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Abstract
Lake water levels are integral to lake function, but hydrologic changes from land and water management

may alter lake fluctuations beyond natural ranges. We constructed a conceptual model of multifaceted drivers of
lake water levels and evaporation-to-inflow ratio (Evap : Inflow). Using a structural equation modeling frame-
work, we tested our model on (1) a national subset of lakes in the conterminous United States with minimal
water management to describe natural drivers of lake hydrology and (2) five ecoregional subsets of lakes to
explore regional variation in water management effects. Our model fits the national and ecoregional datasets
and explained up to 47% of variation in Evap : Inflow, 38% of vertical water level decline, and 79% of horizon-
tal water level decline (littoral exposure). For lakes with minimal water management, Evap : Inflow was related
to lake depth (β = �0.31) and surface inflow (β = �0.44); vertical decline was related to annual climate
(e.g., precipitation β = �0.18) and water management (β = �0.21); and horizontal decline was largely related to
vertical decline (β = 0.73) and lake morphometry (e.g., depth β = �0.18). Anthropogenic effects varied by
ecoregion and likely reflect differences in regional water management and climate. In the West, water manage-
ment indicators were related to greater vertical decline (β = 0.38), whereas in the Midwest, these indicators were
related to more stable and full lake levels (β = �0.22) even during drought conditions. National analyses
show how human water use interacts with regional climate resulting in contrasting impacts to lake hydrologic
variation in the United States.

Altered lake hydrologic regimes resulting from dams, land
use, and changing climate are recognized as significant and
potentially widespread threats to lake integrity (Wantzen
et al. 2008; Carpenter et al. 2011; Woolway et al. 2020). Lake
water levels naturally fluctuate due to imbalances in water
inputs (surface and groundwater inflows, precipitation) and

outputs (surface and groundwater outflows, evaporation) that
are related to watershed hydrology and climate characteristics.
This hydrologic variation affects multiple physical, chemical,
and biological processes defining lake structure, function, and
ecosystem services (Leira and Cantonati 2008; Evtimova and
Donohue 2016). However, human-related water management
activities can substantially alter lake hydrologic regimes. Dams
modify the magnitude and timing of water-level fluctuations
(Leira and Cantonati 2008; Wilcox and Meeker 2011), and
land use including irrigated agriculture and urban develop-
ment consume and divert water to alter watershed hydrologic
processes (Poff et al. 2006; Carlisle et al. 2019). Human-
induced climate change is warming temperatures and altering
precipitation patterns, a trend that will place greater stress on
water resources and subsequently affect land and water man-
agement activities (Zohary and Ostrovsky 2011; Jeppesen
et al. 2015; Wang et al. 2018). Disentangling the relative influ-
ence of natural and anthropogenic factors on lake hydrologic
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regimes is essential to determine the extent to which human
actions may alter lake hydrologic condition.

Comprehensive lake-monitoring datasets and hypothesis-
based conceptual models can aid in separating the multiface-
ted drivers that affect lake hydrologic characteristics. However,
lake-monitoring programs do not commonly record informa-
tion on hydrologic characteristics, and lakes with hydrologic
records tend to be large natural lakes (Sahoo et al. 2013;
Gronewold et al. 2016; Chang et al. 2017) or constructed res-
ervoirs (Rougé et al. 2021). These incomplete observations give
a biased representation of hydrologic variation across the
landscape. Furthermore, lake hydrology is affected by multiple
geoclimatic, hydrologic, and anthropogenic factors that vary
among lake types and regional settings (Kraemer et al. 2020).
These complex relationships can make it challenging to attri-
bute causes of lake hydrologic variation without guiding
hypotheses, appropriate analytic techniques, and comprehen-
sive lake and geospatial datasets.

In this paper, we used a national lakes’ dataset and model-
ing approach that address these concerns. Specifically, we
examined the factors promoting variation in lake and reservoir
hydrology across the conterminous United States (CONUS)
using the National Lakes Assessment (NLA) 2007 and 2012
surveys (USEPA 2009, 2016) that each sampled ~ 1000 lakes
and reservoirs spanning a range of size and anthropogenic
disturbance gradients. The NLA collects information on lake
water-level decline and evaporation-to-inflow ratio
(Evap : Inflow), an estimate of the proportion of inflowing
water that leaves the lake through evaporation. These vari-
ables have been used to assess lake hydrologic condition
(Brooks et al. 2014; Kaufmann et al. 2014a; Fergus et al. 2020)
and are associated with multiple ecosystem properties
(e.g., nearshore habitat condition; Carmignani and Roy 2017)
and processes (e.g., nutrient and carbon cycling; Jones
et al. 2018). We modeled variation in lake hydrologic variables
using structural equation models because they provide a scien-
tific framework to evaluate complex multivariate theoretical
relationships with empirical data (Grace et al. 2010). We
developed and tested a lake hydrologic metamodel grounded
in theory and supported by literature that included hypothe-
sized pathways by which lake, landscape, climate, and
human-related water management indicators operate and
interact with one another to affect lake hydrologic characteris-
tics (Fig. 1a; Table S1).

Anthropogenic climate change likely affects lake hydrology
through complex pathways (Wine and Davison 2019; Kraemer
et al. 2020). Separating the effects of natural climate variation
from anthropogenic climate change, however, is beyond the
scope of this study, which lacks long-term lake hydrologic
observations to explicitly assess climate change impacts
(Jeppesen et al. 2014). Rather, we focus our analyses on land
and water management as indicated by dam infrastructure
and land use, which have been shown to have pronounced
effects on both lake and stream hydrology (Haddeland

et al. 2014; Carlisle et al. 2019; Wine et al. 2019). We used the
human hydrologic alteration potential (HydrAP) metric
(Fergus et al. 2021) in our model to represent anthropogenic
factors that have the potential to significantly alter lake hydro-
logic characteristics. The HydrAP metric integrates informa-
tion on dam capacity, land use activities, and topographic
relief to rank lakes on a gradient of potential anthropogenic
hydrological alteration.

