投稿中心

审稿中心

编辑中心

期刊出版

网站地图

友情链接

引用本文:杨忠勇,张亚超,汤正阳,纪道斌,崔玉洁,李昌文,吴家阳.三峡水库香溪河库湾水-气界面热交换过程及水体稳定性.湖泊科学,2023,35(2):730-742. DOI:10.18307/2023.0229
Yang Zhongyong,Zhang Yachao,Tang Zhengyang,Ji Daobin,Cui Yujie,Li Changwen,Wu Jiayang.The air-water heat exchange and water vertical stability in the Xiangxi Bay of Three Gorges Reservoir. J. Lake Sci.2023,35(2):730-742. DOI:10.18307/2023.0229
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1812次   下载 1129 本文二维码信息
码上扫一扫!
分享到: 微信 更多
三峡水库香溪河库湾水-气界面热交换过程及水体稳定性
杨忠勇1,2, 张亚超1, 汤正阳3,4, 纪道斌1,2, 崔玉洁1, 李昌文1, 吴家阳5
1.三峡大学水利与环境学院, 宜昌 443002;2.三峡大学三峡水库生态系统湖北省野外科学观测研究站, 宜昌 443002;3.中国长江电力股份有限公司, 智慧长江与水电科学湖北省重点实验室, 宜昌 443000;4.华中科技大学土木与水利工程学院, 武汉 430074;5.长江勘测规划设计研究有限责任公司, 武汉 430010
摘要:
水库或湖泊的热分层结构是其动力与环境过程的重要研究方面,虽然很多学者针对水体分层结构和演变机理开展了大量研究,但水体通过水-气界面与大气进行热交换的过程,各气象因子的贡献机理等研究成果还很缺乏。本文基于三峡水库香溪河库湾2019年3月-2020年2月期间的水温、水位及气象等监测数据,针对水-气界面热交换过程如何影响水温垂向结构及表层水体湍流混合作用开展研究。结果表明,(1) 香溪河水体年内呈高温期分层、低温期混合的基本特征,高温期混合层深度小于8 m,低温期混合层深度超过30 m。(2) 太阳短波辐射是香溪河水体的主要热源,潜热通量和长波辐射是香溪河水体的主要冷源,感热通量贡献极小。(3) 香溪河平均风速较弱,约为1.6 m/s,主要通过增强潜热和感热通量的方式影响水体垂向稳定性结构特征,其机械扰动作用较弱。(4) 表层水体湍能通量在高温期较低(10-7 m3/s3量级),此时水体处于分层状态,风应力大概率主导表层水体湍流发育; 低温期表层水体湍能通量较高(10-6 m3/s3量级),此时潜热通量和长波辐射主导表层水体湍流发育。
关键词:  三峡水库  香溪河库湾  水气界面热通量  水体热分层  风应力  表层湍流
DOI:10.18307/2023.0229
分类号:
基金项目:湖北省重点研发计划项目(2020BCA087)、国家自然科学基金项目(52079069,52009066,52009079)、智慧长江与水电科学湖北省重点实验室开放研究基金项目(ZH2102000109)、长江科学院开放研究基金项目(CKWV20221003/KY)和湖北省高校优秀中青年科技创新团队项目(T2021003)联合资助。
The air-water heat exchange and water vertical stability in the Xiangxi Bay of Three Gorges Reservoir
Yang Zhongyong1,2, Zhang Yachao1, Tang Zhengyang3,4, Ji Daobin1,2, Cui Yujie1, Li Changwen1, Wu Jiayang5
1.College of Hydraulic and Environmental Engineering, China Three Gorges Univercity, Yichang 443002, P. R. China;2.Hubei Field Observation and Scientific Research Stations for Water Ecosystem in Three Gorges Reservoir, China Three Gorges University, Yichang 443002, P. R. China;3.Hubei Key Laboratory of Intelligent Yangtze and Hydroelectric Science, China Yangtze Power Co., Ltd., Yichang 443000, P. R. China;4.School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China;5.Changjiang Institute of Survey, Planning, Design and Research, Wuhan 430010, P. R. China
Abstract:
The thermal stratification structure of a reservoir or a lake is important to its dynamics and environmental process. Although many scholars have studied this topic, a gap is still existed on the process of heat exchange in the air-water interface and the contribution mechanism of various meteorological factors. In this paper, based on the observation data of water temperature and meteorology from March 2019 to February 2020, in Xiangxi Bay of the Three Gorges Reservoir, we studied how the heat flux and wind stress affect the vertical structure of water temperature and the turbulent mixing. We have conclusions as following. (1) The Xiangxi River is characterized as stratification in high temperature period and mixing in low temperature period. The depth of mixing layers in high temperature period is less than 8 m and that in low temperature period is more than 30 m. (2) Solar short-wave radiation is the main heat source of Xiangxi Bay, while latent heat flux and long wave radiation are the main cold source. The contribution of sensible heat flux is quite small. (3) The wind speed in Xiangxi River region is weak, with an average value about 1.6 m/s, which influence the water vertical stability by enhancing latent heat and sensible heat flux strongly and mechanical disturbance effect weakly. (4) The turbulent energy flux of surface water is much lower in the high-temperature period (10-7 m3/s3 in magnitude), at which time the wind stress dominates the development of turbulence. The turbulent energy flux is quite high during low-temperature period (10-6 m3/s3 in magnitude), when the sensible heat flux and long wave radiation dominate the turbulence mixing.
Key words:  Three Gorges Reservoir  Xiangxi Bay  air-water heat process  stratification and mixing  wind shear stress  turbulent flux
分享按钮