引用本文: | 方菲,粟一帆,朱文涵,甘琳,张咏,杨柳燕.蓝藻水华暴发过程中的浮力调节机制.湖泊科学,2023,35(4):1139-1152. DOI:10.18307/2023.0401 |
| Fang Fei,Su Yifan,Zhu Wenhan,Gan Lin,Zhang Yong,Yang Liuyan.The mechanism of buoyancy regulation in the process of cyanobacterial bloom. J. Lake Sci.2023,35(4):1139-1152. DOI:10.18307/2023.0401 |
|
|
|
本文已被:浏览 4135次 下载 4877次 |
码上扫一扫! |
|
蓝藻水华暴发过程中的浮力调节机制 |
方菲1,2, 粟一帆3, 朱文涵3, 甘琳3, 张咏1, 杨柳燕4
|
1.江苏省环境监测中心, 南京 210023;2.南京大学生命科学学院, 南京 210019;3.南京水利科学研究院, 南京 210029;4.南京大学环境学院, 南京 210023
|
|
摘要: |
随着工业和经济的发展,水体富营养化以及由此导致的蓝藻水华现象频发,严重影响水生态安全及健康。蓝藻水华形成过程包括休眠、复苏、生物量增加以及上浮聚集形成肉眼可见的水华4个阶段。蓝藻自身的生长机制是引发水华的重要原因,其中浮力调节机制是其重要的生存策略之一,在春季复苏、夏季大量增长及最终上浮至水体表面形成水华阶段均具有重要作用。了解蓝藻浮力调节机制及其在水华过程中的作用对于了解蓝藻生长特性及水华形成机理具有重要意义。气囊及细胞镇重物是常见的浮力调节机制。除此以外,新的研究发现光照条件下单细胞蓝藻产生的大量氧气泡可促使蓝藻上浮至水面形成水华。同时,野外蓝藻常以群体状态存在,群体内部形成的细胞间隙及光照条件下产生的大量氧气是促使蓝藻上浮至水体表面的另一重要原因。野外蓝藻群体在其内部形成微环境,其理化性质可随外界环境的改变发生快速变化,群体内外微环境相互作用,共同影响群体内部细胞间隙中溶氧浓度及浮力。了解蓝藻浮力调节机制及群体内部微环境理化性质对深入了解蓝藻的生长特性及从微观层面分析水华形成机理具有重要意义。本文综述了水华暴发过程中蓝藻的主要浮力调节机制,以期为从微观层面探明蓝藻水华暴发机理提供新思路。 |
关键词: 蓝藻水华 蓝藻群体 浮力调节 细胞间隙 微环境 |
DOI:10.18307/2023.0401 |
分类号: |
基金项目:环境保护项目国家生态环境监测网络建设与运行专项、江苏省水利科技项目(2019051,2021069)和国家重点研发计划项目(2022YFC3202602)联合资助。 |
|
The mechanism of buoyancy regulation in the process of cyanobacterial bloom |
Fang Fei1,2, Su Yifan3, Zhu Wenhan3, Gan Lin3, Zhang Yong1, Yang Liuyan4
|
1.Jiangsu Environmental Monitoring Center, Nanjing 210019, P. R. China;2.School of Life Science, Nanjing University, Nanjing 210023, P. R. China;3.Nanjing Hydraulic Research Institute, Nanjing 210029, P. R. China;4.School of Environment, Nanjing University, Nanjing 210023, P. R. China
|
Abstract: |
With the development of industry and the economy, water eutrophication and the resulting cyanobacterial blooms are becoming increasingly serious. Cyanobacterial blooms seriously affect the safety and health of the aquatic ecology. The formation process of cyanobacterial blooms includes four stages: dormancy, recovery, biomass increase and formation of macroscopic blooms. The growth mechanism of cyanobacteria itself is an important reason for the outbreak of cyanobacterial blooms, among which the buoyancy regulation mechanism of cyanobacteria is one of the most important survival strategies of cyanobacteria, which plays an important role in the recovery of cyanobacteria in spring, the massive growth of cyanobacteria in summer and the final rise to the water surface to form a bloom. Understanding the mechanism of cyanobacterial buoyancy regulation and its role in cyanobacterial blooms is of great importance for understanding the growth characteristics of cyanobacteria and the mechanism of cyanobacterial bloom formation. Gas vesicles and carbohydrates are the common buoyancy regulation mechanisms of cyanobacteria. In addition, new studies have found that large oxygen bubbles produced by unicellular cyanobacteria under light conditions can cause them to rise to the surface. At the same time, cyanobacteria usually exist in colonies in the field, and the oxygen produced in the light filled intercellular space within the colonies is another important factor to affect the buoyancy of the colonies, Meanwhile, a microenvironment was formed in the colonies. The physicochemical properties of the microenvironment within the colonies varied rapidly with changes in external environmental conditions. The microenvironment inside and outside the colonies influenced each other and determined the oxygen concentration inside the colonies, which then influenced the buoyancy of the colonies. Understanding the influence of the buoyancy regulation mechanism of cyanobacteria on the formation of cyanobacterial blooms and the internal microenvironment on the buoyancy of the colonies is of great importance for further understanding the growth characteristics of cyanobacteria and analysing the formation mechanism of cyanobacterial blooms at the microscopic level. This paper summarises the main buoyancy regulation mechanisms of cyanobacterial colonies in the field for a better understanding of the mechanism of cyanobacterial blooms. |
Key words: Cyanobacterial bloom cyanobacterial colonies buoyancy regulation intercellular space microenvironment |
|
|
|
|