We applied the lake hydrologic model to address three
hypotheses. First, we expected that in lakes with minimal
water management presence, natural meteorological and
hydrologic processes would drive lake water balance, and
these relationships would be relatively robust among eco-
regional settings. Second, we hypothesized that in lakes with
human-related water management presence, the direction and
magnitude of anthropogenic effects would vary across eco-
regional settings. To address these hypotheses, we applied the
model nationally to lakes with minimal water management
presence as indicated by low-capacity dams and minimal land
use in their immediate catchment to establish baseline expec-
tations of geoclimatic drivers of lake hydrologic characteristics.
We then applied the model to five ecoregional subsets of lakes
that span the full range of management intensity to evaluate
how water management and regional climate may affect lake
hydrologic characteristics differently across CONUS. Finally,
we hypothesized that water management effects may vary
with drought and wetter-than-normal conditions (Magilligan
and Nislow 2005; Giuliani et al. 2016), and that these interac-
tions could obscure climatic effects on lake hydrologic charac-
teristics (Jones 2011). We compared our base lake hydrologic
model to a model with an interaction term between water
management and drought and evaluated model fit. With these
analyses, we quantify the relative influence of natural and
water management factors on lake hydrologic characteristics
that support lake ecosystems under changing environmental
conditions.

Methods
We applied a structural equation modeling framework to

examine the multifaceted drivers of lake hydrologic variation
across CONUS. Our analytic workflow consisted of (1) develop-
ing a conceptual metamodel of general lake hydrologic drivers
(Fig. 1a), (2) adapting the metamodel to a path analysis model
using variables from national datasets (Fig. 1b), and (3) testing
our hypothesized model by examining model fit and evaluat-
ing hypothesized pathways. Below we describe the model
structure, the datasets, and analytic steps.

Conceptual metamodel underlying the lake hydrology
path model

We developed the lake hydrologic model guided by theory
and literature to characterize broad-scale relationships among
landscape, climate, and anthropogenic variables on lake
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vertical and horizontal water-level decline and Evap : Inflow.
Lake hydrologic predictors were grouped into general driver
classes relating to climate, watershed hydrology, lake mor-
phometry, and human-related land and water management
(Fig. 1a). Often these driver classes operate together in com-
plex ways to affect lake and watershed hydrology. Variables in
the model are coarse representations of underlying mechanis-
tic processes and attributes that influence lake water balance.
Theoretical background supporting the model structure is
described in Table S1.

In our model, vertical water-level decline was treated as
both a response variable and as a predictor of horizontal

water-level decline. We hypothesized that vertical decline
had a direct causal effect on horizontal decline because verti-
cal decline is the common hydrological measure of depth
change, while horizontal decline is a function of depth
change and lake morphometry. Mechanistically, we expected
climate and anthropogenic factors to act directly on depth
change (vertical water levels), and for depth change to poten-
tially result in exposing littoral areas (i.e., horizontal decline)
based on lake basin morphometry (e.g., slope of the lake bot-
tom). Examining these relationships together quantifies how
lake morphometry affects the expression of water-level
decline on the extent of littoral exposure.

Fig. 1. Hypothesized drivers and their pathways affecting lake water-level decline and Evap : Inflow. (a) Metamodel of generalized lake, watershed
hydrology, climate, and anthropogenic hydro-alteration predictors of lake hydrologic characteristics (red boxes). (b) Path analysis model adapting the
metamodel to include measured lake, watershed hydrology, climate, and anthropogenic variables. Lake morphometry variables included lake surface
area, maximum lake depth, shoreline development index, and bank flatness index. Climate variables included mean annual temperature (Mean T�), total
annual precipitation, and PHDI. Human-related water management presence is represented by the HydrAP metric, an indicator of the potential for human
hydro-alteration characterized by dam attributes and/or specific land use activities in the lake watershed.
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Data
NLA surveys

Lake data came from the US Environmental Protection
Agency NLA 2007 and 2012 surveys and can be accessed at
the US EPA National Aquatic Resource Surveys web page,
https://www.epa.gov/national-aquatic-resource-surveys/data-
national-aquatic-resource-surveys. The NLA surveys are con-
ducted every 5 yr to assess the ecological condition of lakes
across CONUS using a probability-based survey design. The
surveys sample natural and human-made lakes that are identi-
fied from the National Hydrography Dataset Plus (NHDPlus
v.1 and 2; McKay et al. 2012) with target lakes spanning a
range of sizes (≥ 0.01 to 1670 km2) and geomorphic character-
istics. About 30% of the lakes sampled in 2007 were resampled
in 2012. We aggregated the NLA 2007 and 2012 datasets and
excluded observations in 2012 for lakes that had been sam-
pled in 2007 to create a continental dataset of 1716 lakes with
independent observations for our analyses (Fig. 2).

Vertical and horizontal water-level declines were measured
as the mean height or distance from the water-level line to the
apparent high water mark at 10 equidistant stations around
the lake during the summer sample visit (Kaufmann

et al. 2014a). Lakeshore flooding was not reliably quantified in
the NLA, and lakes with high water levels were characterized
as having zero water-level decline (full pools). Evap : Inflow
were calculated following methods described by Brooks
et al. (2014) using water stable isotope values and mass bal-
ance models. Lakes with Evap : Inflow = 0 have all water
entering the lake leaving as outflow, lakes with
Evap : Inflow = 1 have all inflowing water lost to evaporation
(100%), and lakes with Evap : Inflow > 1 are desiccating lakes
with evaporation exceeding inflow. Details on lake water iso-
tope collection, laboratory measurements, and Evap : Inflow
estimation steps can be found in Brooks et al. (2014) and the
NLA 2012 Evap : Inflow estimates in Fergus et al. (2020).

Lake morphometry attributes in the NLA included lake sur-
face area, maximum lake depth, shoreline development index
(an estimate of the sinuosity of the lake perimeter), and bank
flatness index. Bank flatness index was the sum of stations
recorded as having flat (< 5�) and gradual (5–30�) banks.

We grouped lakes into five ecoregions spanning CONUS
that included the West, Great Plains, Midwest, Appalachians,
and Coastal Plains (Fig. 2). These ecoregions are aggregations
of Omernik Levell-III ecoregions that delineate the landscape

Fig. 2. Lakes from the NLA surveys colored by anthropogenic HydrAP across five ecoregions in the CONUS. The lake hydrologic model was tested on
data subsets that included (1) a national subset of lakes with minimal water management presence (HydrAP rank 0–2; n = 553) and (2) by ecoregion that
included the full range of water management presence (HydrAP rank 0–7). HydrAP ranks range from 0 to 7 where 0 indicates no water management
presence and a 7 indicates great potential for hydro-alteration given dam infrastructure and land use activities (see the Methods section for more details).
The aggregated dataset includes all lakes ≥ 4 ha in NLA 2007 (n = 1028) and nonresampled lakes ≥ 1 ha in NLA 2012 (n = 688).
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into areas having similar natural geographic and climatic fea-
tures (Omernik 1987; Herlihy et al. 2008).

