引用本文: | 郑鑫,王文静,盛彦清.硝态氮对库区水体藻类和细菌群落的影响.湖泊科学,2023,35(6):1917-1926. DOI:10.18307/2023.0616 |
| Zheng Xin,Wang Wenjing,Sheng Yanqing.Influence of nitrate on algal and bacterial community structures in reservoir waters. J. Lake Sci.2023,35(6):1917-1926. DOI:10.18307/2023.0616 |
|
本文已被:浏览 1591次 下载 1555次 |
码上扫一扫! |
|
硝态氮对库区水体藻类和细菌群落的影响 |
郑鑫1,2,3, 王文静1,2, 盛彦清1,2
|
1.中国科学院烟台海岸带研究所, 烟台 264003;2.中国科学院海岸带环境过程与生态修复重点实验室, 烟台 264003;3.中国科学院大学, 北京 100049
|
|
摘要: |
水体富营养化极易引起湖泊水库如藻类水华等水生态系统环境问题。氮素作为初级生产力的限制性生源要素之一,认识其在水华形成过程中潜在作用至关重要。本研究选取胶东半岛低碳高氮水库水体进行模拟实验,通过添加不同剂量硝态氮,探究高硝态氮输入对库区水体藻类和细菌群落结构的影响。结果表明:(1)当硝态氮作为唯一氮源,随着培养时间延长,硝态氮浓度显著下降,亚硝态氮和氨氮浓度逐渐升高,表明微藻和细菌共同作用可能将硝态氮转化为亚硝态氮和氨氮;(2)当硝态氮浓度为6 mg/L时,藻类叶绿素a浓度达到最高值,随着硝态氮浓度升高,叶绿素a浓度则会降低;(3)添加硝态氮后,蓝藻门成为优势藻类,绿藻门次之;变形菌门相对丰度显著升高。研究结果为低碳高氮类水体暴发蓝绿藻水华及有效防控提供理论依据和技术支撑。 |
关键词: 藻类水华 富营养化 氮 藻类 细菌 |
DOI:10.18307/2023.0616 |
分类号: |
基金项目:山东省自然科学基金项目(ZR2020KE048,ZR2022MD052)资助。 |
|
Influence of nitrate on algal and bacterial community structures in reservoir waters |
Zheng Xin1,2,3, Wang Wenjing1,2, Sheng Yanqing1,2
|
1.Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P.R. China;2.Key Laboratory of Coastal Zone Environmental Processes, Chinese Academy of Sciences, Yantai 264003, P.R. China;3.University of Chinese Academy of Sciences, Beijing 100049, P.R. China
|
Abstract: |
It is a severe environmental problem of algal blooms caused by eutrophication in lakes and reservoirs. Nitrogen is a limiting biogenic element for primary productivity. It is important for recognizing the role of nitrogen in the algal bloom. In this study, typical reservoir (Jiaodong Peninsula, China) with low carbon and high nitrogen was inoculated for simulation. The mechanism of how nitrates impacted on the compositions phytoplankton and microbial communities was explored by adding different concentrations of nitrate. Results displayed that (1) when NO-3-N was the only nitrogen source, the concentration of NO-3-N would decrease along culturing. The concentrations of NO-2-N and ammonia would gradually increase. It indicated that NO-3-N could be converted into NO-2-N and ammonia by algae and bacteria. (2) The chlorophyll-a reached to the highest concentration among all treatments while 6 mg/L NO-3-N was added. When the concentration of NO-3-N was higher than 6 mg/L, the concentration of chlorophyll-a decreased. (3) After adding NO-3-N, cyanophyta and chlorophyta became dominant algae in the algal bloom of simulation, and the relative abundance of proteobacteria increased. The results would provide a theoretical basis and technical support for understanding and effective prevention of blue-green algal blooms in low carbon and high nitrogen reservoirs. |
Key words: Algal bloom eutrophication nitrogen algae bacteria |