投稿中心

审稿中心

编辑中心

期刊出版

网站地图

友情链接

引用本文:刘泠昕,肖艳,李哲,吴兴华,张宇.蓝藻不同类型胶被提取方法.湖泊科学,2020,32(3):887-898. DOI:10.18307/2020.0327
LIU Lingxin,XIAO Yan,LI Zhe,WU Xinghua,ZHANG Yu.Extraction methods of different morphotypes of surface coat in cyanobacteria. J. Lake Sci.2020,32(3):887-898. DOI:10.18307/2020.0327
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 4964次   下载 3172 本文二维码信息
码上扫一扫!
分享到: 微信 更多
蓝藻不同类型胶被提取方法
刘泠昕1,2, 肖艳1, 李哲1, 吴兴华3, 张宇3
1.中国科学院重庆绿色智能技术研究院, 中国科学院水库水环境重点实验室, 重庆 400714;2.中国科学院大学, 北京 100049;3.中国长江三峡集团有限公司, 北京 100038
摘要:
胶被作为蓝藻细胞外的一层功能性结构,其提取方法仍不清晰完善.本研究选取具有不同胶被形态的鱼腥藻Anabaena sp.和念珠藻Nostoc sp.为实验材料,通过归纳近10年有关藻类胶被的提取方法,总结影响胶被提取效果的主要因素(温度、提取剂浓度、时间等)范围,并设置一系列因素及其梯度的双因素实验和正交实验对胶被提取方法进行优化,观察提取过程中藻细胞形态、自发荧光以及藻细胞密度变化.结果表明,粘液可通过离心法与藻细胞分离;荚膜提取的硫酸水浴法的最优条件为:1 mol/L、60℃、30 min,氢氧化钠水浴法为:0.01 mol/L、50℃、20 min;鞘提取的最优方法条件为氢氧化钠水浴法(0.01 mol/L、80℃、40 min)和超声法(20 kHz,30 W,on:3 s,off:3 s,2 min)结合处理.此外,通过高效液相色谱法测定提取的蓝藻胶被多糖组分,结果显示,鞘具有较强的疏水性,未水化为粘液或RPS,而荚膜中含有的氨基葡萄糖(1.261±0.02 mg/g)使得荚膜比鞘更具有粘附力.将本研究得到的荚膜和鞘的最优提取法运用到胶被形态以荚膜和鞘为主的其他藻种,均有很好的提取效果.本研究可为后续进一步揭示不同类型胶被的功能作用提供技术支撑.
关键词:  蓝藻  胶被提取  形态  方法优化  氨基葡萄糖
DOI:10.18307/2020.0327
分类号:
基金项目:国家自然科学基金项目(51779240,51979262)资助.
Extraction methods of different morphotypes of surface coat in cyanobacteria
LIU Lingxin1,2, XIAO Yan1, LI Zhe1, WU Xinghua3, ZHANG Yu3
1.Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China;2.University of Chinese Academy of Sciences, Beijing 100049, P. R. China;3.China Three Gorges Corporation, Beijing 100038, P. R. China
Abstract:
Surface coat is a functional structure surrounding cells of cyanobacteria, and the extraction method is still not well compared and consistently reported. Previous work suggested that the main factors affecting the extraction of cyanobacterial surface coat were temperature, extractant concentration, extraction time, etc. To develop the optimal extraction methods for surface coat of cyanobacteria, Anabaena sp. and Nostoc sp. with different morphotypes of surface coat were selected. We performed a series of factors based on two-factor and orthogonal experimental design. Through comparison of cell morphology, spontaneous fluorescence and cell density after surface coat extraction, the results showed that slime can be separated from cyanobacterial cells by centrifugal method. Both sulfuric acid and sodium hydroxide water-bath methods can extract capsule, and the optimal conditions were 1 mol/L, 60℃, 30 min for sulfuric acid extraction and 0.01 mol/L, 50℃, 20 min for sodium hydroxide, respectively. The optimal method of sheath extraction was 0.01 mol/L sodium hydroxide water-bath method, 80℃, 40 min and 20 kHz, 30 W, on:3 s, off:3 s, 2 min by ultrasonic method. In addition, the polysaccharide components of extracted surface coat examination by high-performance liquid chromatography (HPLC) indicated that the sheath is highly hydrophobic and is not hydrated to slime or RPS in the culture medium. The glucosamine (1.261±0.02 mg/g) contained in capsule makes the capsule more adhesion than the sheath. Additionally, the optimal extraction methods obtained from this study can be effectively applied to other cyanobacterial and green algal species whose surface coats are mainly capsule and sheath. This study may provide technical support for further revealing the biological function of cyanobacterial and algal surface coat.
Key words:  Cyanobacteria  surface coat extraction  morphotype  method optimization  glucosamine
分享按钮