Lake-catchment (LakeCat) geospatial data
Watershed hydrology and climate variables came from

the LakeCat dataset (Hill et al. 2018) and can be accessed at
the US EPA LakeCat web page, https://www.epa.gov/national-
aquatic-resource-surveys/streamcat-dataset-0. Watershed hydrol-
ogy variables included modeled surface runoff (McCabe and
Wolock 2011) and stream baseflow index—the percentage of
streamflow that is attributed to groundwater discharge
(Wolock 2003). Watershed runoff was multiplied by watershed
area and scaled by lake area to estimate depth (m) of surface
water inflow to a particular lake. Climate variables were derived
from geospatial data layers following LakeCat processing steps
and included mean annual temperature, total annual precipita-
tion (PRISM Climate Group), and mean annual Palmer Hydro-
logical Drought Index (PHDI – NOAA) for the water year
(previous October to September of survey year). PHDI values
indicate the severity of a wet (positive) or dry (negative) period
and account for longer-term dryness related to local precipita-
tion, temperature, and available water capacity of the soil that
may affect water storage, streamflow, and groundwater levels.
We selected this drought index for our model because it cap-
tures long-term drought conditions by calibrating temperature
and precipitation variation over multidecadal periods (Wells
et al. 2004; Dai 2011). Annual climate summaries were deemed
an appropriate scale for an initial assessment of climate influ-
ences on lake hydrology in CONUS and future studies may con-
sider examining seasonal climate phases associated with lake
hydrologic regimes.

We characterized the degree of human-related water man-
agement presence on a lake using the HydrAP metric (Fergus
et al. 2021). The HydrAP metric is an integrated measure of
the potential for dams and specific land use activities
(e.g., irrigated, tile drainage agriculture, total agriculture,
and urban development) to alter lake hydrologic characteris-
tics that can be applied across CONUS using information
from the National Inventory of Dams and National Land
Cover Database. The metric ranks lakes on a scale from 0 to
7 along a gradient of lake hydrologic alteration potential
based on the premises that dams are primary drivers of
anthropogenic hydro-alteration in lakes and land use activi-
ties are secondary drivers that alter watershed hydrologic
flows. In the HydrAP framework, a score of 0 signifies lakes
with no apparent dams or land use activities that could alter
lake hydrology, and a score of 7 signifies lakes with large
dams and/or intensive land use (such as irrigated agriculture,
tile drainage agriculture, or urban development) with great
potential to alter lake hydrology. The HydrAP metric serves
as an indicator of potential anthropogenic hydrologic alter-
ation on lakes and does not require actual measures of
anthropogenic hydro-alteration such as dam operation

records, which are not available for the majority of CONUS
lakes.

Analytic framework and data analysis
We used path analysis models based on structural equation

model techniques to evaluate our representation of lake, land-
scape, climate, and anthropogenic drivers on lake hydrologic
characteristics. Path analysis is a statistical approach to model a
priori hypothesized relationships among multiple interacting
predictor and outcome variables via specific pathways (Lleras
2005). With this structure, the model simultaneously quantifies
the relative strength of relationships within a network of drivers
and responses. This approach is well suited to studying environ-
mental systems by giving researchers a framework to specify
how hypothesized predictors may affect responses through com-
plex causal pathways (Grace et al. 2010). Path analysis models
estimate both direct effects of predictors on responses and indi-
rect effects in which predictor effects are transmitted through
mediating variables. Calculating the total effect of a predictor by
summing their direct and indirect effects on a response provides
a more complete accounting of their influence on a response.
Analytically, equations in the path analysis model are parameter-
ized by finding solutions that minimize the difference between
the model-implied and observed (sample data) covariance matri-
ces (Riseng et al. 2011). This approach requires consideration of
data sample size and model complexity, with more complex
models (i.e., greater number of parameters to estimate) requiring
larger sample sizes (Grace et al. 2012) to achieve adequate statisti-
cal power, model convergence, and minimize parameter estimate
bias (Wolf et al. 2013).

We applied a path analysis model on a subset of lakes dis-
tributed across CONUS that had no-to-minimal human-
related water management presence (HydrAP rank = 0–2,
n = 553) (Fig. 2) to evaluate the relative influence of natural
geoclimatic drivers on the lake hydrologic responses. We also
applied the model separately on ecoregional datasets includ-
ing lakes of all HydrAP ranks to examine whether anthropo-
genic effects on lake hydrologic characteristics varied across
ecoregional settings and potentially interacted with drought
indices (Fig. 2). Lakes in these ecoregional datasets spanned
the full range of water management presence (HydrAP = 0–7)
and ranged in numbers from 126 lakes in the Coastal Plains to
412 lakes in the Midwest ecoregions.

Data preprocessing steps and path analysis model estima-
tion were performed in R version 3.6.3 using the packages
lavaan (Rosseel 2012) and psych (Revelle 2019). Variables were
assessed for skewness and transformed (log10) to meet assump-
tions of normality. Path analysis models were fit in lavaan
using maximum likelihood estimation. Model performance
was evaluated using several goodness-of-fit statistics and their
thresholds that included robust Chi-square global test (p-
value > 0.05), root mean square error of approximation
(RMSEA ≤ 0.08), comparative fit index (CFI ≥ 0.95), and
Tucker–Lewis fit index (TLI ≥ 0.95). A nonsignificant Chi-square
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test value indicates that the covariance structure of the model
is not significantly different from the observed data and indi-
cates a good model fit. The Chi-square statistic tends to be over-
powered to detect trivial degrees of model misfit, and
researchers therefore tend to examine several model perfor-
mance measures to provide multiple lines of evidence of model
fit (Hox and Bechger 1998).

