引用本文: | 高扬,罗飚,沈迪,贾珺杰,陆瑶,王朔月.青藏高原水体碳源汇过程的重新认知与挑战.湖泊科学,2023,35(6):1853-1865. DOI:10.18307/2023.0601 |
| Gao Yang,Luo Biao,Shen Di,Jia Junjie,Lu Yao,Wang Shuoyue.Recognition and challenges of the inland water carbon source and sink processes on the Qinghai-Tibet Plateau. J. Lake Sci.2023,35(6):1853-1865. DOI:10.18307/2023.0601 |
|
|
|
本文已被:浏览 2544次 下载 1877次 |
码上扫一扫! |
|
青藏高原水体碳源汇过程的重新认知与挑战 |
高扬1,2, 罗飚1,3, 沈迪4, 贾珺杰1, 陆瑶1,2, 王朔月1,2
|
1.中国科学院地理科学与资源研究所, 生态系统网络观测与模拟重点实验室, 北京 100101;2.中国科学院大学资源与环境学院, 北京 100049;3.中国石油天然气集团有限公司大港油田分公司第三采油厂, 沧州 061023;4.兰州大学资源与环境学院, 兰州 730000
|
|
摘要: |
陆地-大气和陆地-水体的碳输送与碳交换共同决定了陆地生态系统的碳平衡,但长期以来青藏高原水体由于缺乏有效的观测数据,导致青藏高原水体一直是全球碳循环研究中被忽视的碳汇功能区。本研究聚焦青藏高原水体,重新认知水体碳侵蚀与碳沉积对青藏高原固碳的重要作用,系统分析河湖库-大气间的碳运移与交换时空格局与驱动机制。通过归纳总结发现:(1)青藏高原河流岩石风化速率以及CO2消耗速率较高,强烈的侵蚀作用对地球系统吸收和平衡CO2浓度起着重要的调控作用;(2)青藏高原湖泊是内陆生态系统的重要碳库,12 ka 以来湖泊沉积物碳储量约为73 kg C/m2;(3)青藏高原湖泊浮游植物和水生植物影响内陆水体C沉积,年均初级生产力达(553±36) mg C/(m2·d)。(4)青藏高原湖泊目前为“碳源”,碳排放量约为2.27 Tg C/a。此外,本文还阐明青藏高原水体碳源汇过程评估的不确定性,以及从方法学角度分析如何加强其水体的碳循环研究,厘清全球变化下青藏高原水体的碳源汇机制,并展望了青藏高原水体碳源汇功能未来研究所面临的挑战,从而为深入理解全球变化下青藏高原生态系统在碳中和过程中的作用提供科学依据。 |
关键词: 碳迁移 碳转化 碳平衡 碳中和 碳交换 碳收支 青藏高原 |
DOI:10.18307/2023.0601 |
分类号: |
基金项目:国家杰出青年科学基金项目(42225103)和中国科学院稳定支持基础研究领域青年团队计划(YSBR-037)联合资助。 |
|
Recognition and challenges of the inland water carbon source and sink processes on the Qinghai-Tibet Plateau |
Gao Yang1,2, Luo Biao1,3, Shen Di4, Jia Junjie1, Lu Yao1,2, Wang Shuoyue1,2
|
1.Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, P.R. China;2.College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P.R. China;3.China National Petroleum Corporation, Dagang Oilfield Company No. 3 Oil Extraction Plant, Cangzhou 061023, P.R. China;4.College of Earth and Environment Science, Lanzhou University, Lanzhou 730000, P.R. China
|
Abstract: |
Carbon(C) transport and C exchange between land atmosphere and land water body jointly determine the C balance of terrestrial ecosystem. However, due to the lack of effective observation data for a long time, inland water body on the Qinghai-Tibet Plateau (QTP) are unheeded C source or sink in the study of global C cycle. This study focus on the inland water body on the Qinghai-Tibet Plateau, to reexplore that the importance of C erosion and C deposition to the C sequestration potential of terrestrial ecosystem, systematically explained the C transportation and exchange processes between rivers, lakes, reservoirs, and the atmosphere and associated driving mechanism. The results showed that:(1) the part of rivers on the QTP had high weathering rates and CO2 consumption rates, and strong erosion played an important regulatory role in the absorption and balance of CO2 concentration by the Earth system; (2) the lakes on the QTP were an important carbon reservoir for inland ecosystems, and the carbon storage of lake sediments since 12 ka was about 73 kg C/m2; (3) the phytoplankton and aquatic plants in lakes on the QTP affected the deposition of C in inland water bodies, with an average annual primary productivity of (553 ± 36) mg C/(m2·d); (4) the lakes on the QTP were currently the “carbon source” with a carbon emission of approximately 2.27 Tg C/a. In addition, this study clarified the uncertainty estimation on the C source and sink process of the inland water, analyzed how to strengthen the C cycle research from a methodological perspective, and clarified the C source and sink mechanism of the QTP water body under global change, and looked forward to the research challenge on C source and sink function the inland water body on the QTP in the future. All these provide a scientific basis for in-depth understanding of the role of terrestrial ecosystems in the C neutralization process under global change. |
Key words: C transport C transformation C balance C neutrality C exchange C budget Qinghai-Tibet Plateau |
|
|
|
|