive environmental risk assessment of chemical mixtures: A conceptual framework. Environmental Science & Technology, 2012, 46(5): 2564-2573.
[21]
Liu JC, Lu GH, Xie ZX et al. Occurrence, bioaccumulation and risk assessment of lipophilic pharmaceutically active compounds in the downstream rivers of sewage treatment plants. Science of the Total Environment, 2015, 511: 54-62. DOI:10.1016/j.scitotenv.2014.12.033
[22]
Yao LL, Wang YX, Tong L et al. Occurrence and risk assessment of antibiotics in surface water and groundwater from different depths of aquifers: A case study at Jianghan Plain, central China. Ecotoxicology and Environmental Safety, 2017, 135: 236-242. DOI:10.1016/j.ecoenv.2016.10.006
[23]
Xue BM, Zhang RJ, Wang YH et al. Antibiotic contamination in a typical developing city in south China: Occurrence and ecological risks in the Yongjiang River impacted by tributary discharge and anthropogenic activities. Ecotoxicology and Environmental Safety, 2013, 92: 229-236. DOI:10.1016/j.ecoenv.2013.02.009
[24]
U. S. Environmental Protection Agency. ECOTOX Database[DB/OL].https://cfpub.epa.gov/ecotox/advanced_query.htm.
[25]
Ferrari B, Mons R, Vollat B et al. Environmental risk assessment of six human pharmaceuticals: Are the current environmental risk assessment procedures sufficient for the protection of the aquatic environment?. Environmental Toxicology and Chemistry, 2004, 23(5): 1344-1354. DOI:10.1897/03-246
[26]
Baran W, Sochacka J, Wardas W. Toxicity and biodegradability of sulfonamides and products of their photocatalytic degradation in aqueous solutions. Chemosphere, 2006, 65(8): 1295-1299. DOI:10.1016/j.chemosphere.2006.04.040
[27]
Eguchi K, Nagase H, Ozawa M et al. Evaluation of antimicrobial agents for veterinary use in the ecotoxicity test using microalgae. Chemosphere, 2004, 57(11): 1733-1738. DOI:10.1016/j.chemosphere.2004.07.017
[28]
Backhaus T, Scholze M, Grimme LH. The single substance and mixture toxicity of quinolones to the bioluminescent bacterium Vibrio fischeri. Aquatic Toxicology, 2000, 49(1): 49-61.
[29]
Kummerer K, Henninger A. Promoting resistance by the emission of antibiotics from hospitals and households into effluent. Clinical Microbiology and Infection, 2003, 9(12): 1203-1214. DOI:10.1111/j.1469-0691.2003.00739.x
[30]
Zhu TT, Song ZF, Duan BB et al. Research on pollution and health risk by anitibiotics in source water of Shiyan Reservoir in Shenzhen. Journal of Environment and Health, 2003, 30(11): 1003-1006. [朱婷婷, 宋战锋, 段标标等. 深圳石岩水库抗生素污染特征与健康风险初步评价. 环境与健康杂志, 2003, 30(11): 1003-1006.]
[31]
Jank L, Hoff RB, Costa FJ et al. Simultaneous determination of eight antibiotics from distinct classes in surface and wastewater samples by solid-phase extraction and high-performance liquid chromatography-electrospray ionisation mass spectrometry. International Journal of Environmental Analytical Chemistry, 2014, 94(10): 1013-1037. DOI:10.1080/03067319.2014.914184
[32]
Xu J, Zhang Y, Zhou CB et al. Distribution, sources and composition of antibiotics in sediment, overlying water and pore water from Taihu Lake, China. Science of the Total Environment, 2014, 497: 267-273.
[33]
Liu X, Steele JC, Meng XZ. Usage, residue, and human health risk of antibiotics in Chinese aquaculture: A review. Environmental Pollution, 2017, 223: 161-169. DOI:10.1016/j.envpol.2017.01.003
[34]
Xue Y, Chen YY. New development of cephalosporin antibiotics. Chinese Journal of Antibiotics, 2011(2): 86-92. [薛雨, 陈宇瑛. 头孢菌素类抗生素的最新研究进展. 中国抗生素杂志, 2011(2): 86-92.]
[35]
He X, Nie XJ, Ma YF et al. Advances of the preatment technology and residues of β-lactam antibiotics. Environmental Engineering, 2017, 35(9): 145-149. [何欣, 聂晓静, 马洋帆等. β-内酰胺类抗生素前处理技术及其残留的研究进展. 环境工程, 2017, 35(9): 145-149.]
[36]
Mandaric L, Dlamantini E, Stella E et al. Contamination sources and distribution patterns of pharmaceuticals and personal care products in Alpine rivers strongly affected by tourism. Science of the Total Environment, 2017, 590: 484-494.
[37]
Jiang AX, Li DQ, Xing HQ et al. Application of hydrolytic acidification—A biocontract oxidizing process for liquid-waste disposal. Journal of Safety and Environment, 2002, 2(2): 3-6. [姜安玺, 李德强, 相会强等. 水解酸化-生物接触氧化工艺在抗生素废水处理中的应用. 安全与环境学报, 2002, 2(2): 3-6. DOI:10.3969/j.issn.1009-6094.2002.02.001]
[38]
Chang H, Hu JY, Wang LZ et al. Investigation of sulfonamides antibiotics in city sewage treatment plant. Chinese Science Bulletin, 2008, 53(2): 159-164. [常红, 胡建英, 王乐征等. 城市污水处理厂中磺胺类抗生素的调查研究. 科学通报, 2008, 53(2): 159-164. DOI:10.3321/j.issn:0023-074X.2008.02.005]
[39]
Murata A, Takada H, Mutoh K et al. Nationwide monitoring of selected antibiotics: distribution and sources of sulfonamides, trimethoprim, and macrolides in Japanese rivers. Science of the Total Environment, 2011, 409(24): 5305-5312. DOI:10.1016/j.scitotenv.2011.09.014
[40]
Wang QJ, Yi RH, Mo CH et al. The concentration characteristics of fluoroquinolone antibiotics in the aquatic environmental of Guangzhou. Ecological Science, 2009, 28(3): 276-280. [王桥军, 亦如瀚, 莫测辉等. 广州市水环境中喹诺酮类抗生素的污染特征. 生态科学, 2009, 28(3): 276-280. DOI:10.3969/j.issn.1008-8873.2009.03.017]