Model coefficients and standard errors were derived from
nonparametric bootstrap estimation with 1000 resamples, a
reasonably large number of resamples for this modeling
approach. Model coefficients were standardized to compare
the effects of predictors with different ranges and units of
measurement. The path analysis models included correlations
among all exogenous predictor variables. From the model, we
examined the direct, indirect, and total effects of the hypothe-
sized predictors on lake hydrologic responses. We retained all
pathways in the final models even when confidence intervals
overlapped zero because our goals were to draw inference
about the broad-scale drivers of lake hydrologic variation and
not necessarily to maximize prediction in the dataset. Post-
analysis, we examined modification index values to determine
whether additional pathways would have improved model fit
(with modification index threshold > 4 indicating improved
model fit) but did not find compelling evidence to include
any additional pathways.

We compared our base lake hydrology model with a model
that included an interaction between HydrAP and drought
index (PHDI). We used Bayesian information criteria adjusted

by sample size to compare models, with smaller values indicat-
ing a more parsimonious model fit. We also evaluated the
importance of the interaction term on lake hydrologic
responses by examining the estimated total effect and confi-
dence intervals.

Results
Path analysis model results for CONUS lakes with minimal
water management presence

Model performance statistics showed that the path analy-
sis produced a good model describing the hydrology of lakes
with minimal water management presence based on a non-
significant Chi-square statistic, RMSEA ≤ 0.08, and CFI and
TLI values ≥ 0.95 (Table 1). The model explained 47% of vari-
ation in Evap : Inflow (R2) but only 13% of variation in verti-
cal water-level decline. Horizontal water-level decline was
predicted well in the model with an R2 of 0.62, which was
mainly attributed to the strong direct effects of vertical
decline as a predictor.

The pathways connecting predictors and lake hydrologic
responses largely followed our expectations (Fig. 3). Lake
Evap : Inflow was related to watershed hydrology and lake mor-
phometry variables with similar magnitudes of effect (Fig. 4).
The model indicated that large, shallow lakes with small
amounts of inflowing water and warm annual temperatures
had greater Evap : Inflow. However, we found that HydrAP
increased Evap : Inflow, even though lakes had no-to-minimal

Table 1. Model performance measures of the lake hydrologic path analysis model. The lake hydrologic model was tested on (1) a
national subset of lakes with minimal water management presence (HydrAP rank 0–2) and (2) on five ecoregional subsets that included
the full range of water management presence (HydrAP rank 0–7). Model fit was evaluated using Χ2 test of independence between the
specified model and a saturated model, RMSEA, CFI, and TLI with good model fit indicated by small Χ2 (a nonsignificant Χ2 test indi-
cates that the model covariance structure was not significantly different from the data and is a good model fit), RMSEA ≤ 0.08,
CFI ≥ 0.95, and TLI ≥ 0.95. The variance explained by the model for each of the three lake hydrologic responses (evaporation-to-inflow:
Evap : Inflow and vertical and horizontal water level declines) are indicated by the coefficient of determination (R2). Good model fit
criteria are in bold.

Extent Χ2 (df) RMSEA (90% CI) CFI TLI n

R2

Evap : Inflow Vertical Horizontal

CONUSlow HydrAP 4.12 (5)
p = 0.53

0.001 (0, 0.06) 1.00 1.00 510 0.47 0.13 0.62

West 9.04 (5)

p = 0.11

0.05 (0, 0.10) 1.00 0.97 357 0.36 0.38 0.79

Great Plains 12.35 (5)

p = 0.03

0.08 (0.02, 0.14) 0.98 0.87 225 0.35 0.10 0.71

Midwest 16.81 (5)

p = 0.005

0.08 (0.04, 0.12) 0.98 0.88 412 0.42 0.18 0.57

Appalachians 6.68 (5)

p = 0.25

0.04 (0, 0.10) 1.00 0.98 261 0.31 0.36 0.70

Coastal Plains 13.69 (5)

p = 0.02

0.12 (0.05, 0.19) 0.96 0.75 126 0.56 0.18 0.62
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water management infrastructure, suggesting that even small
levels of anthropogenic presence may affect lake water
balance.

Vertical water-level decline was related to lake size and cli-
mate variables. Lakes with larger surface areas (standardized
total effect β = 0.21) and drier conditions during the survey

Fig. 3. Path analysis models showing direct standardized effects of predictors on lake hydrologic characteristics for a national subset of lakes in the
CONUS with minimal water management presence (HydrAP < 3) and lakes with full range of water management presence (HydrAP 0–7) by ecoregion.
Lake hydrologic response variables are outlined in red boxes and include Evap : Inflow and vertical and horizontal water-level decline. Predictor variables
are colored by driver class: lake morphometry, watershed hydrology, climate, and human drivers. Arrows between variables represent significant stan-
dardized direct effects based on 90% confidence intervals not overlapping zero where the arrow width indicates the relative magnitude of the standard-
ized effect. Note the path models only depict direct effects among variables and not their total effects (direct + indirect) in the model (see Figs. 4, 5, and
S1). SLD = shoreline development index.
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year (PHDI β = �0.13; annual precipitation β = �0.19) had
greater vertical declines. Lake Evap : Inflow was related to
increased vertical decline (β = 0.14), suggesting that lakes with
more hydrologically restricted basins were more susceptible to
water-level decline when anthropogenic effects were mini-
mized. HydrAP at minimal levels tended to reduce water-level
decline and promote lake-level stabilization (β = �0.19 for ver-
tical decline).

Horizontal water-level decline was mainly driven by verti-
cal decline (β = 0.73), surface area (β = 0.24), lake depth
(β = �0.18), and bank flatness (β = 0.14) (Fig. 4). Shallow lakes
with gently sloping banks had greater horizontal decline (litto-
ral exposure) compared to deep, steep-sided lakes. The path
analysis model revealed indirect effects of lake area, cumula-
tive precipitation, drought (PHDI), Evap : Inflow, and HydrAP
on horizontal decline that were mediated through vertical
decline (Table S2).

Ecoregion path analysis model results
The lake hydrology model fit four out of the five ecoregion

datasets relatively well based on model performance measures
with RMSEA ≤ 0.08 and CFI ≥ 0.95 (Table 1). The model did

not fit the Coastal Plains well (RMSEA = 0.12), nor did the
modification index values identify sensible pathways to add to
improve model fit. The poor model performance in the
Coastal Plains may be related to the low sample size relative to
the model complexity (n = 126; parameters to estimate = 100).
In the four other ecoregions, the lake hydrologic model
accounted for between a third to almost half of the variation
in Evap : Inflow (Table 1). Vertical water-level decline was
moderately to weakly explained by the models with R2 values
up to 0.38 in the West and only 0.10 in the Great Plains. The
model explained over half of variation in horizontal water-
level decline with R2 values ranging from 0.57 (Midwest) to
0.79 (West) that again were mainly attributed to the strong
direct effects of vertical decline in the model.

