引用本文: | 刘正文,张修峰,陈非洲,杜瑛珣,关保华,于谨磊,何虎,张永东.浅水湖泊底栖-敞水生境耦合对富营养化的响应与稳态转换机理:对湖泊修复的启示.湖泊科学,2020,32(1):1-10. DOI:10.18307/2020.0101 |
| LIU Zhengwen,ZHANG Xiufeng,CHEN Feizhou,DU Yingxun,GUAN Baohua,YU Jinlei,HE Hu,ZHANG Yongdong.The responses of the benthic-pelagic coupling to eutrophication and regime shifts in shallow lakes: Implication for lake restoration. J. Lake Sci.2020,32(1):1-10. DOI:10.18307/2020.0101 |
|
|
|
本文已被:浏览 13856次 下载 7567次 |
码上扫一扫! |
|
浅水湖泊底栖-敞水生境耦合对富营养化的响应与稳态转换机理:对湖泊修复的启示 |
刘正文1,2,3, 张修峰2, 陈非洲1,3, 杜瑛珣1, 关保华1,3, 于谨磊1, 何虎1, 张永东4
|
1.中国科学院南京地理与湖泊研究所, 南京 210008;2.暨南大学生态系, 广州 510632;3.中国-丹麦科研教育中心, 北京 100190;4.华南师范大学地理科学学院, 广州 510631
|
|
摘要: |
浅水湖泊中的初级生产者主要由分布在底栖生境中的底栖植物和生活在敞水生境中的浮游植物组成.底栖植物主要包括维管束沉水植物和底栖藻类等,浮游植物则主要为浮游藻类.贫营养浅水湖泊湖水营养盐浓度低,透明度高,底栖植物因能直接从沉积物中获取营养盐,往往是浅水湖泊的优势初级生产者.随着外源营养盐负荷的增加,湖水中的营养盐浓度不断升高,浮游植物受到的营养盐限制作用减小,加上其在光照方面的竞争优势,逐步发展成为湖泊的优势初级生产者,湖泊逐步从底栖植物为优势的清水态转变为浮游植物为主的浑水态,即稳态转换.在稳态转换过程中,浅水湖泊生态系统结构与功能发生了一系列变化,本文综述了浅水湖泊沉积物性质和生物(浮游植物、底栖植物、底栖动物和鱼类等)群落结构的变化,分析了这些变化对底栖植物、浮游植物之间竞争优势和底栖-敞水生境间磷交换的影响,探讨了富营养化驱动的底栖-敞水生境耦合过程变化和稳态转换机理.了解浅水湖泊底栖-敞水生境耦合过程与稳态转换机理对富营养化浅水湖泊修复有重要意义.富营养化浅水湖泊修复实际就是重建其清水态,在制定修复目标时应该关注评价清水态的指标,如透明度、浮游植物生物量、底栖植物的覆盖度或优势度等.在开展湖泊修复技术研发与工程应用时,应该重点关注对底栖-敞水生境耦合有重要影响的关键技术,如沉积物磷释放和底栖生物食性鱼类控制以及底栖植物(尤其是沉水植物)恢复等有关技术. |
关键词: 浅水湖泊 底栖-敞水生境耦合 富营养化 稳态转换 湖泊修复 |
DOI:10.18307/2020.0101 |
分类号: |
基金项目:中国科学院科技服务网络计划(STS计划)(KFJ-STS-ZDTP-038)和中国科学院南京地理与湖泊研究所“一三五”自主部署项目(NIGLAS2017GH01)联合资助. |
|
The responses of the benthic-pelagic coupling to eutrophication and regime shifts in shallow lakes: Implication for lake restoration |
LIU Zhengwen1,2,3, ZHANG Xiufeng2, CHEN Feizhou1,3, DU Yingxun1, GUAN Baohua1,3, YU Jinlei1, HE Hu1, ZHANG Yongdong4
|
1.Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, P. R. China;2.Department of Ecology, Jinan University, Guangzhou 510632, P. R. China;3.Sino-Danish Center for Education and Research, Beijing 100190, P. R. China;4.South China Normal University, Guangzhou 510631, P. R. China
|
Abstract: |
In shallow lakes, primary producers are mainly benthic plants and phytoplankton distributed in benthic and pelagic habitats, respectively. The benthic plants include submerged vascular plants and benthic algae. Phytoplankton are mainly consisted of planktonic algae. The benthic plants usually dominate in oligotrophic lakes with low nutrient concentrations and high transparency as benthic plants can access the nutrient resources in the sediments. Due to the increase in external nutrient loading, nutrient concentrations increase and the limitation of phytoplankton by nutrients is reduced gradually. Due to their superior competitive ability in light, phytoplankton become the dominant primary producers in shallow lakes, and the ecosystems shift from a clear, benthic plants dominated state to a turbid, phytoplankton dominated one, i.e. regime shifts. During the process of regime shifts, ecosystem structures and functions of lakes change tremendously. This paper reviewed the changes in sediment properties, and community structures of phytoplankton, benthic plants, macroinvertebrates and fish. The impacts of these changes on the competitive advantage of phytoplankton and benthic plants, exchanges of phosphorus between benthic and pelagic habitats are synthesized. The impact of eutrophication on benthic-pelagic coupling process and the mechanisms of regime shifts in shallow lakes are discussed. There are some important implications for the restoration of shallow eutrophic lakes. The aims of shallow lake restorations are to re-establish the clear water states, and thus the criteria evaluating a successful restoration should include parameters determining clear water states, such as Secchi depth, phytoplankton biomass, benthic plant coverage or dominance. Studying the technology or methods of lake restorations should focus on controlling the major process of benthic-pelagic coupling, such as control of sediment phosphorus release and benthivorous fish, and restoration of benthic plants, specially submerged plants. |
Key words: Shallow lake benthic-pelagic coupling eutrophication regime shift lake restoration |
|
|
|
|