引用本文: | 李一平,逄勇,刘兴平,罗潋葱,徐秋霞.太湖波浪数值模拟.湖泊科学,2008,20(1):117-122. DOI:10.18307/2008.0118 |
| LI Yiping,PANG Yong,LUO Liancong,XU Qiuxia.Numerical modeling of waves in Lake Taihu. J. Lake Sci.2008,20(1):117-122. DOI:10.18307/2008.0118 |
|
|
|
本文已被:浏览 9555次 下载 5270次 |
码上扫一扫! |
|
太湖波浪数值模拟 |
李一平1,2,3, 逄勇1,2,3, 刘兴平1,2,3, 罗潋葱4, 徐秋霞1,2,3
|
1.水文水资源与水利工程科学国家重点实验室, 南京 210098;2.浅水湖泊综合治理与资源开发教育部重点实验室, 南京 210098;3.河海大学环境科学与工程学院, 南京 210098;4.中国科学院南京地理与湖泊研究所, 南京 210008
|
|
摘要: |
在太湖实际波浪观测的基础上,采用率定验证后的第三代动谱平衡方程,考虑实际水底地形、波浪折射、浅化、反射、破碎、湖流等条件下,对太湖波浪进行数值模拟,研究太湖波浪的主要影响因素.结果表明:SWAN模型可以较好地模拟风作用下太湖风浪的生成和传播过程,模型在太湖应用是合适的;波高、波长、波周期等波浪参数在太湖的分布与风速、风向、水深等因素密切相关;在相同风向、不同风速情况下,太湖波浪发展至稳定状态的时间不一样;在不同风向,相同风速持续作用下,有效波高达到稳定的时间差不多,变化趋势也比较相同.说明波浪的发展不光取决于风速的大小,还同风的持续吹的时间和风区长度有关. |
关键词: 太湖 波浪 SWAN模型 动谱方程 |
DOI:10.18307/2008.0118 |
分类号: |
基金项目:教育部博士点基金项目(20070294019);国家自然科学基金项目(50579015);河海大学自然科学基金项目(2007416611)联合资助. |
|
Numerical modeling of waves in Lake Taihu |
LI Yiping1,2,3, PANG Yong1,2,3, LUO Liancong1,2,3, XU Qiuxia4
|
1.Stale Key Laboratory of Hydrology-Water Resource and Hydraulic Engineering, Nanjing 210098, P. R. China;2.Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, MOE, Nanjing 210098, P. R. China;3.College of Environmental Science and Engineering, Hohai University, Nanjing 210098, P. R. China;4.Nanjing Institute Geography and Limnology, CAS, Nanjing 210098, P. R. China
|
Abstract: |
On the basis of measured data about wave in Lake Taihu, the calibrated wave model which was described by thethird-generation spectral action balance equation was obtained. The several key wave's factors were considered in SWAN model suchas bottom topography, wave refraction, depth-induced dissipation, wave break, lake current, etc. The wave in Lake Taihu wassimulated and the main influence factors of wave were analyzed by this model. The results showed that the SWAN model can welldescribe the process of wave's growth and propagation in Lake Taihu. The distribution of wave heights, wave lengths, wave periods,etc, were closely related to wind speed, wind direction, water depth, etc. On the condition of the same direction and different windspeed, the required time from wave growth to wave stabilization was different;However, On the condition of the different directionand same wind speed, the required time was nearly the same. Therefore wave's growth were not only depended on wind speed, butalso depended on the wind's sustained action and fetch. |
Key words: Lake Taihu wave SWAN numerical model spectral action balance equation |
|
|
|
|