We found that ecoregional setting influenced the strength
of connections between drivers and lake hydrologic responses
especially with regard to anthropogenic effects (Figs. 4 and
S2). Lake Evap : Inflow decreased with increasing inflow and
greater lake depth. Surface inflow was a dominant driver of
lake Evap : Inflow except in the Great Plains where baseflow
index had a greater effect. This relationship indicates that
groundwater may be a significant component of lake water

Fig. 4. Total effects of predictors on lake Evap : Inflow and vertical and horizontal water-level decline from the national dataset of lakes with minimal
water management presence. Total effects are the sum of standardized direct and indirect effects. Model effects were estimated by bootstrap resampling.
Error bars represent 90% confidence intervals. Predictor variables are colored by theme: lake morphometry, watershed hydrology, climate, and human.
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balance in the Great Plains. The HydrAP metric was associated
with lower Evap : Inflow across most ecoregions, a reversal of
the positive relationship observed for CONUS lakes with mini-
mal water management presence. This association implies that
humans tend to build water control infrastructure or have
land use activities near river-connected, flow-through lakes.

Vertical water-level decline was predicted well in the two
mountainous regions of CONUS, the West and Appala-
chians, but by different predictors. In the West, HydrAP had
the greatest total effect on vertical decline (β = 0.38)
(Fig. 5). But in the Appalachians, vertical decline was most
strongly related to annual precipitation (β = �0.36) and was
not related to HydrAP (Fig. S1). In the Great Plains, the

inverse drought index (PHDI) was the only significant pre-
dictor of vertical decline (β = �0.27). Horizontal water-level
decline was positively associated with vertical decline and
bank flatness in all four ecoregions with good model fit:
West, Great Plains, Midwest, and Appalachians (Figs. 4
and S2).

Comparison of West and Midwest ecoregions
We compared the West and Midwest results to explore

regional heterogeneity in the drivers of lake hydrologic char-
acteristics in two ecoregions with distinct lake hydrologic
characteristics and potentially divergent water management
practices. Western lakes had greater water-level decline

Fig. 5. Total effects of predictors on lake Evap : Inflow and vertical and horizontal water-level decline in the West and Midwest. Total effects are the sum
of standardized direct and indirect effects. Model effects were estimated by bootstrap resampling. Error bars represent 90% confidence intervals. Predic-
tor variables are colored by theme: lake morphometry, watershed hydrology, climate, and human.
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(e.g., mean vertical decline = 1.83 m, standard deviation
[s] = 4.6) and low Evap : Inflow values (mean = 0.18,
s = 0.18) compared to other CONUS ecoregions (Fig. S2). In
contrast, Midwestern lakes had small-to-moderate water-level
decline (e.g., mean vertical decline = 0.19 m, s = 0.39) and
high Evap : Inflow values (mean = 0.30; s = 0.28). The lake
hydrologic model explained some of this variation, but the
types of drivers, their magnitude, and the direction of their
effects varied among the two ecoregions.

The lake hydrology model explained similar levels of varia-
tion in Evap : Inflow in the West and Midwest (Table 1), but
the magnitudes of the driver effects differed by ecoregion
(Fig. 5). In the West, depth (β = �0.28) and inflow
(β = �0.27) had similar magnitudes of total effects on lake

Evap : Inflow. But in the Midwest, inflow (β = �0.52) had
twice the magnitude of effect on Evap : Inflow compared to
lake depth (β = �0.20). The HydrAP metric was negatively
associated with lake Evap : Inflow in the West, but there was
no relationship in the Midwest.

Vertical decline in lakes in the West was most strongly
related to HydrAP and lake morphometry and moderately
related to annual drought (Fig. 5). Water management pres-
ence (HydrAP) was associated with large vertical decline
(β = 0.38), and HydrAP effects were over twice as large as
drought effects (β = �0.15). These relationships suggest that
the effects of human-related water management on lake levels
exceeded the direct effects of annual climate in the West dur-
ing the survey periods. In contrast, vertical decline in Midwest
lakes was mainly related to annual climatic variables, and
HydrAP had moderate effects relative to the other driver clas-
ses. Warm mean annual temperature (β = 0.19) and drier-
than-normal conditions (β = �0.20) during the survey year
were associated with vertical decline. Lakes with greater water
management presence in the Midwest had smaller vertical
water-level declines (HydrAP: β = �0.22), which suggest that
water management may promote full and stable lake levels.
The contrasting effects of HydrAP in the West and Midwest
imply that regional water management strategies may result
in different outcomes on lake water levels.

Anthropogenic land and water management interaction
with drought on lake hydrology

The HydrAP*PHDI interaction term improved model fit
only in the Midwest ecoregion (Table S3). In the Midwest,
HydrAP*PHDI had positive effects on vertical and horizontal
water-level declines (Fig. 6a). Under drought conditions,
lakes with greater water management presence tended to
have fuller lake levels compared to lakes with less water man-
agement presence. In contrast, under wetter-than-normal
conditions, lakes with greater water management presence
had larger water-level declines than those with less water
management presence (Fig. 6b). These contrasting relation-
ships suggest that water management activities in the Mid-
west may dampen the lake level response to drought and
flood by artificially maintaining full lake levels during drier-
than-normal periods and lowering lake levels during wetter-
than-normal periods.

Discussion
The lake hydrologic model, supported by national and

regional datasets, illustrated how multiple lake, landscape, cli-
mate, and water management factors promote variation in
water balance characteristics in CONUS lakes and reservoirs.
We found that in lakes with minimal water management,
water levels and Evap : Inflow were related to natural lake
morphometry, watershed hydrology, and climate drivers that
followed expected relationships. However, even at minimal

Fig. 6. Graphical representation of the interaction between anthropo-
genic HydrAP and PHDI on vertical decline in the Midwest. (a) Effect size
curve of HydrAP on vertical decline at different levels of PHDI. (b) Vertical
decline and PHDI relationships for lakes binned into low (< 3) and high
(> 5) HydrAP classes. PHDI indicates the severity of wet (positive values)
and dry (negative) periods: normal conditions (0 � 0.5), drought (�0.5
to �4), wet (0.5–4). During normal climatic conditions, HydrAP has little
effect on vertical decline in the Midwest. However, during drier- and
wetter-than-normal conditions, the direction and magnitude of HydrAP
effects on vertical decline changes. During dry conditions, lakes with
greater HydrAP have less water-level decline in contrast to lakes with low
HydrAP. These relationships reverse during wet conditions—lakes with
greater HydrAP have greater vertical decline and lakes with low HydrAP
have less decline.

