投稿中心

审稿中心

编辑中心

期刊出版

网站地图

友情链接

引用本文:郭宇龙,李云梅,吕恒,王珊珊,王永波.基于主成分降维的总悬浮物浓度遥感估算模型适用性分析.湖泊科学,2013,25(6):892-899. DOI:10.18307/2013.0613
GUO Yulong,LI Yunmei,LV Heng,WANG Shanshan,WANG Yongbo.Applicability analysis of the model for remotely estimating total suspended matter concentration based on principal component dimension reduction. J. Lake Sci.2013,25(6):892-899. DOI:10.18307/2013.0613
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 6655次   下载 4300 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于主成分降维的总悬浮物浓度遥感估算模型适用性分析
郭宇龙, 李云梅, 吕恒, 王珊珊, 王永波
南京师范大学虚拟地理环境教育部重点实验室, 南京 210023
摘要:
总悬浮物浓度(CTSM)是水质评价的重要参数.为了提高内陆Ⅱ类水体总悬浮物浓度估算的精度,利用主成分分析方法对2009年4月太湖水体实测高光谱数据进行降维处理,进而以不同数量的主成分作为变量,分别构建总悬浮颗粒物浓度的多元线性回归估算模型并比较这些模型的效果,从而确定最优的主分量个数;结合近年运行的高光谱传感器,对模型的适用性进行评价.结果表明:①前三个主成分(PC1PC2PC3)从不同侧面涵盖了悬浮物浓度信息,它们与ln(CTSM)的相关系数分别为0.728、0.401和0.403;②当主成分个数为6时,模型达到最优;模型的精度高于4个传统经验模型;③在400~850 nm之间,波段数大于45的高光谱传感器数据都能利用主成分分析的方法构建精度较高的总悬浮物浓度估算模型;此外,MERIS、HJ1-HSI、Hyperion和CHRIS这些常用的高光谱传感器的波段设置,都适合于主成分建模.
关键词:  高光谱  主成分分析  降维  总悬浮物浓度  太湖
DOI:10.18307/2013.0613
分类号:
基金项目:江苏高校自然科学研究重大项目(11KJA170003);国家自然科学基金项目(41271343);江苏省2012年度普通高校研究生科研创新计划项目(CXZZ12_0397)联合资助
Applicability analysis of the model for remotely estimating total suspended matter concentration based on principal component dimension reduction
GUO Yulong, LI Yunmei, LV Heng, WANG Shanshan, WANG Yongbo
Key Laboratory of Virtual Geographic Environment of Education Ministry, Nanjing Normal University, Nanjing 210023, P. R. China
Abstract:
Total suspended matter concentration (CTSM) is an important parameter for water quality evaluation.In this study,to improve the estimation accuracy of CTSM in inland type II water,principal component analysis (PCA) was used to reduce the dimensions of hyperspectral data measured in Lake Taihu in April,2009.Different multiple linear regression models of TSM were subsequently constructed using several principle components (PCs),and the optimal model was determined by comparing the performance of these models with each other.Finally,the applicability of the model to image data of the several current hyperspectral sensors was evaluated.The results show: ① The first 3 PCs (PC1 ,PC2 ,PC3) could explain the most of TSM variation information and the correlation coefficients between the first 3 PCs and ln(CTSM) are 0.728,0.401 and 0.403,respectively;② The optimal model could be developed when the number of PCs selected to be six.The performance of the model proposed in this study is better than that of the four traditional empirical models;③ Image data of the hyperspectral sensor that has more than 45 bands between 400 and 850 nm could be used to build a stable and accurate model for estimating TSM using PCA.In addition,data from frequently used sensors such as MERIS,HJ1-HSI,Hyperion and CHRIS could be also used to build this type model.
Key words:  Hyperspectral  principal component analysis  dimension reduction  total suspended matter  Lake Taihu
分享按钮