Fergus et al. Drivers of US lake hydrologic characteristics

10



levels, anthropogenic land and water management indicators
affected lake water levels and Evap : Inflow. When viewed by
ecoregion, the magnitude and direction of water management
effects differed, demonstrating the need to consider the
regional context when assessing anthropogenic effects on lake
hydrologic characteristics across broad spatial extents.

Natural drivers of lake water-level decline and
Evap : Inflow in CONUS

We expected lake hydrologic characteristics to be driven by
climatic variables that interact with lake and watershed attri-
butes (Blenckner 2005) in the absence of major human-related
water management infrastructure and land use. The model
results supported these expectations and demonstrate how
natural morphometry and hydroclimatic drivers affect lake
hydrologic characteristics across CONUS.

Lake evaporation : inflow in our model decreased with
increasing surface inflow and maximum lake depth, in agree-
ment with observations from minimally disturbed lake studies
(Gibson and Edwards 2002; Gibson et al. 2016). Surface inflow
in our model was derived from precipitation, watershed soils,
and land cover (McCabe and Wolock 2011), and it therefore
represented a more direct water input to lakes across
ecoregions and disturbance gradients compared to climate var-
iables alone. Lake depth may indirectly affect lake evaporation
by influencing the synchrony of seasonal water and air tem-
peratures (Hostetler and Bartlein 1990; Blenckner 2005). How-
ever, the strong relationship between lake depth and
Evap : Inflow in our model may be attributed to the positive
correlation between maximum lake depth and surface inflow
(r = 0.22, p < 0.01) since evaporation from lakes is an areal
process (Jones et al. 2018). Lake surface area was positively
related to Evap : Inflow, supporting evaporation being con-
trolled by surface area extent, but interestingly lake depth was
consistently a stronger predictor than lake area. Collectively,
climate-driven differences in surface inflow interact with het-
erogeneity in lake morphometry to promote variation in
Evap : Inflow. We expected that climate variables would be
related to lake Evap : Inflow, but mean annual temperature
was the only significantly related climatic variable in the
model, and its positive relationship was weak. Seasonal cli-
mate metrics might better capture climatic variation that
affects lake hydrologic processes, particularly in temperate
regions in CONUS. In prairie lakes, winter precipitation was
found to be a key component of lake water balance (Pham
et al. 2009). In model simulations, the duration of winter ice
cover was shown to affect lake evaporation with shorter ice
cover periods being associated with greater evaporation (Wang
et al. 2018). Seasonal precipitation and temperature measures
may better capture climate variation that affect lake hydrol-
ogy, but defining relevant temporal scales in climate attributes
across the CONUS extent is beyond the scope of this analysis.

Lake water-level declines can be driven by drought and sig-
nificantly impair lake ecological conditions (Gaeta et al. 2014;

Glassic and Gaeta 2019). However, the effects of drought are
not consistent among lake types nor across ecoregions because
of underlying heterogeneity in lake and watershed geomor-
phology (Blenckner 2005; Torabi Haghighi et al. 2016). We
found that vertical and horizontal water-level declines in
CONUS lakes were related to less annual precipitation, greater
drought, and more hydrologically restricted lake basins as indi-
cated by Evap : Inflow. In the Great Plains and Appalachian
ecoregions, climate variables, above all other driver classes, were
the dominant controls of water level decline. Water level fluctu-
ations are common in the Great Plains, where periodic drought
and large-scale climate systems promote hydrologic variability
throughout the year (Leira and Cantonati 2008). Topographic
and soil composition in the Appalachians may make surface
hydrology more responsive to precipitation (Gnann
et al. 2021). In addition, the landscape position of a lake can
explain variable drought effects with perched (i.e., groundwater
separated), seepage lakes exhibiting greater water-level declines
during drought compared to drainage lakes lower in the land-
scape (Webster et al. 1996, Hanson et al. 2018, Perales et al.
2020). Although we did not have landscape position measures
to include in our model, we used lake Evap : Inflow as an isoto-
pic indicator of lake flow-through status. Lakes with high
Evap : Inflow values (i.e., hydrologically restricted basins) had
greater water-level declines compared to lakes with low
Evap : Inflow values (flow-through, drainage lakes) when mini-
mizing water management presence. Lake Evap : Inflow could
be a useful attribute for identifying lakes that are vulnerable to
declining levels resulting from drought and changing climate.

Lake water levels fluctuate naturally in response to climate
variation, and lake ecosystems are adapted and benefit from
these natural fluctuations (Coops et al. 2003; Leira and Can-
tonati 2008). Some littoral plant communities are adapted to
periodic drying and flooding and rely on these perturbations
to support life history stages (Mortsch 1998). However, pro-
longed littoral exposure caused by horizontal water-level
declines can degrade nearshore habitat structure and alter
biotic community composition (Zohary and Ostrovsky 2011;
Kaufmann et al. 2014b; Carmignani and Roy 2017) and may
significantly impair CONUS lake condition (Kaufmann
et al. 2014b). We found that horizontal decline in CONUS
lakes was driven by vertical decline and lake basin morphome-
try, such that shallow, large lakes with gently sloping banks
had greater littoral exposure. Lake basin shape and flushing
characteristics have been associated with lake vulnerability to
desiccation from altered flows and climate (Gibson et al. 2016;
Torabi Haghighi et al. 2016). Understanding how morphomet-
ric attributes influence the expression of horizontal water-level
decline is critical to assess potential climate-related impacts on
lake ecological condition.

The magnitude of horizontal decline is predetermined
largely by the amount of vertical decline and the slope of the
littoral bottom. Mechanistically, we expected climatic drivers
to primarily act on the water surface area to affect water depth
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and for climate to indirectly affect horizontal decline through
vertical decline. We explored the relative importance of verti-
cal decline and the indirect influences of climatic drivers on
horizontal decline by running a separate model that removed
the connection between vertical and horizontal water-level
decline. The revised model fit the data relatively well (Chi-
square = 2.70 n.s.; RMSEA = 0.03; CFI = 1.00; TLI = 0.99) and
explained only 16% of variation in horizontal decline com-
pared to 62% in the original model that included vertical
decline as a predictor. The other predictors of horizontal
decline had similar total effects (surface area [β = 0.24], lake
depth [β = �0.17], bank flatness [β = 0.15], and drought
[β = �0.21]) as compared to the original model and explained
similar levels of variation as vertical decline (13%). The revised
model illustrates that our geoclimatic and anthropogenic
drivers explained similarly low levels of variation in vertical
and horizontal decline, and we need to explore other mea-
sures to improve model performance in predicting lake water-
level decline.

Land and water management infrastructure and activities
are widespread among CONUS lakes (Fergus et al. 2021).
Although we attempted to minimize human-related water
management effects by examining a subset of lakes with low
HydrAP values; even so, over 70% of these 553 lakes had some
level of anthropogenic disturbance. The prominent anthropo-
genic feature in these lakes was total anthropogenic land use
in the immediate lake catchment: about 65% of low HydrAP
lakes had small levels of agriculture and urban development
in their direct drainage area (median = 13.8%, Q1 = 3.2%,
Q3 = 31.1%). Only about 5% of low HydrAP-ranked lakes
were reported to have dams, and these dams had limited abili-
ties to alter lake water levels based on the ratio of dam height
to maximum lake depth (median = 0.12, Q1 = 0.07,
Q3 = 0.16). Small proportions of impervious surface in water-
sheds (Booth and Jackson 1997) and road and dam density
(Eng et al. 2013) have been associated with altered stream
flows, indicating that low levels of anthropogenic disturbance
can impact the fate and transport of precipitation on a water-
shed. The HydrAP metric was negatively related to vertical
and horizontal decline and positively related to Evap : Inflow
nationally, suggesting that lakes with minimal water manage-
ment presence were associated with more full pools and
greater evaporation of inflowing water. In these lakes, land
and water management practices may dampen natural water-
level fluctuations and result in more stable, full lake pools.
Collectively, these relationships demonstrate that anthropo-
genic disturbances to lake and watershed hydrology are ubiq-
uitous and have measurable effects on lake water balance even
at relatively small levels.

Anthropogenic effects on lake Evap : Inflow and water-
level decline in regions of CONUS

The goals of land and water management practices are
strongly affected by underlying regional geoclimatic variation

that influences spatial and seasonal patterns of water abun-
dance, as illustrated by the distribution and density of dams
across the landscape (Smith et al. 2002; Doubek and
Carey 2017; Fergus et al. 2020). We found that the magnitude
and direction of anthropogenic effects on lake hydrology var-
ied across CONUS ecoregions particularly in the West and
Midwest ecoregions. Differences in HydrAP relationships in the
West and Midwest may largely be attributed to dam presence
(Fig. 7). In the West, lakes with dams had significantly greater
vertical and horizontal water-level decline compared to lakes
without dams. In contrast, lakes with dams in the Midwest had
less horizontal water-level decline and lower Evap : Inflow.
Lakes with large capacity dams (HydrAP 6–7) in the West were
in areas receiving less long-term precipitation (30-yr normal
mean) than the ecoregional mean (Fig. S3). In the West, water
availability can be limited or highly seasonal and these dynam-
ics affect where and how water storage infrastructure is used.
According to the National Inventory of Dams, dams in the
West tend to be used for irrigation, hydroelectric power, and
water supply; and these purposes can result in large water-level
fluctuations or even declines over multiple seasons. By contrast,
in the Midwest ecoregion, lakes with dams were in areas that
regularly received greater precipitation than the ecoregion
mean, and these dams were designated for recreational pur-
poses, fish and wildlife habitat, and water storage for farm
ponds. Humans have altered lake hydrology in the Midwest by
constructing outflow control structures, agricultural drain tiles,
and urban stormwater infrastructure (Fausey et al. 1995;
Green 2006; Carlisle et al. 2019). These modifications and water
management practices retain water in lakes and can lead to arti-
ficially stable water levels. Ecoregional differences in climate,
dam location, and the predominant purpose of dams in the
West and Midwest provide insight into how human-related
water management affects lake hydrology.

Land and water management activities affect watershed
hydrology in variable ways that may amplify or dampen natu-
ral geoclimatic effects. Studies have shown that land and
water management practices can mask and even exceed the
effects of climate on lake and stream hydrology (Haddeland
et al. 2014; Carlisle et al. 2019; Wine et al. 2019), but metrics
of anthropogenic disturbance are needed to disentangle the
relative influence of human and climate effects on hydrology.
We used the HydrAP metric in this study, which integrates
information on dam attributes and land use (urban develop-
ment, total agriculture, irrigated agriculture, and tile drainage
agriculture) to provide a more comprehensive measure of
human hydrologic pressure. To better understand what spe-
cific land and water management features were most promi-
nent across ecoregions, we subset lakes with moderate to high
HydrAP scores (> 3) and examined distributions of the four
main components used in the HydrAP ranks (Fig. S4). Dam
height relative to maximum lake depth was similar among
four out of the five ecoregions, but land use types varied.
Lakes in the Midwest, Appalachians, and Coastal Plains had
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greater percentages of urban development compared to lakes
in the West and Great Plains. Specific agriculture types
exhibited regional patterns with irrigated agriculture being
more prevalent in the West, Great Plains, Midwest, and
Coastal Plains and tile drainage agriculture being more promi-
nent in the Midwest. Examining the individual components
of the HydrAP metric provides some insight into the mecha-
nisms promoting lake hydrologic variation.

The HydrAP metric is a measure of the potential for anthro-
pogenic hydrologic alteration that relies on geospatial data
that are spatially and temporally coarse and may not accu-
rately characterize land and water management activities. For
example, dam height scaled by maximum lake depth did not
vary significantly across the five ecoregions, but dam effects
on lake hydrology did vary. Ultimately, human decisions on
dam operations determine how dams affect lake hydrology,

Fig. 7. Distributions of lake hydrologic response by dam presence for lakes in the West and Midwest ecoregions. Nonparametric Wilcoxon rank-sum
tests for differences in lake hydrologic characteristics between lakes with and without dams.
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but records on these activities are lacking. Measures of anthro-
pogenic disturbances to hydrology at national extents may
improve with advances in remote sensing technology to more
accurately characterize human land use activities over time
and with the development of data repositories on reservoir
operation policies (Turner et al. 2021).

Interaction of anthropogenic and drought effects on lake
hydrology

Water management practices have the potential to exacer-
bate or ameliorate drought and flood effects on lake hydrol-
ogy. We found evidence for an interactive effect between
HydrAP and drought severity index on lake water-level decline
in the Midwest. In this ecoregion, dam infrastructure and land
use activities minimized the response of lake levels to drought
and flooding. This interaction indicates that water manage-
ment practices in the Midwest can be responsive to intra-
annual climate variation and may dampen drought and flood
effects. Recreation and commercial interests may advocate for
artificially stable lake water levels that can impair nearshore
macrophyte community composition (Epstein 2017) and even
cause ecological shifts from clear water to turbid states (Leira
and Cantonati 2008). Water management infrastructure has
the potential to be used as an adaptive management tool that
can support efforts to protect lake biointegrity and meet
human water needs with changing climate (Ehsani
et al. 2017). Identifying how water management and drought
effects interact can improve lake hydrologic predictions and
assess the potential for water management infrastructure to
support climate change resiliency.

Model limitations
The lake hydrology model is a coarse representation of the

multifaceted drivers promoting regional variation in lake
hydrologic characteristics across CONUS. Hydrologic
responses in the model are snapshots of lake water-level
decline and Evap : Inflow and do not capture fine-scale nor
long-term lake hydrologic dynamics. However, these variables
were measured on a diverse and representative range of lakes
across CONUS to provide insights on hydrologic variation
across lake types and ecoregional settings. Long-term lake
hydrologic records are needed to understand how lake hydrol-
ogy and its controlling factors may change over time, but
long-term records are commonly available only on single or
small groups of lakes of high human interest (Kann and
Walker 2020). Consequently, little is known about hydrologic
dynamics for most lakes. Others have recognized this chal-
lenge and are developing innovative solutions to fill this infor-
mation gap. Low-cost in situ hydrologic observatories can
collect accurate water balance measurements on small lakes
and could be deployed and monitored by citizen scientists
(Watras et al. 2019, 2021). Remote sensing technology with
improved sensors and methods to quantify lake surface area
dynamics (Eilander et al. 2014; Pekel et al. 2016; Pickens

et al. 2020), in combination with citizen science lake-level
observations can potentially expand the temporal and spatial
coverage of lake water storage observations (Little et al. 2021).

The lake hydrologic model fit the datasets relatively well
but did not account for a large proportion of variation in verti-
cal water-level decline across CONUS. Water level decline and
Evap : Inflow may be related to temporally dynamic variables
that were not included in the model such as single storm
events (Zohary and Ostrovsky 2011), specific water manage-
ment release decisions (Coerver et al. 2018), or longer-term cli-
mate cycles. Observed lake-level declines may be related to
antecedent lake levels in preceding years that are driven by cli-
mate cycles not necessarily included in our model. In the
Upper Great Lakes region, lakes and aquifer water levels
exhibited ~ 13-yr oscillation patterns attributed to changes in
net atmospheric water fluxes, possibly connected to mid-
North Pacific atmospheric circulation patterns (Watras
et al. 2014). The NLA design is better suited to capturing spa-
tial trends rather than temporal trends in lake-level variation,
and regionally specific climate oscillations were not included
in our model. While these temporal oscillations and their
drivers are important to understand hydroclimatic effects on
lakes, we expect that in the NLA dataset, the spatial variation
across CONUS may exceed temporal signals that are likely
conditioned to geographic region and local scale factors
(McGregor 2017; Little et al. 2021). Other climate metrics
besides the PHDI may capture climatic variation that drives
lake water-level declines. Methods using moving mean time
periods to derive deviations in precipitation found that
monthly precipitation anomalies from 5-yr means were corre-
lated with groundwater levels in Wisconsin (Smail
et al. 2019). These methods may aid with metric development
that characterizes climate variation at temporal scales relevant
to water level fluctuations. In addition, surface and groundwa-
ter connections are important lake water balance components
associated with declining lake water levels (Roach et al. 2013;
Perales et al. 2020) but are not quantified at national extents.
Integrating these different drivers into landscape-level ana-
lyses will require improved data resources and advance model-
ing techniques. Despite the model limitations, the path
analysis approach provides an adaptable representation of lake
hydrologic drivers from which we can make inference and pre-
dictions to a broad array of lake types distributed across the
landscape.

Conclusions
The structural equation model analyses highlight general

patterns to help us interpret and understand what promotes
variation in lake hydrologic characteristics across CONUS.
Lake water-level decline and Evap : Inflow are distinct hydro-
logic metrics driven by different landscape, climate, and
anthropogenic predictors that exhibit variation over space.
These distinctions should be considered when determining
research and management objectives. Our path analysis model
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highlighted important causal pathways promoting lake hydro-
logic variation. We demonstrated that in the absence of water
management, natural predictors have relatively consistent
effects on lake hydrologic characteristics, but anthropogenic
influences differ among ecoregions and can interact with cli-
mate conditions. Evolving human water needs coupled with
changing climate may alter lake water-level fluctuations
beyond natural ranges, with attendant impacts on lake habitat
and biota. Our study, with observations at only one time
point per lake, cannot evaluate climate change effects on lake
hydrologic characteristics. However, the analyses identify
ecoregions and lake types where climate has a greater influ-
ence on lake hydrologic characteristics relative to other drivers
and may render lakes to be more responsive to changing cli-
mate conditions. Future studies can examine climate variation
effects on CONUS lake hydrologic characteristics as the NLA
monitoring data grows. The NLA will continue to provide a
valuable spatial and eventually temporal resource to evaluate
lake condition in the United States. Disentangling the relative
effects of natural and anthropogenic drivers on lake hydro-
logic condition is essential to support lake assessment and
management objectives under changing environmental
conditions.

Data availability statement
The data that support the findings of this study are openly

available in the US EPA ScienceHub at https://doi.org/10.
23719/1526381
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